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We consider further how scattering information~the S-matrix! can be obtained, as a continuous
function of energy, by studying wave packet dynamics on a finite grid of restricted size. Solutions
are expanded using recursively generated basis functions for calculating Green’s functions and the
spectral density operator. These basis functions allow one to construct a general solution to both the
standard homogeneous Schro¨dinger’s equation and the time-independent wave packet,
inhomogeneous Schro¨dinger equation, in the non-interacting region~away from the boundaries and
the interaction region! from which the scattering solution obeying the desired boundary conditions
can be constructed. In addition, we derive new expressions for a ‘‘remainder or error term,’’ which
can hopefully be used to optimize the choice of grid points at which the scattering information is
evaluated. Problems with reflections at finite boundaries are dealt with using a Hamiltonian which
is damped in the boundary region as was done by Mandelshtam and Taylor@J. Chem. Phys.103,
2903 ~1995!#. This enables smaller Hamiltonian matrices to be used. The analysis and numerical
methods are illustrated by application to collinear H1H2 reactive scattering. ©1996 American
Institute of Physics.@S0021-9606~96!02127-7#

I. INTRODUCTION

The principal question addressed in this paper is how
accurate approximations to continuum scattering states can
be constructed using Hamiltonians discretized in finite re-
gions~finite matrix approximations to the true Hamiltonian!.
The equations1–5 we choose as our framework for treating
this question are provided by the time-independent wave
packet Schro¨dinger equation,

~E2H !j~Euakana!5
i

2p
x~0uana!, ~1!

and its formal solution, by the time-independent wave packet
Lippmann–Schwinger equation,

j~Euakana!5
i

2p
G~E!x~0uana!, ~2!

which constitute new formulations of quantum dynamics. In
Eq. ~2!, G(E) is an inverse of (E2H) which satisfies some
specific boundary conditions, although not necessarily outgo-
ing wave or causal ones,x(0uana) is a source function
which in the original derivations was a wave packet at initial
time t50, a denotes an arrangement channel, andka and
na denote the average relative translational momentum and
initial internal quantum numbers respectively. The factor
i /2p can be absorbed into the definition of the initial source
function, if desired. Related methods based on these equa-
tions have been used by several other groups recently for
scattering calculations.6,7 When the scattering region in the
calculation is taken to be large enough so that the scattering
amplitudes can be obtained before the solution is reflected

off the boundary, or an absorbing potential is employed to
eliminate boundary reflections, and the initial packet
x(0uana) vanishes in the region of the potential, it is easy to
prove that,in a restricted region of space discussed below,
solutions of Eqs.~1! and ~2! can be chosen to be related to
the Lippmann–Schwinger~LS! state,Ck

1(E)&, according
to,1–3

i

2p
G1~E!x~0!5

mA~k!

\2k
Ck

1~E!, ~3!

with

Ck
1~E!5ck~E!1G1~E!Vck~E!. ~4!

Here,ck(E) is the ‘‘unperturbed’’ or ‘‘incident’’ state, and
we have chosen to suppress the other quantum labelsa and
na for the sake of simplifying the notation~we shall use the
more detailed notation when it is necessary to avoid confu-
sion!. The region of space in which Eq.~3! is valid is char-
acterized in terms of the packet,x(0). Because we have
assumed thatx(0) is nonzero in a finite regionoutsidethe
region where the potential is nonzero, we may speak of the
region external tox(0) which is closest~in some well de-
fined sense! to the potential as the ‘‘potential side’’ of the
initial wave packet. Then Eq.~3! holdson the potential side
of such an initial wave packet. Here, also,G1(E) is the
causal Green’s function andA(k) is the Fourier amplitude of
x(0) corresponding to the translational momentum\k. The
foremost advantage of Eqs.~1! and ~2! is readily seen from
Eq. ~3!: the causal Lippmann–Schwinger solution, over a
range of energies, can be obtained from a singlex(0). In this
case, the boundary condition satisfied by the Green’s func-
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tion G1(E)5(E2H1 i e)21 in Eq. ~3! is the outgoing scat-
tered wave boundary condition. This boundary condition on
the Green’s function can be enforced either by introducing a
negative imaginary absorbing potential,10–13or by explicitly
obtaining expansion coefficients,an

