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We consider further how scattering informati¢the S-matrix) can be obtained, as a continuous
function of energy, by studying wave packet dynamics on a finite grid of restricted size. Solutions
are expanded using recursively generated basis functions for calculating Green’s functions and the
spectral density operator. These basis functions allow one to construct a general solution to both the
standard homogeneous Sdtimger's equation and the time-independent wave packet,
inhomogeneous Schdimger equation, in the non-interacting regi@way from the boundaries and

the interaction regionfrom which the scattering solution obeying the desired boundary conditions
can be constructed. In addition, we derive new expressions for a “remainder or error term,” which
can hopefully be used to optimize the choice of grid points at which the scattering information is
evaluated. Problems with reflections at finite boundaries are dealt with using a Hamiltonian which
is damped in the boundary region as was done by Mandelshtam and Tay@nem. Physl03
2903(1995]. This enables smaller Hamiltonian matrices to be used. The analysis and numerical
methods are illustrated by application to collineat-H, reactive scattering. €996 American
Institute of Physicg.S0021-960806)02127-7

I. INTRODUCTION off the boundary, or an absorbing potential is employed to

o ] ) ) ) eliminate boundary reflections, and the initial packet
The principal question addressed in this paper is how, | 4n ) vanishes in the region of the potential, it is easy to

accurate approximations to continuum scattering states c3tove that,in a restricted region of space discussed below

be constructed using Hamiltonians discretized in finite re,|tions of Eqgs(1) and (2) can be chosen to be related to
gions(finite matrix approximations to the true Hamilton)an the Lippmann—SchwingeLS) state, ¥; (E)), according
The equation's® we choose as our framework for treating to 1-3 Tk ’

this question are provided by the time-independent wave

acket Schrdinger equation, [ mA(K)
P gered =G (E)X(0)= — 7~ ¥ (E), 3
i 2 ok
(E—H)&(Elak,n,) = EX(OMM), D with
and its formal solution, by the time-independent wave packet ¥« (E)=¥«(E)+G ™ (E)Vyx(E). 4
Lippmann—Schwinger equation, Here, ¢ (E) is the “unperturbed” or “incident” state, and
i we have chosen to suppress the other quantum labaisd
E(E|lak,n,)= EG(E)X(OMHCJ, (2 n, for the sake of simplifying the notatiofwe shall use the

more detailed notation when it is necessary to avoid confu-
which constitute new formulations of quantum dynamics. Insion). The region of space in which E@) is valid is char-
Eq. (2), G(E) is an inverse of E—H) which satisfies some acterized in terms of the packet(0). Because we have
specific boundary conditions, although not necessarily outgoassumed that(0) is nonzero in a finite regiooutsidethe
ing wave or causal oneg(0|an,) is a source function region where the potential is nonzero, we may speak of the
which in the original derivations was a wave packet at initialregion external togy(0) which is closestin some well de-
time t=0, a« denotes an arrangement channel, &pdand  fined sensgto the potential as the “potential side” of the
n, denote the average relative translational momentum anuhitial wave packet. Then Eq3) holdson the potential side
initial internal quantum numbers respectively. The factorof such an initial wave packeHere, also,G*(E) is the
i/27 can be absorbed into the definition of the initial sourcecausal Green’s function am&(k) is the Fourier amplitude of
function, if desired. Related methods based on these equg{0) corresponding to the translational momentakn The
tions have been used by several other groups recently fdoremost advantage of Eqél) and (2) is readily seen from
scattering calculation’ When the scattering region in the Eq. (3): the causal Lippmann—Schwinger solution, over a
calculation is taken to be large enough so that the scatteringinge of energies, can be obtained from a sing®). Inthis
amplitudes can be obtained before the solution is reflectedase, the boundary condition satisfied by the Green’s func-
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928 Huang et al.: Wave packet equations of quantum dynamics

tion GT(E)=(E—H+i€) !in Eq. (3) is the outgoing scat- tonian, rather than damped recursion, to treat boundary re-
tered wave boundary condition. This boundary condition orflections. However, our damped Hamiltonian expressions
the Green'’s function can be enforced either by introducing &an be directly transformed into the same type of damped
negative imaginary absorbing potenti&*3or by explicitly ~ recursion expressions that were employed by Mandelshtam
obtaining expansion coefficienta, (E), which reflect the and Taylor® We illustrate our approach by an application to
+ie in the Green’s function, yielding results as a continuousthe collinear H-H, reactive scattering system.
function of the energ¥, and permitting thee— 0., limit to The plan of this paper is as follows. In the next section,
be takerf. A general, energy-separable Faber polynomialwe give a detailed analysis for constructing scattering wave
representation of the Green’s functio®,' (E), valid even functions for a continuous range of energy and extracting
when the Hamiltonian is not Hermitiafas occurs when one scattering information when the system is in a restricted re-
employs an absorbing potentialso has been developed and gion. This leads to new expressions for the error associated
applied successfully in solving E(R) for reactive scattering Wwith a particular truncation of the expansion of the solution.
problems over a range of energfesHowever, the differen- In Section Ill, we give the details of the computational
tial form of the time-independent wave packet formalismmethod. Finally, in Section IV we present example calcula-
(i.e., Eq.(1)), of course, does not possess specific memory ofions and a discussion of the results. Section V contains our
the boundary conditions associated with its derivation from &onclusions.
time dependent treatment. Thus the equation
(E—H)§&=(i/2m) x(0) must be augmented by some specific; aAnALYSIS
choice of boundary conditions. In the work of Mandelshtam _ o
and Taylof and Jang and LigHtjnitial studies of boundary A Chebychev expansions of time-independent and
conditions other than the causal one have been reported. fin€-dependent states
an earlier papei], which we shall call paper |, we have also We begin our analysis by considering the polynomial
independently considered more general boundary conditionsasis set generated by the Faber—Chebychev recitSian.
by combining the solutions i2m)G*(E)x(0) and time-dependent wave packg(t) is given in terms of the
(i/2m)G~(E) x(0) to construc(E—H) x(0), which is eas- initial wave packet by
ily seen to yield a continuum solution of the standard time- .
independent Schdinger equation(The operators(E—H) x(t)=exp(—=itH/%)x(0). ®)
is the so-called spectral density operatdm.fact, in paper I, This equation applies to a general, time-independent Hamil-
a robust procedure for constructing general solutions of théonian regardless of whether the spectrum is continuous or
Schralinger equation was given, since a variety of solutionsdiscrete. If the system is confined to a finite volugas is
can, in principle, be obtained fro@(E—H) x(0) by appro- usually the case for numerical calculatipnthen the system
priate choice ofy(0). Hamiltonian has a totally discrete spectrum. The eigenstates
When the boundary is moved so close to the interactiortan (more or less clean)ybe divided into two groups de-
region that reflections of the scattered waves obaioreall pending on whether the boundary conditions are imposed by
the incident waves have experienced scattering by the potetthe spatial extent of the finite region containing the system or
tial, interferences occur which eventually will produce dis-by the potential. Those eigenvalues and eigenvectors for
crete energy levels, and prevent the extraction of continuoushich the finite boundaries of the region have a numerically
scattering information. In addition to considering boundaryinsignificant effect correspond to the bound states of the sys-
conditions other than purely outgoing waves, Mandelshtantem in the limit of an infinite volume, whereas the states that
and Taylof and Jang and Ligh®lso gave alternative proce- have boundary conditions imposed by the finite volume cor-
dures for circumventing this difficulty. In the former case, respond to the continuum for the infinite-volume problem.
they modified the Chebychev expansion as given by Huang For a physical scattering problem for which conservation
et al? by damping the recursion satisfied by the Chebychef energy applies, in the energy range of interest, the Hamil-
polynomials, thereby eliminating problems with boundarytonian can be represented to arbitrary accuracy on a discrete
reflections. Jang and Light expressed the full Green’s funcgrid of finite extent by controlling the system volume and the
tion in terms of an eigenfunction expansion in which thegrid spacing. Our objective is to do this as efficiently as
eigenfunctions were required to satisfy different boundarypossible for numerical calculations. Of course, such a finite
conditions than vanishing at the end of the grid. Both tech-grid can only represent a finite number of states. The highly
nigques required the solution of a system of linear algebraioscillatory, highly energetic eigenvectors that are assumed to
equations in order to extract the scattering information. contribute little to the wave packet as it evolves are totally
In this paper, we continue to consider our own approachgnored, and in some manner or another we must in effect
to solutions of Eq.(1) and of the standard homogeneous “interpolate” on the discrete states corresponding to the
time-independent Schdinger equation for a continuous continuum of the infinite-volume system to deduce accurate
range of energy, satisfying either arbitrary or scatteringapproximations to these true continuum states. We now turn
boundary conditions. We will also consider solutions whichour attention to how this can be done.
are generated on a grid of restricted size. Our treatment The grid representation of the Hamiltoniégrid Hamil-
makes use of the general final state analysis which we intratonian) for a spatially confined system has a finite number of
duced in paper | and we employ a type of damped Hamileigenvalues and hence a maximum and a minimum eigen-
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FIG. 1. |cn(t)| vst. n=50 andAH/A =1.