1(E), which reflect the
1 i e in the Green’s function, yielding results as a continuous
function of the energyE, and permitting thee→01 limit to
be taken.2 A general, energy-separable Faber polynomial
representation of the Green’s function,G1(E), valid even
when the Hamiltonian is not Hermitian~as occurs when one
employs an absorbing potential! also has been developed and
applied successfully in solving Eq.~2! for reactive scattering
problems over a range of energies.8,9 However, the differen-
tial form of the time-independent wave packet formalism
~i.e., Eq.~1!!, of course, does not possess specific memory of
the boundary conditions associated with its derivation from a
time dependent treatment.5 Thus the equation
(E2H)j5( i /2p)x(0) must be augmented by some specific
choice of boundary conditions. In the work of Mandelshtam
and Taylor6 and Jang and Light,7 initial studies of boundary
conditions other than the causal one have been reported. In
an earlier paper@4#, which we shall call paper I, we have also
independently considered more general boundary conditions
by combining the solutions (i /2p)G1(E)x(0) and
( i /2p)G2(E)x(0) to constructd(E2H)x(0), which is eas-
ily seen to yield a continuum solution of the standard time-
independent Schro¨dinger equation.~The operatord(E2H)
is the so-called spectral density operator.! In fact, in paper I,
a robust procedure for constructing general solutions of the
Schrödinger equation was given, since a variety of solutions
can, in principle, be obtained fromd(E2H)x(0) by appro-
priate choice ofx(0).

When the boundary is moved so close to the interaction
region that reflections of the scattered waves occurbeforeall
the incident waves have experienced scattering by the poten-
tial, interferences occur which eventually will produce dis-
crete energy levels, and prevent the extraction of continuous
scattering information. In addition to considering boundary
conditions other than purely outgoing waves, Mandelshtam
and Taylor6 and Jang and Light7 also gave alternative proce-
dures for circumventing this difficulty. In the former case,
they modified the Chebychev expansion as given by Huang
et al.2 by damping the recursion satisfied by the Chebychev
polynomials, thereby eliminating problems with boundary
reflections. Jang and Light expressed the full Green’s func-
tion in terms of an eigenfunction expansion in which the
eigenfunctions were required to satisfy different boundary
conditions than vanishing at the end of the grid. Both tech-
niques required the solution of a system of linear algebraic
equations in order to extract the scattering information.

In this paper, we continue to consider our own approach
to solutions of Eq.~1! and of the standard homogeneous
time-independent Schro¨dinger equation for a continuous
range of energy, satisfying either arbitrary or scattering
boundary conditions. We will also consider solutions which
are generated on a grid of restricted size. Our treatment
makes use of the general final state analysis which we intro-
duced in paper I and we employ a type of damped Hamil-

tonian, rather than damped recursion, to treat boundary re-
flections. However, our damped Hamiltonian expressions
can be directly transformed into the same type of damped
recursion expressions that were employed by Mandelshtam
and Taylor.6 We illustrate our approach by an application to
the collinear H1H2 reactive scattering system.

The plan of this paper is as follows. In the next section,
we give a detailed analysis for constructing scattering wave
functions for a continuous range of energy and extracting
scattering information when the system is in a restricted re-
gion. This leads to new expressions for the error associated
with a particular truncation of the expansion of the solution.
In Section III, we give the details of the computational
method. Finally, in Section IV we present example calcula-
tions and a discussion of the results. Section V contains our
conclusions.

II. ANALYSIS

A. Chebychev expansions of time-independent and
time-dependent states

We begin our analysis by considering the polynomial
basis set generated by the Faber–Chebychev recursion.8,9 A
time-dependent wave packetx(t) is given in terms of the
initial wave packet by

x~ t !5exp~2 i tH /\!x~0!. ~5!

This equation applies to a general, time-independent Hamil-
tonian regardless of whether the spectrum is continuous or
discrete. If the system is confined to a finite volume~as is
usually the case for numerical calculations!, then the system
Hamiltonian has a totally discrete spectrum. The eigenstates
can ~more or less cleanly! be divided into two groups de-
pending on whether the boundary conditions are imposed by
the spatial extent of the finite region containing the system or
by the potential. Those eigenvalues and eigenvectors for
which the finite boundaries of the region have a numerically
insignificant effect correspond to the bound states of the sys-
tem in the limit of an infinite volume, whereas the states that
have boundary conditions imposed by the finite volume cor-
respond to the continuum for the infinite-volume problem.

For a physical scattering problem for which conservation
of energy applies, in the energy range of interest, the Hamil-
tonian can be represented to arbitrary accuracy on a discrete
grid of finite extent by controlling the system volume and the
grid spacing. Our objective is to do this as efficiently as
possible for numerical calculations. Of course, such a finite
grid can only represent a finite number of states. The highly
oscillatory, highly energetic eigenvectors that are assumed to
contribute little to the wave packet as it evolves are totally
ignored, and in some manner or another we must in effect
‘‘interpolate’’ on the discrete states corresponding to the
continuum of the infinite-volume system to deduce accurate
approximations to these true continuum states. We now turn
our attention to how this can be done.

The grid representation of the Hamiltonian~grid Hamil-
tonian! for a spatially confined system has a finite number of
eigenvalues and hence a maximum and a minimum eigen-
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value. Therefore, the operator exp(2itH/\) can be expanded
in a Faber–Chebychev series according to10,11

exp~2 i tH /\!5 (
n50

`

an~ t !Tn~Hnorm!, ~6!

where

an~ t !5~22dn0!~2 i !nexp~2 i tH̄ /\!Jn~DHt/\!. ~7!

Here H̄ is the estimated midpoint of the spectrum ofH,
DH is the estimated half-width of the spectrum, andJn is a
cylinder Bessel function of the first kind~of integral order!.
Using the orthogonality relationship for Bessel functions of
the same argument but different orders,12 we can invert this
relationship to obtain

Tn~Hnorm!5E
2`

`

dtcn~ t !exp~2 i tH /\!, ~8!

where

cn~ t !5A2n@~22dn0!~2 i !n

3exp~2 i tH̄ /\!#21utu21Jn~DHt/\! ~9!

andc0(t)5 limn→10cn(t). The behavior ofucn(t)u as a func-
tion of utu is shown in Fig. 1.

The wave packetx(t), which evolves fromx(0) ac-
cording to Eqs.~5! and ~6!, is given by

x~ t !5 (
n50

`

an~ t !hn , ~10!

where

hn5Tn~Hnorm!x~0! ~11!

is the nth Faber–Chebychev vector in the basis set (hn ;
n50 to `). From Eq.~8! we have that

hn5E
2`

`

dtcn~ t !x~ t !. ~12!

It is apparent from Fig. 1 that these vectors form a kind of
‘‘chronological’’ basis set in thathn is formed as a transform
of x(t) over two time periods~one for positivet and one for
negativet). The onset of these time periods grows more or
less linearly withn, and hencen serves as a rough measure

of utu. This onset is relatively sharp; however, packets
evolved longer than the onset time continue to contribute
with decreasing amplitude. The time interval for a given
hn is somewhat shorter than indicated by Fig. 1 because
cn(t) is oscillatory and some cancellation due to the phase
takes place in the integral of Eq.~12!. Thus, we find that an
expansion of a function in terms of Faber–Chebychev basis
functions,hn , is in effect an expansion in terms of~overlap-
ping! periods in the time evolution of the initial wave packet.