value. Therefore, the operator ex{{H/#) can be expanded

in a Faber—Chebychev series according'tb

oo

exp( —itH/%)= >, ay(t)To(Hnom (6)

n=0
where
an(t)=(2—5n0)(—i)”exp(—itmh)Jn(AHt/ﬁ). (7)

Here H is the estimated midpoint of the spectrum laf
AH is the estimated half-width of the spectrum, ahdis a
cylinder Bessel function of the first kin@f integral ordey.

of [t|. This onset is relatively sharp; however, packets
evolved longer than the onset time continue to contribute
with decreasing amplitude. The time interval for a given
7, IS somewhat shorter than indicated by Fig. 1 because
cy(t) is oscillatory and some cancellation due to the phase
takes place in the integral of EQL2). Thus, we find that an
expansion of a function in terms of Faber—Chebychev basis
functions, 7, , is in effect an expansion in terms @verlap-
ping) periods in the time evolution of the initial wave packet.

B. Expansion of solutions of the standard
homogeneous time-independent Schro “dinger
equation

We now explore the construction of approximate eigen-
vectors ofH in terms of a finite linear combination of the
Faber—Chebychev basis functions. To this end, we define

m
Uin(E)= 2, bn(E) 7, (13
where the coefficientb,(E) are functions, yet to be deter-
mined, of an arbitrarily chosen energy. We seek to choose
the coefficients in such a way that, to a controllable approxi-
mation,

Using the orthogonality relationship for Bessel functions ofgy definition

the same argument but different ord& sye can invert this

relationship to obtain

Tn(Hnorm)=£o dica(texp —itH/#), ®
where
Ca(t)=V2n[(2= 8,0)(—i)"
X exp(—itH/A)] Yt "2, (AHt/A) (9)

andcy(t) =lim,_, ,ocn(t). The behavior ofc,(t)| as a func-
tion of |t| is shown in Fig. 1.

The wave packej(t), which evolves fromy(0) ac-
cording to Eqgs(5) and(6), is given by

o

x<t>=n20 an(t) 7, (10
where
77n:Tn(Hnorm)X(0) (11

is the nth Faber—Chebychev vector in the basis sgf;(
n=0 to »). From Eq.(8) we have that

mo= | deesoxo. a2

It is apparent from Fig. 1 that these vectors form a kind ofwhereE

Him(E)~E¢m(E). (14
H=(AH)Homt+ H (15)
and thus
Hm(E) :H_‘ﬂm(E)_"AH boHnom
+ 21 BrH normT n(Hnorm) [ X(0), (16)

where we have made use of the fact tiig=1. The recur-
sion relation for the Chebychev polynomials is

XTh(X)= %[Tn-# 1)+ Tho1(X) ],
which when substituted in E¢16) yields

n=1

17

H hin(E) = H ih( E) + AH| boH pormt b1/2+ (02/2)H porm

+ Tm( H norm) bm— 1/2+ Tm+ l(Hnorm)bm/2
m—1

1
5.2, (Bn-1+Bn. ) To(Hoom) | X(0).