B. Expansion of solutions of the standard
homogeneous time-independent Schro ¨dinger
equation

We now explore the construction of approximate eigen-
vectors ofH in terms of a finite linear combination of the
Faber–Chebychev basis functions. To this end, we define

cm~E!5 (
n50

m

bn~E!hn , ~13!

where the coefficientsbn(E) are functions, yet to be deter-
mined, of an arbitrarily chosen energy. We seek to choose
the coefficients in such a way that, to a controllable approxi-
mation,

Hcm~E!'Ecm~E!. ~14!

By definition

H5~DH !Hnorm1H̄ ~15!

and thus

Hcm~E!5H̄cm~E!1DHFb0Hnorm

1 (
n51

m

bnHnormTn~Hnorm!Gx~0!, ~16!

where we have made use of the fact thatT051. The recur-
sion relation for the Chebychev polynomials is

xTn~x!5 1
2@Tn11~x!1Tn21~x!#, n>1 ~17!

which when substituted in Eq.~16! yields

Hcm~E!5H̄cm~E!1DHFb0Hnorm1b1/21~b2/2!Hnorm

1Tm~Hnorm!bm21/21Tm11~Hnorm!bm/2

1
1

2(
n52

m21

~bn211bn11!Tn~Hnorm!Gx~0!.

~18!

If we now defineb051/2 andbn(E)5Tn(Enorm) for n>1
whereEnorm5(E2H̄)/DH we then have from Eq.~17! that

b0Hnorm1 1
2b2Hnorm5Enormb1Hnorm ~19!

and
1
2@bn211bn11#Tn~Hnorm!5EnormbnTn~H norm!, ~20!

FIG. 1. ucn(t)u vs t. n550 andDH/\51.
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and thus

Hcm~E!5Ecm~E!1R̃m~E!, ~21!

where the remainder function,R̃m(E), is defined by

R̃m~E![~DH/2!@Tm~Enorm!hm112Tm11~Enorm!hm#.
~22!

This expression is similar in structure to the Christoffel–
Darboux formula12 associated with sums of orthogonal poly-
nomials. It is apparent that for those regions in the confining
volume whereR̃m(E) is very small,cm(E) is an approxi-
mate eigenfunction ofH, but, of course, not necessarily one
that obeys the boundary conditions imposed by the con-
straints of finite volume. The latter is not a problem since in
most cases the size of the finite region is employed solely for
numerical convenience and does not impose boundary con-
ditions of physical interest. If the energy-independenthm

andhm11 are both separately small thencm(E) provides an
approximate eigenfunctionfor any energy, which is a point
we later discuss in more detail.

We now examine the convergence of the infinite series,

c̃~E!5 limm→`cm~E!

5F1/21 (
n51

`

Tn~Enorm!Tn~Hnorm!Gx~0!. ~23!

From the completeness relation for Chebychev polynomials
we have that

v~Enorm!c̃~E!/~pDH !5d~E2H !x~0!, ~24!

wherev(Enorm)5(12Enorm
2 )21/2 is the weight function for

orthogonality of the Chebychev polynomials. As has been
discussed in paper I,4 Eq. ~24! obviously provides a formal
solution to the standard homogeneous time-independent
Schrödinger equation. However, the initial wave packet can
always be expanded in terms of the spectrum ofH according
to

ux~0!&5(
s

us&^sux~0!&, ~25!

where$s% is a complete set of quantum numbers~which are
discrete, and in fact finite, becauseH is the grid representa-
tion of the Hamiltonian for a spatially confined system!, and
from this equation it is clear thatd(E2H)x(0) is either zero
or infinite as a function ofE and hence that Eq.~24! is only
a solution to the Schro¨dinger equation in a formal sense.
Two points should be made here.

~1! In our numerical approach we deal only with Hamil-
tonians that have a finite spectrum because we reduce the
Hamiltonian to a matrix of finite dimensions. However, in
the continuum of the Hamiltonian for a true scattering
system, d(E2H)x(0) is a scattering ~i.e., improper!
eigenfunction.4

~2! Even thoughd(E2H)x(0) does not converge for an
operator with a discrete spectrum, with appropriate generali-
zation, it still provides the conceptual framework for a very
efficient diagonalization procedure for such matrices.13,14

C. Expansion of solutions of the inhomogeneous
time-independent wave packet Schro ¨dinger
and Lippmann–Schwinger equations

The above analysis can be utilized also for generating
solutions of the inhomogeneous time-independent wave
packet Schro¨dinger equation, rather than Eq.~14!. Thus, we
consider the equation

Hjm~E!5Ejm~E!2
i

2p
x~0!, ~26!

and note that the general solution will be a combination of
the homogeneous solution~already discussed above!, plus a
particular solution of the inhomogeneous equation. We can
develop the desired general solution as

jm~E!5 (
n50

m

gn~E!hn , ~27!

in analogy with Eq.~10! for the homogeneous solution. In
fact, thegn(E) will be complex, with the real part being
equal, to within a constant, to thebn already discussed:

Re@gn~E!#56
v~Enorm!

2pDH
bn~E!, all n. ~28!

Note that this relationship between Re@gn(E)# and the
bn(E) corresponds to a change in the normalization of the
solution, c(E), of the homogeneous Schro¨dinger equation
~compared toc̃(E)) which is imposed simply because the
particular solution’s normalization isnot arbitrary; it must
be such as to generate the correct normalization of the inho-
mogeneityix(0)/2p. The sign choice determines whether
one is generating a causal-like or anticausal-like solution of
the inhomogeneous equation, since

j6~E!5
i

2p
G6~E!x~0!, ~29!

5
i

2p
GP~E!x~0!6

1

2
d~E2H !x~0!. ~30!

Then

j6~E!56
1

2
c~E!1

i

2p
GP~E!x~0! ~31!

56jR1 i j I~E!. ~32!

As stated above,c(E) is related toc̃(E) according to

c~E!5v~Enorm!c̃~E!/~pDH !. ~33!

We next follow the same procedure as before, substitut-
ing Eq. ~27! into Eq. ~26!, to obtain

Hjm~E!5H̄jm~E!1DHFg0Hnorm

1 (
n51

m

gnHnormTn~Hnorm!Gx~0!. ~34!

The choice Eq.~28! will ensure that the real part ofgn ,
combined with the recursion Eq.~14!, leads to
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Hjm
R~E!5Ejm

R1Rm
H/2 ~35!

and the imaginary part ofgn leads to

Hjm
I ~E!5H̄jm

I ~E!1DHFg0I Hnorm1
1

2
$g1

I 1g2
I Hnorm

1gm21
I Tm~Hnorm!1gm

I Tm11~Hnorm!%Gx~0!

1
DH

2 F (
n52

m21

~gn21
I 1gn11

I !Tn~Hnorm!Gx~0!.

~36!

We have attached the superscript ‘‘H ’’ to Rm , given by Eq.
~19!, to indicate that it is the remainder term for the solu-
tion of the homogeneousequation. Again,Rm

H is related
to R̃m(E) by a relation similar to that betweenc(E)
and c̃ (E).

We now note that one may introduce the linearly inde-
pendent Chebychev functions,Vn(Enorm),

Vn~Enorm!5sin~nw~E!!, ~37!

which also satisfy the recursion15

xVn~x!5 1
2@Vn11~x!1Vn21~x!#. ~38!

The phasew(E) equals cos21Enorm. We then choose

g0
I ~E!50, ~39!

g1
I ~E!52

1

pDH
~40!

[2
v~Enorm!

pDH
V1~Enorm!, ~41!

and

gn
I ~E!52

v~Enorm!

pDH
Vn~Enorm!, n>1. ~42!