(18

If we now defineby=1/2 andb,(E)=T,(E,om for n=1
norm=(E—H)/AH we then have from Eq.17) that

“chronological” basis set in thag, is formed as a transform boH norm™ 3092H norm= EnormP1H norm (19
of x(t) over two time periodgone for positivet and one for

negativet). The onset of these time periods grows more or

less linearly withn, and hencen serves as a rough measure 1 bn- 14 bns 11 Ta(Hnom = EnormPn Tn(H nom) » (20
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and thus C. Expansion of solutions of the inhomogeneous
_ time-independent wave packet Schro “dinger
Him(E)=E¢n(E) +Rn(E), (2)  and Lippmann—Schwinger equations
where the remainder functioR,(E), is defined by The above analysis can be utilized also for generating
~ solutions of the inhomogeneous time-independent wave
Rin(E)=(AH/2)[Tin(Enorm) 7m-+ 1~ Tm-+1(Enorm) 7m]- packet Schrdinger equation, rather than Ed.4). Thus, we

(22) consider the equation
This expression is similar in structure to the Christoffel— .
Darboux formuld? associated with sums of orthogonal poly- Hén(E)=Eéqn(E)— I—X(O)- (26)
nomials. It is apparent that for those regions in the confining 2m

volume whereR(E) is very small,(E) is an approxi- and note that the general solution will be a combination of
mate eigenfunction off, but, of course, not necessarily one the homogeneous solutidalready discussed abdyelus a
that obeys the boundary conditions imposed by the conparticular solution of the inhomogeneous equation. We can
straints of finite volume. The latter is not a problem since indevelop the desired general solution as

most cases the size of the finite region is employed solely for m

numerical convenience and does not impose boundary con- _

ditions of physical interest. If the energy-independejt gm(E)_nZ:o 9n(E) 770, @

and 7, are both separately small thel,(E) provides an in analogy with Eq.(10) for the homogeneous solution. In

approximate eigenfunctiofor any energy which is a point fact, the g.(E) will be complex, with the real part being

we later discuss in more detail. N ! i
. oo . _equal, to within a constant, to th®, already discussed:
We now examine the convergence of the infinite series,
N @(Enorm)

Y(E)=limpy_...hm(E) Re[gn(E>]=—mbn(E>, all n. (29)

©

Note that this relationship between E)] and the
=| 12+ 3 To(Erorm) TolHrom) | X(0).  (23) P R

b,(E) corresponds to a change in the normalization of the
solution, ¢(E), of the homogeneous Scliager equation
?compared toy(E)) which is imposed simply because the
particular solution’s normalization isiot arbitrary; it must

@ (E o) $(E)l(mAH) = S(E—H) x(0), (24)  be such as to generate the correct normalization of the inho-
mogeneityi x(0)/2sr. The sign choice determines whether

where o(Enom) = (1~ Eform) ~ Y2 is the weight function for  one is generating a causal-like or anticausal-like solution of
orthogonality of the Chebychev polynomials. As has beenhe inhomogeneous equation, since

discussed in paper*lEq. (24) obviously provides a formal _

solution to the standard homogeneous time-independent £ (E) = I_Gi(E)X(O), (29)
Schralinger equation. However, the initial wave packet can 2

always be expanded in terms of the spectrurflaiccording

From the completeness relation for Chebychev polynomial
we have that

i 1

to - @GP _ —

5—GP(E)x(0)£5 3(E—H)x(0). (30

x(0))=2 |o)(alx(0)), (25  Then
1 [
where{o?} is a complete set of quantum numbéndich are E°(E)=*5y(E)+ 5=GP(E)x(0) (31
. : o . . 2 27

discrete, and in fact finite, becaulkeis the grid representa-
tion of the Hamiltonian for a spatially confined systermand =+ R+iE(E). (32

from this equation it is clear tha{(E—H) x(0) is either zero
or infinite as a function oE and hence that Eq24) is only ~
a solution to the Schabinger equation in a formal sense. W(E) = w(Enom) W(E)/(mAH). (33

Two points should be made here. .
(1) In our numerical approach we deal only with Hamil- We next follow the same procedure as before, substitut-

tonians that have a finite spectrum because we reduce thed Eq. (27) into Eq.(26), to obtain

Hamiltonian to a matrix of finite dimensions. However, in _
the continuum of the Hamiltonian for a true scattering HE&m(E)=HEW(E)+AH
system, S(E—H)x(0) is a scattering(i.e., impropey
eigenfunctiorf m

(2) Even thoughS(E—H) x(0) does not converge for an + > gaHnormTn(Hnom)
operator with a discrete spectrum, with appropriate generali- n=t
zation, it still provides the conceptual framework for a very The choice Eq.(28) will ensure that the real part d,,
efficient diagonalization procedure for such matrite¥. combined with the recursion El4), leads to

As stated abovey(E) is related toE(E) according to

gOH norm

x(0). (34
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HER(E)=ER+RM2 (35)

and the imaginary part df,, leads to

— 1
H glm(E) = Hg:n(E) +AH gloHnorm+ E{gll"_ glenorm

+ -1 Tm(Hnom) + 9 Tm+ 1(Hnorm)} [ x(0)
AH[SY |
57| 2 (9h-1+Gne ) To(Hnom) | X(0).
(36)

We have attached the superscripi™to R,,, given by Eq.
(19), to indicate that it is the remainder term for the solu-
tion_of the homogeneousquation. Again,Rm is related
to Ry(E) by a relation similar to that betweeg/(E)
and ¢ (E).

We now note that one may introduce the linearly inde-

pendent Chebychev functiong,,(E,om,

Vin(Enorm) =sin(ne(E)), (37)
which also satisfy the recursibh
XVp(X) = %[Vn+l(x)+vn—1(x)]- (39

The phasep(E) equals coS'E,qm. We then choose

gb(E)=0, (39
| 1
9uB)=-3q (40)
o(Enorm)
=- Tnl(i;vl(Enorm)a (41)
and
®(Enorm
on(E)=——x Va(Emom), n=L. (42)
Since
VO( Enorm) =0, (43)
it is easy to verify that
EnormV1(Enorm) = %VZ( Enorm) (44)

and using these equations, and the recur&3@ in Eq. (36)
yields the final result

1
HE&W(E)=E&m(E) = 5—x(0)+Ry(E). (45)

931

E—H 4
AH ) (47)
and H and AH are the center and the half width of the
spectrum of the Hermitian HamiltoniaH,, respectively. The
remainder,R'm(E), for the particular solution of Eq1) is

@(E):cos‘l(

@ (Enom
le(E) = %[Vm( Enorm) m+ 1
=Vt 1(Enorm) 7m]- (48)
In this expressiong'm(E) is now expressed explicitly as

@ (Eporm)

glm(E) =- Wan_rlngl Vi(Enorm) Tn(Hnorm) X(0) (49)
@(Eporm) <

=- Tnl(:nzo Vn(Enorm Tn(Hnom) x(0), (50

where the latter makes use of the fact thfgtvanishes. We
note that in previous work we have shown thaf

m

limpy, . ZO Vn(Enorm Tn(Hnorm) X(0)

~ J(AH)’—(E-H)?
T 2

GP(E)x(0). (51
Thus, this procedure is a general one that makes possible the
generation of both the solution of the homogeneous time-
independent Schdinger equation and the particular solution

of the inhomogeneous time-independent Sdhrger equa-
tion, for any energyE. We emphasize that the enerBycan

be varied continuously, so that the solutions thus constructed
are true scattering-type states, as will now be discussed.