Since

V0~Enorm![0, ~43!

it is easy to verify that

EnormV1~Enorm!5 1
2V2~Enorm!, ~44!

and using these equations, and the recursion~38!, in Eq. ~36!
yields the final result

Hjm
I ~E!5Ejm

I ~E!2
1

2p
x~0!1Rm

I ~E!. ~45!

It should be noted that the above choices of real and imagi-
nary parts ofgn(E) correspond to

gn~Enorm!52
v~Enorm!

pDH
@cos~nw~E!!2 isin~nw~E!!#

52
v~Enorm!

pDH
e2 inw~E!. ~46!

Here, the energy-dependent phase,w(E), is

w~E!5cos21SE2H̄

DH D , ~47!

and H̄ and DH are the center and the half width of the
spectrum of the Hermitian Hamiltonian,H, respectively. The
remainder,Rm

I (E), for the particular solution of Eq.~1! is

Rm
I ~E!52

v~Enorm!

2p
@Vm~Enorm!hm11

2Vm11~Enorm!hm#. ~48!

In this expression,jm
I (E) is now expressed explicitly as

jm
I ~E!52

v~Enorm!

pDH (
n51

m

Vn~Enorm!Tn~Hnorm!x~0!
~49!

[2
v~Enorm!

pDH (
n50

m

Vn~Enorm!Tn~Hnorm!x~0!, ~50!

where the latter makes use of the fact thatV0 vanishes. We
note that in previous work we have shown that11,17

limm→` (
n50

m

Vn~Enorm!Tn~Hnorm!x~0!

52
A~DH !22~E2H̄ !2

2
GP~E!x~0!. ~51!

Thus, this procedure is a general one that makes possible the
generation of both the solution of the homogeneous time-
independent Schro¨dinger equation and the particular solution
of the inhomogeneous time-independent Schro¨dinger equa-
tion, for anyenergyE. We emphasize that the energyE can
be varied continuously, so that the solutions thus constructed
are true scattering-type states, as will now be discussed.

D. Extraction of scattering information as a
continuous function of energy and the role of the
‘‘box-size’’

We now examine how functions satisfying Eq.~21! can
be used to extract scattering information. The first case we
consider is that of a packet, initially in a precollision region,
impinging on a target. We further assume that the grid is
very long so that the collision, to the desired numerical ac-
curacy, has been completed before any portion of the packet
traverses the finite scattering region. The time-to-energy
transform ofx(t),

E
2`

`

dt exp~ iEt/\!x~ t ! ~52!

provides a scattering eigenfunction of the system with a
causal boundary condition ifE is in the continuum. If we
consider a particular position of the system in configuration
space, then the integral at this configuration has effectively
converged once the packet has passed over this configuration
point and exited the system.~Some care must be exercised
here because, due to wave packet spreading, the wave packet
actually never totally leaves any region of space. In fact, in
one and two dimensions the integral, Eq.~52!, is not abso-
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lutely convergent18 and convergence of the integral relies to
an extent on phase oscillations. This is the reason for the use
of the term ‘‘effectively.’’ In higher dimensions, where the
wave spreads in time in a configuration space of greater di-
mensionality, the integral does converge absolutely.18! Sup-
pose tm is the onset time for the Faber–Chebychev basis
function hm . Then, if for times such thatutu.utmu, the
packet has effectively passed over the configuration point,
the Christoffel–Darboux remainder term of Eq.~22! van-
ishes andcm(E) satisfies the time-independent Schro¨dinger
equation forany scattering energy (E). This solution is ob-
viously not an eigenfunction of the grid Hamiltonian used to
construct Eq.~22! since it does not satisfy the boundary con-
ditions imposed by the finite volume. Instead it is a true
scattering solution, assuming as we have that the packet has
not reached the boundary of the finite region and been re-
flected back. However, for largem, hm will not vanish be-
cause the wave packet for the grid Hamiltonian will reflect
off the boundary and scatter back across the configuration
point, and, as we have discussed, in the limit asm becomes
infinite cm(E) does not converge. Thus, in this circum-
stance,cm(E) convergesasymptoticallyas a function ofm
to the true scattering wave function for the Hamiltonian
without finite boundaries. Similar results hold for the particu-
lar solution of the inhomogeneous time-independent Schro¨-
dinger equation.