D. Extraction of scattering information as a
continuous function of energy and the role of the
“box-size”

We now examine how functions satisfying E1) can

be used to extract scattering information. The first case we
consider is that of a packet, initially in a precollision region,
impinging on a target. We further assume that the grid is
very long so that the collision, to the desired numerical ac-
curacy, has been completed before any portion of the packet
traverses the finite scattering region. The time-to-energy
transform ofy(t),

©

f dt expliEt/7) x(1) (52)

It should be noted that the above choices of real and imagiprovides a scattering eigenfunction of the system with a

nary parts ofg,(E) correspond to

o(Enorm)

9n(Enorm = — TAH

[cogne(E))—isin(ne(E))]

_ @Enom) _ing(e)
wAH

(46)

Here, the energy-dependent phagéE), is

J. Chem. Phys., Vol. 105,

causal boundary condition E is in the continuum. If we
consider a particular position of the system in configuration
space, then the integral at this configuration has effectively
converged once the packet has passed over this configuration
point and exited the systeniSome care must be exercised
here because, due to wave packet spreading, the wave packet
actually never totally leaves any region of space. In fact, in
one and two dimensions the integral, E§2), is not abso-

No. 3, 15 July 1996
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lutely convergerif and convergence of the integral relies to sorbing potential is to include exponential damping in the
an extent on phase oscillations. This is the reason for the ugecursion relation.

of the term “effectively.” In higher dimensions, where the

wave spreads in time in a configuration space of greater diE. Eliminating boundary reflections using

mensionality, the integral does converge absoluf8lBup-  “Mandelshtam—Taylor-type” damping

poset,, is the onset time for the Faber—Chebychev basis

. . . We now examine a method for extracting scattering in-
function 7,,. Then, if for times such thaft|>|t,|, the g g

formation using a Hermitian grid Hamiltonian by modifying
the Faber—Chebychev recursion relation of Ey). Let us

the Christoffel-Darboux remainder term of E@®2) van- consider the “damped grid Hamiltoniaf”

ishes andy,(E) satisfies the time-independent Satirmer
equation forany scattering energy (E)his solution is ob- H gamd X1 :X17) = VA(X) Hnorm X1 X 1) VA(Xy1), (53
viously not an eigenfunction of the grid Hamiltonian used to
construct Eq(22) since it does not satisfy the boundary con-
ditions imposed by the finite volume. Instead it is a true
scattering solution, assuming as we have that the packet h

not reached the boundary of the finite region and been re;n i at grid points in the interior of the scattering region but

flected back. However, for larg, Tm W'",nOt -van|s_h be- whose values decay smoothly to zero at grid points in the
cause the wave packet for the grid Hamiltonian will reﬂeCtboundary regions. We then use tiéx,) to modify or

off the boundary and scatter back across the configuratiomsca|e,, the Faber—Chebychev recursion relations for the
point, and, as we have discussed, in the limitrabecomes

whered(x;) andd(x;,) can be viewed as elements of a di-
agonal, real matrix, ang, denotes grid points in the configu-
ration space of the collision system. Furthermore, we assume
#%e functiond to be a “damping function” which is equal to

P AR 7, defining

infinite ¢,(E) does not converge. Thus, in this circum- §

stance,,(E) convergesasymptoticallyas a function ofn 70(x) = x(0[x)),

to the true scattering wave function for the Hamiltonian (54)
without f_|n|te bound_anes. Similar resglts hold for the pa}rt|cu- ng(xl): E H damd X X)) x(0]%)

lar solution of the inhomogeneous time-independent Schro I

dinger equation. and

If the initial wave packet is not “precollision” but in-
stead stgrts out overlapping .the scattering region, then nﬁ+1(X|)=22 H damd Xi ,X|r)7;ﬂ(x|r)
ym(E) still converges asymptotically to a scattering eigen- G
function at a configuration point if the packet has not re- 2 d
flected off the walls so that the Christoffel-Darboux remain- —d"x) 7n-a(x1), n=1. (55
der vanishes. However, the construction of a scattering/aking use of thesenodified FaberChebychev recursion
solution with the desired boundary conditions, in generalyelations Eq. (18) assumes the form
will require the use of more than one initial pacReiNote — d > 4
that we donot seek solutions of the inhomogeneous time-  H¥m(E)=H¥m(E) + AH[DoH gampl 70+ (01/2)d% 70
independent wave packet _St':d'ncnger equation whery(0) +(b2/2)d277‘1’+(bm,1/2) 77?n+(bm/2) 77dm+l
overlaps the scattering region.

Obtaining asymptotic convergence in E@1) or Eq. ) d
(45) requires a grid sufficiently large so that thg vectors in + —22 [bn—1+dbyi1]7, (56)
the expansion do not reflect off the boundaries of the finite "
scattering region before the collision of interest is completedor
This often times requires a very large grid. A well estab- _ 5
lished procedure for shortening the required grid size is to HYm(E)=Edm(E)+Rm(E)
use an imaginary absorbing potential at the boundaries of the 1 m-1
scattering regioh®1”1°2|n this case they, are absorbed + E(dz—l) > T 1(Enom) 75 (57)
rather than reflected off the boundaries of the grid. However, n=0
adding an imaginary potential to the Hamiltonian gives it aln this equationH andHy,m,are the grid Hamiltonian and
complex spectrum, which alters the radius of the converdamped grid Hamiltonian matriced? is a diagonal matrix
gence of the Chebychev polynomial expansion, and thus theith elementss,, d?(x,), and they,,(E),Rn(E), and, are
definition of H . must be adjusted accordingf}(to keep  discrete vectors. To obtain the final form of the result, we
the Christoffel-Darboux remainder from diverginffrom a  have takerby=1/2 andb,=T,(Eom for n=1 as before.
numerical point of view using a non-Hermitian Hamiltonian An analogous result holds for the particular solution of Eq.
is substantially less convenient than using a Hermitian ong(1).

One procedure given recently by Mandelshtam and Taylor is  We first remark that the modified Faber—Chebychev ba-
to employ (effectivelyy an energy-dependent absorbing sis vectors arenot derived by applying Chebychev polyno-
potential® However, they show that by appropriate modifi- mials of the damped Hamiltonian to a trial vectaf. Eq.
cation of the Chebychev recursion relation it is still possible(11)) as is obvious from the fact that E(5) is not the same

to deal with the physical Hamiltonian. The effect of the ab-recursion relation as E¢17). However, in the interior region

m-1
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where d>=1, Eq. (55) locally becomes equivalent to Eq. W (E|x)=T expikx) (64)
(17). As a resulty,,, propagates im in the same manner as

Tm(Hnom) x(0), until it reaches the boundary region. There, "

the damping factor in the recursion attenuates the reflected P (E|x)=exp —ikx)+ R’exp(ikx). (65)

wave so that in the limit )
HereR (andR’) andT (andT') are, respectively, the energy

limp_.. p5=0 (58)  dependent reflection and transmission amplitud€ghe
and as a result primed and _unprimed quantities differ at _m_ost by a phase.
These amplitudes and the constant coefficienemdb can
Mg .Rp=0. (59  be obtained by evaluating (E|x) at two points in the region
Thus, Eq.(57) becomes betweeny(0) and the beginning of the potential and at two

. points beyond and to the right of the potenfial.
_ ~ 1
HY(E)=EY(E)+ 5(d*=1) 2 To:1(Enorn) 7, (60)

WhereE(E)EIimm_,ocwm(E). It follows that, in the interior G. Final state analysis for reactive scattering

region, @?—1) can be made sufficiently small tha(E) The same analysis can be generalized readily for reactive
obeys the time-independenthomogeneoys Schralinger  scattering. In the case of two arrangemenisand 3, an
equation for arbitraryE. If the reflected basis vectors are arbitrary solution of the time-independent Satirmer equa-
completely attenuated so that they never return to the regiotion can be written as a linear combination of the causal LS
where the scattering analysis is carried out, ti#¢E) obeys  solutions, ¥, (E|a) and ¥, (E|B) Here the subscripts
causal boundary conditions, and one can use the S|mpl>g and \ 4 fix the solution by specifying the precollision
analysis based on E{l) (provided thaty(0) does not over-  states in thea and g8 arrangement channels, respectively.
lap the potentigl However, if the reflected basis vectors do The asymptotic forms ov (E|a) andV; (E|,8) are given
reach the analysis region asincreases, thetzl/(E) does not

satisfy any special boundary condition. In this case, one must

use a complete set of linearly independent initial packets to W (E|a|x)= ¢, (E|a|x)

construct a wave function that satisfies the desired boundary ¢ ‘

conditions. It should be clear that the parallel development oB) kh
can be given fog,, the particular solution of E¢1), and + Z S (E)l/fh (Ele|x),
for the homogeneous solutions(E), with remainder Mo (66)
Ri(E). NoE) i
v (ElBlx)= 2 Sxﬁx (E)¢y (Elalx),

F. One-dimensional illustration
) ) . . valid outside the potentlal on the arrangement side, and
We now consider a one-dimensional problem to illus-

trate the analysis. Suppose the initial wave packéd), is . . NeENLAE) k N 4 -

located on the LHS of the potenti@ithout overlapping i ‘I’xa(E|a|X): ) > k_}\,shakl’;(E)‘/’x;(E|B|x)’

and is impinging on the target. The general solution of the Ap=11Na(E) B

time-independent Schdinger equation with arbitrary - >
E E

boundary conditions is given by a linear combination of any )‘B( |’B|X '//Me( [81%)

complete set of linearly independent solutions. These can be Ng(E)+ N, (E) K

chosen in a number of ways, for example as the real and + Al Sy (E)g) (E|BIX)

imaginary parts of a complex solutiotassuming a real A=1+N (E) k

Hamiltoniar). One particular choice of general solution is 67)

+ +
W (Elx)=a¥, (Elx)+b¥ - (E[x), 6D valid outside the potential on thg arrangement side.
whereW !, , k>0 are the linearly independent causal solu-, (E) are theunperturbedchannel functiongconsisting of
tions of the Lippmann—SchwingefLS) equations corre- a product of an internal state and a traveling wave in the
sponding to scattering waves propagating inthedirection  appropriate Jacobi translational varigbl®l, g (E) is the
with energyE=#2k?/2m. Outside and to the left of the po- number of open channels in thg 8) arrangement. We use a
tential we have that notation convention commonly employed in calculations,
+ _ . : where the coefficients in the superposition of the linearly
¥ (Elx)=exp(ikx) + R exp(—ikx) (62) independent unperturbed channel functions are indexed se-
and quentially from 1 up toN,+Ng. Thus, e.g., a symmetric
n o, . reaction involves twice the number of channels as are open
W W(ED) =T exp(—ikx) (63 in one arrangement, and tieand B matrices have indices
and to the right of the potential that range from 1 to ®,. In Eq. (61) (and equations that
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934 Huang et al.: Wave packet equations of quantum dynamics

follow) the B-arrangement channetgart at N,+1 and ex- the solutions generated are complex. It is well known that the
tend up toN,+ N, which for a symmetric reaction equals real and imaginary parts of a complex sqlution of the homo-
2N,,. geneous TISE are separate solutions. This has been discussed

Combining Eqs(66) and (67), one obtains in detail for simple 1D potential scattering in paper I, and
similar techniques can be used for reactive scattering.
- _ - The matriceA andB can also be obtained using appro-
5i(E|X):AZfl AiM‘/’M(E|O‘|X) priate final wave packets, or “test functions|;) (again,

: see paper)l Constructing a final wave packet with a specific

No(E)

NalE) N . channel in an arrangementy;(a(8)|\ ()|, and project-
Jx;l Bixa’/’xa(E|a|X) (68) ing the solution ¢(E)) onto the final wave packet, one gets
just outside the potential in the arrangement, and (xr(e|h)[EE))=Ai (xi(alN )|y (Ela))
Ng(E)+N,(E) N
gi(E|X): 2 Ai)\B‘ﬂ; (E|B|X) +BI)\a<Xf(a|)\a)|l/,)\a(E|a)>;
Ag=1FN,(E) B (74)
N(E)+N,(E) <Xf(B|)\,B)|g(E)>:Ai)\B<Xf(B|)\B)|'J’;B(E|:8)>
N -
+)\ﬁ:12Na(E) B')\B%B(E|'B|X) €9 +Bi>\ﬁ<Xf(ﬂ|)\ﬁ)|¢;B(E|,3)>
just outside the potential in thg arrangement. The matrix pecause of the orthogonality of the internal states of the sys-
elements oB are defined b tem. Using Eq.(74), the matrix elements, , Bj, , Ajy .
N, ( kx' and B”‘B of channels\, and\; can be calculated by em-
Z Am Sx ) (E) ploying two linearly independent final wave packets,
= xi(a|\,), =1,2, ina arrangement, and two linearly inde-
NS (E)+N(E) k. 3 pendent final wave packetg; (B[N ), ]‘:1,2, in B8 arrange-
N k S}\ (E), ment. TheS-matrix can thu; be obta}lned from .E(q’.3).
N 1N Vk. kx Ain, ra The formulae for solving reactive scattering problems
B “ with more than two arrangements are essentially the same as
Ky’ those for the two arrangements case except that more expres-
Z —A 1Sy (E) sions for&(E|x) (as given in Eqs(68) and (69)) need to be
/3 set up for the additional arrangements. Each arrangement
contributes to the sums determining the dimension-
Ng(E)+N 4(E) kw

ality (N,+Ng+N_+---)X(N,+Ngz+N.+---) of the

+ L 2 k>\ 'M;SM;M;(E (70) matrixB. To sﬁolve ¥0r theS-matrix in/%[he r%ulti-arrangement
N~ 1 Na(®) g case, one must have  M(+Ng+N,+---)

fori=1,2,... ,N,(E)+Ng(E). Equation(70) can be writ-  X(N,+Ngz+N,+---) linearly independent algebraic equa-

ten in a matrix form tions for theA andB matrices. For collision systems involv-

ing large numbers of channels, this procedure itself may be-

=AS, (71) come a challenge computationally. However, with an
where absorbing potential or the appropriately chosen attenuating
- functions,d(x;), to be introduced in the following section,
Aij = \/k_iAii ' and a slightly larger size of grid, boundary reflections can be
B, = kB, (72 avoided. The inhomogeneous time-independent wave packet

Schralinger or Lippmann—Schwinger equation formalism,
Equations (68) and (69) can be interpreted as two Eq. (3), or the TIW-S-matrix Kohn variational form of Eq.
coupled linear algebraic equations for the matrigesand  (3)
B, which can be found by several methods. Using the
method in paper f, one obtains the 2N,(E)+Ng(E)) i knaknﬁ
.><(Na(E)+N.B(E)) matrix elements .OA gndB by evaluat-  S(BNgkn |anqk ) m(2m)2A.(k, A% (KL)
ing the solutioné(E|x) at 2N,(E) points in thea arrange-

ment and Ny(E) points in thes arrangement for each of X {x(Bngl0)|G™(E)|x(an,|0))

the initial, linearly independent wave packets, (75)
Xi(0),i=12,...,(N,(E)+Ng(E)). The full S-matrix can

be obtained by solving Eq71) together with Eq(72), i.e.,  for reactive scattering gives a single column of the

S—A 1B (73) S-matrix with one initial wave packet and therefore may be
’ the preferred approach for the most complex problems. The

It should be noted that oreanreduce the number of packets coefficientsA, and A; are the Fourier momentum compo-

that must be propagated by taking advantage of the fact thatents of the initial wave packek(an,|0), in « arrange-
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ment and final wave packe/t,(ﬁnﬁ|0), in 8 arrangement at  Schralinger equation and the extraction of the scattering in-

the appropriate wave numbels, and knﬁ, respectively. formation in the two cases is, in general, the same because
both kinds of wave functions involve a superposition of a
11l. COMPUTATIONAL DETAILS complete setfor any energyE) of linearly independent so-

lutions of the Schidinger equation in the region outside the
potential but not yet in the boundary region.
(3) We can achievdl), by requiring that the damped
We must now choose a specific damping facthft, ), Hamiltonian, Eq.(53), be such that the basis functions
which will be used in the modified Faber—Chebychev recur-nﬂ(x) generated by Eq55) decay to zero smoothly near the
sion to generate the damped polynomial basis for expandingoundary. To see how the damping can be made to ensure
the wave functiony(E|x), or £(E|x). The resulting damped smooth behavior, we examine E(55) with a real space-
basis is related to the type used by Mandelshtam and Taylafependent dampingl(x), applied to the Hamiltonian. For a
by a simple transformatiohWe choose our damping factor weak spatial dependence of the damping functidfx),
to be of a form that tends to preserve continuity and smoothfH,d]~0 and it follows that
ness of the wave function, subject to the constraint that the
damped grid Hamiltonian be identical to the original grid H gam — Jd(x)
Hamiltonian in the interior region. The damped grid Hamil- b
tonian matrix thus constructed will smoothly attenuate theznd therefore
wave function to zero in the boundary region due to the g
modified Faber—Chebychev recursion’s dependence on the 7n(X)=(d(X))"7n(x), (79

d(x) factors. We illustrate the procedure using the solutionyhere they,(x) are the basis functions generated by Faber—
of Eq. (1), §(E[x). 3 _ Chebychev recursion with an undamped Hamiltonikn,

(1) We introduce a modified wave functiod(E[X),  This indicates that the damped basis functioff{x), decay
such that¢“(E[x) is attenuated smoothly to zero near the smoothly to zero near the boundary of the grid if the real
boundary of the gridwhich is equivalent to the effect of an space-dependent dampirty, decreases from one to a value
absorbing potentig| but in the interior region, it satisfies EQ. petween zero and one, in a small attenuating region includ-
(1) with the physical Hamiltonian. To minimize reflections, ing the boundary of the grid. This also implies that the
rapid changes of the derivatives # E|x) on the grid and at smoothness of the;d(x) and of £(E|x) is related to the
the boundary are avoided. This is achieved by an approprimoothness ad(x). The form of the space-dependent damp-
ately damped Hamiltonian, so that in the interior region, theng d(x) chosen for the present study is based on the distrib-

expansion o£“(E|x) in terms of ther, solves Eq(1) (orin yted approximating functioriand will be given in Section
the case ofyY(E|x), the ordinary homogeneous time- V.

independent Schrdinger equatiopwith the physical Hamil-
tonian.
(2) We expand ¢&(E[x) in the polynomial basis, g smoothed Green's operator and Dirac delta
78(x), given by Eq.(55) with a choice of expansion coeffi- fnction
cients, g9,(Enom), given by Eq.(46), which results in a

causal-like modified Faber—Chebychev basis expansion of AS noted by Mandelshtam and Tayfoand by Huang
the solution of Eq(2): et al.in a different context,to accelerate further the rate of

the convergence of the expansions, of the real and imaginary
2 s g ing(E) . d parts of Eq.(76), a smoothed Green’s or delta function can

V(AH)2—(E—H)? (2= dno)e 7 be implemented. Since the expansion for the principal value

Green’s function GP(E) and Dirac delta function,

(- S(E—H), in Eq. (76) can be viewed as a Fourier series

= ZGdamﬁ(E)X(o)' (76) expansion with the variable(E), one can use a well-known
local smoothing technigd&over energyE to accelerate the
Fourier series expansions 6f (E) and§(E—H). There are
many possible ways to do the smoothing, and in earlier
work, we have used Lanczos-smoothing® to accelerate
Y(E)=6(E—H)x(0) (770 the conformal mapping in the Faber polynomial expanSion.
In this paper, we use a distributed approximating functional
or DAF-based smoothing functic?ﬁ,éMs(cp(E)), given by

A. Choice of the modified Faber—Chebychev
polynomial basis

2 2
“omae VY

Vd(x)=d(x)H, (79)

EU(E)=—

Then as was noted in papérdnd in the preceding discus-
sion in Sec. ll, the real part of E§76) delivers an approxi-
mation to

which solves the standarthomogeneoysTISE. We can
treat scattering using either E(¢6), or its real part. The

latter has the attractive feature that one can then place the 1 o(E)? Mg
initial packet y(0) on top of the targetthat is, the initial om (@(E))=—exp — —=— E
. . . . : s O 205 |n=0
packet is non-zero in the region of space associated with the
target and projectile being close enough to each other so as 1\" o(E)
to interaci.* Thus, our approach applies both to solutions of x( — —> (27n!?) =124 Zn( ) , (80
Eq. (1) and of the homogeneous time-independent 4 V20,
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936 Huang et al.: Wave packet equations of quantum dynamics

and obtain the expansion for the smoothed and damped wavi®n of energy can be obtained by repeating the above

function, £4(E|x), procedure for a number of initial wave packets, which is
o i equal to the number of open channels of all arrangements,
£ B~ 5 [ de'(EN o (o' (Y and using Eq(73).
2m s The damping functiond(x), is the key to constructing
— o(E))G,, {E")x(0) (81) the damped Faber—Chebychev basis vecwﬁs,and attenu-
am 1

ating the wave functiog“(E) so that the effects of reflection
which corresponds to an average over energy. The depegan be minimized. The attenuating region is chosen not to
dence ofGg,,dE’) on ¢'(E’), along with a change of in- gverlap the interaction potential, the initial and final wave
tegration variable fronde’(E’) to d[¢'(E')—@(E)] re-  packets. To avoid reflection in region of attenuation, the
sults in a Fourier transform ofdy, multiplied by  fynction d should not decrease too abruptly. One wants,
exp(—ing(E)), and the result is however, the region of attenuation to be as small as possible.

These opposing constraints must be balanced and we have

F= 1 found that reasonable results can be obtained with an attenu-
ZW\/(AH)Z—(E— H)2"n ating factord constructed using a functional form related to
Cne(ET § the DAF2! We term the function the “conjugated DAF func-
X(2=dnpo)e ¢ 5Ms(n) 7n - (82) tion” (related to the Fourier transform of the standard DAF
The smoothed and damped real pariz8f ¢9(E), is given " ON€ dimension, the function is given by
by m
My —(O'dX)p
) dx)= >, —————e (70®12, 85
PEW= — s (2= 0w =2 — (85
X cogne(E)]dy () 73(x). (83  Where the powep is used to control the fall off ofl(x) in
o s the attenuation region. With= 2, the conjugated DAF func-
Here, 6y (n) is the Fourier transform oy (¢(E)),* tion is exactly the Fourier transform of the DAEZ which
1 m is the same quantity used to smooth the Green and spectral
M, _Ugnz) density operators. The(x) given in Eq. (85 delivers a
5 (n)= 2 -o2 n2/2 84) smooth decay of the;ﬁ at the boundary. The parameters of
Ms =0 m! d(x) are chosen so that it does not decay to zero at the end of

In the limit of M., the DAF function, dy, (@(E)) the boundgry,_g)ut rather to a value of 0.5. As a resplt, the
wave functioné; (E) decays smoothly to a small value in the
equals the Diracs function and sy, [(n)—1. For a finitt  5ttenuating region and reflection is reduced significantly.

Ms, the DAF function, oy (¢(E)), is strongly peaked at We have applied this scaling of the Hamiltonian, the
zero and the Green'’s functio@(E) is locally smoothed. space-dependent damped Faber—Chebychev basis vectors,
However, the exponential decay of the functE,n (n) for the smoothed Green’s function and delta function expres-
n>1/o truncates the Fourier series expansion, (IBQ) ef-  sions, and the final state analysis, to collinearl} reactive

fectively and results in an accelerated rate of convergence Scattering. The LSTH potentfdland reactant arrangement
Jacobi coordinatesx( y) are used in the calculation. The

DAF method! is used to represent the wave function and
kinetic energy operator on the grid, which has four grid
We have considered three types of calculations. Thespoints per de Broglie wavelength at the enefgy 1.4 eV.
are (1) an initial wave packet which sits outside the interac-The attenuation region starts at 6.8 a.u. and extends out to
tion region and the parameters are such that there is no r&8 a.u. The three parameters determinilig) in Eq. (85)
flection at the end of the grid2) an initial wave packet are:p=2.0, 04=10.0/6.8 andM4=70. The ratio 10.0/6.8
which sits outside the interaction region and the parametengields a numerical value fosy4 that causes the damping to
are such that there is some reflection back into the analysigegin at abouk=6.8. The value of the damping function,
region, (3) an initial wave packet which sits on top of the d(x), at the end of the boundary is 0.5. The parameters of
interaction. In the second and third cases, the damped arile smoothing DAF for the Green and delta function opera-
smoothed wave functiong?(E), over a range of energies, tors, dy (¢(E)), in Eg. (80) are: os=1.0/220.0,M¢=10.
E, can be obtained from E@82) by building up the space- The ratlo 1.0/220.0 results in a numerical valueoafthat
dependent damped Faber—Chebychev basis veaifirsys-  causes the smoothing to begin after about 220 terms in the
ing the recursior{55). One then project§?(E) on to a num-  sum. The results are found to be very stable and to converge
ber of final wave packetsy:, located just outside the without difficulty. The calculated transition probabilities at
potential in the various arrangement regions, and calculates300 Faber—Chebychev iterations are given in Tables I, I,
the elements of matrices andB using Eq.(74). The num-  and Il for the Green’s function and initial packet outside the
ber of final wave packets is twice the number of open chantarget. In Table 1V, similar results are given for the spectral
nels in the arrangement. Finally, the f@matrix as a func- density or delta function, with the initial packet on top of the

IV. EXAMPLE CALCULATIONS AND DISCUSSION
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TABLE I. Reactive and inelastic transition probabilities of collinear TABLE Ill. Transition probabilities of collinear HH, at E=1.4 eV using
H+H, at E=0.5 eV calculated using Green’s function operator. the Green'’s function.

Arrangement a B Inelastic a— a B— B
State 0 0
0-0 0.301 (0.300 2 0.302 (0.300
« 0 0.917 8.3% 102 0-1 0.22272 (0.22072 0.22372 (0.22072
(0.917° (8.30<10°2) 0—2 89810 (8.91x107%)  9.10x10 (8.91x 1072
B 0 8.35% 102 0.919 1-0 0.220_2 (0.22()_2 0.224_2 (0.22()_2
1—-2 401102 (3.86x107%) 4.44<10°2 (3.86x107?)
aData given in parentheses are calculated in termS-wfatrix Kohn varia- - - - "
tional method. 250 9.0710 (8.91x1073)  9.36x10 (8.91x1072?)
21 4071072 (3.86x10%) 3.71x10°2 (3.86x10?)
252 0.153 (0.157) 0.151 (0.157
target. The results are all compared to those obtained withreactive a— B B— a
the S-matrix Kohn variational metho#. Agreement is to 050 580107 (9107 50107 (5.96¢109)
within 1.0% fqr most of the transitions. We found that Fhe 0— 1 0228 (0.224 0221 (0.224
spectral density operator method converged more quickly g _, o 0.104 (0.107 0.102 (0.107
than the Green’s function approadthe results are con-
verged after about 1000 Faber—Chebychev iteratibhs 1— 0 0.226 (0.224 0.225 (0.224
This probably reflects the fact that the packet already is on 1~ 1 0.307 (0.303 0.306 (0.303
“ " 0.120 (0.126 0.120 (0.126
top of the target so one does not have to “propagate” it from
outside into the target. Furthermore, we find that the present, _, g 0.103 (0.1079 0.101 (0.1079
version of the delta function approach is considerably less2 — 1 0.121 (0.126 0.116 (0.126
sensitive to the details of the initial packet than was the ear-2 — 2 0.503 (0.482 0.502 (0.482

lier version of the approacliwhich did not employ the

damped Hamiltonian and concomitant damped Faber—iona method.

Chebychev basis vectdis|t is also found in both forms of

this method that results at some energies converged more
quickly than others. Thus, fewer numbers of polynomials are
needed to obtain converged results at some energies than
others.

@Data given in parentheses are calculated in termS-wfatrix Kohn varia-

The disadvantage of aIIowing reflections from the TABLE IV. Transition probabilities of collinear HH, at E=1.4 eV cal-
boundary is that one must solve linear algebraic equation&21ed using spectral density operator.
for the full S-matrix in order to obtain transition probabilities

Inelastic a— a B— B
from any one state. If there are a very large number of states
accessible at the range of energies of interest, then this cal 0 : (; 8'322 Eg'ggg g'ggg Egggg
become a computationally demanding part of the calculation. o _, »  ggoe<102 (8.91x 102 914x102 (8.91x10?)
In that case, it may be better to do the calculation in a rela-
150 0.221 (0.220 0.225 (0.220
1—1 885102 (8.74<10°%) 8.83x10? (8.74x10?)
TABLE Il. Transition probabilities of collinear HH, at E=1.1 eV using 1-2 3.96<10°% (386107 433x1077  (3.86x10°7)
Green’s function. _, , _, -
20 9.20x10 (8.91x1073)  9.45<10 (8.91x107?)
Inelastic "« — BB 2> 1 400<107% (3.86x1072) 4.64x1072 (3.86x10729)
252 0.162 (0.157) 0.160 (0.157)
0—0 0.170 (0.1722 0.170 (0.172
0—1 0.154 (0.153 0.150 (0.153 Reactive a— B B— a
1.0 0.152 (0.153 0150 (0.153 0—-0 6041072 (5.96x1072) 6.09x10°2 (5.96x1072)
151 0.122 (0.123 0.123 (0.123 0—1 0.225 (0.224 0.220 (0.224
02 0.106 (0.107 0.104 (0.107
Reactive «— B B a 1-0 0.225 (0.224 0.222 (0.224
151 0.305 (0.309 0.304 (0.309
0—-0 0.295 (0.299 0.298 (0.299 1-2 0.120 (0.126 0.122 (0.126
0—1 0.383 (0.380 0.381 (0.380
250 0.109 (0.107 0.107 (0.107
150 0.380 (0.380 0.380 (0.380 21 0.124 (0.126 0.128 (0.126
151 0.341 (0.344 0.340 (0.344 252 0.473 (0.482 0.471 (0.482

aData given in parentheses are calculated in termS-wfatrix Kohn Varia-
tion principle.

aData given in parentheses are calculated in ternS-wfatrix Kohn Varia-
tion principle.
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TABLE V. Transition probabilities of collinear HH, calculated using the extremely useful in determining the optimal points at which
TIW-S-matrix Kohn variational equation. to carry out the evaluation of the scattering information.
We also introduced a “conjugated DAF function” as a

Energy . . . ; .
Transition (eV) Inelastic Reactive particular choice of damping function which smoothly at-
— - tenuates the solutions of Eqg&l) and (2) to zero at the
0.5 0.871 (0.917  8.28<1072 (8.30x10 ?) bound A method f lerating th te of th
050 11 0.177 0.172 0.297 (0.296 oundary. A method for accelerating the rate of the conver-

1.4 0.288 (0.300  6.30x10°2 (5.96x10 ?) gence of the polynomial expansion is also introduced, based
on locally averagingsmoothing the operators in the energy

0—1 11 0.152 (0.153 0.379 (0.380 space. This convergence acceleration method is applied both
14 0226 (0229 0.228 0229 to the modified Faber—Chebychev expansion of the
02 14 881072 (891X10°?)  0.104 (0.107 principle-value Green'’s function and to the spectral density

operator acting on initial wave packets. Further, the expres-
®Data given in parentheses are calculated in termS-wfatrix Kohn varia-  sions can also be evaluated in terms of the eigenvalues and
tional method. eigenstates of the damped Hamiltonian, and they yield accu-
rate results for energies both at and away from the eigenval-
ues. We will be reporting applications to other systdins

tively larger region to avoid boundary reflections, and usecjuding full three dimensional reactive scattedirig later
the expressions, Eg$3) and (75), we presented earlier for communications.

the causal solutioft® In that case, one can completely avoid

having to solve large systems of algebraic equations and the

calculation reduces to applying the highly banded, spars@ckNOWLEDGMENTS
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