If the initial wave packet is not ‘‘precollision’’ but in-
stead starts out overlapping the scattering region, then
cm(E) still converges asymptotically to a scattering eigen-
function at a configuration point if the packet has not re-
flected off the walls so that the Christoffel–Darboux remain-
der vanishes. However, the construction of a scattering
solution with the desired boundary conditions, in general,
will require the use of more than one initial packet.4 ~Note
that we donot seek solutions of the inhomogeneous time-
independent wave packet Schro¨dinger equation whenx(0)
overlaps the scattering region.!

Obtaining asymptotic convergence in Eq.~21! or Eq.
~45! requires a grid sufficiently large so that thehn vectors in
the expansion do not reflect off the boundaries of the finite
scattering region before the collision of interest is completed.
This often times requires a very large grid. A well estab-
lished procedure for shortening the required grid size is to
use an imaginary absorbing potential at the boundaries of the
scattering region.16,17,19,20In this case thehn are absorbed
rather than reflected off the boundaries of the grid. However,
adding an imaginary potential to the Hamiltonian gives it a
complex spectrum, which alters the radius of the conver-
gence of the Chebychev polynomial expansion, and thus the
definition ofHnorm must be adjusted accordingly8,9 ~to keep
the Christoffel–Darboux remainder from diverging!. From a
numerical point of view using a non-Hermitian Hamiltonian
is substantially less convenient than using a Hermitian one.
One procedure given recently by Mandelshtam and Taylor is
to employ ~effectively! an energy-dependent absorbing
potential.6 However, they show that by appropriate modifi-
cation of the Chebychev recursion relation it is still possible
to deal with the physical Hamiltonian. The effect of the ab-

sorbing potential is to include exponential damping in the
recursion relation.

E. Eliminating boundary reflections using
‘‘Mandelshtam–Taylor-type’’ damping

We now examine a method for extracting scattering in-
formation using a Hermitian grid Hamiltonian by modifying
the Faber–Chebychev recursion relation of Eq.~17!. Let us
consider the ‘‘damped grid Hamiltonian’’6

Hdamp~xl ,xl 8!5Ad~xl !Hnorm~xl ,xl 8!Ad~xl 8!, ~53!

whered(xl) andd(xl 8) can be viewed as elements of a di-
agonal, real matrix, andxl denotes grid points in the configu-
ration space of the collision system. Furthermore, we assume
the functiond to be a ‘‘damping function’’ which is equal to
unity at grid points in the interior of the scattering region but
whose values decay smoothly to zero at grid points in the
boundary regions. We then use thed(xl) to modify or
‘‘scale’’ the Faber–Chebychev recursion relations for the
hn , defining

h0
d~xl !5x~0uxl !,

~54!
h1
d~xl !5(

l 8
Hdamp~xl ,xl 8!x~0uxl 8!

and

hn11
d ~xl !52(

l 8
Hdamp~xl ,xl 8!hn

d~xl 8!

2d2~xl !hn21
d ~xl !, n>1. ~55!

Making use of thesemodified Faber–Chebychev recursion
relations, Eq. ~18! assumes the form

Hcm~E!5H̄cm~E!1DH@b0Hdamp#h0
d1~b1/2!d2h0

d

1~b2/2!d2h1
d1~bm21/2!hm

d 1~bm/2!hm11
d

1
1

2(
n52

m21

@bn211d2bn11#hn
d ~56!

or

Hcm~E!5Ecm~E!1R̃m~E!

1
1

2
~d221! (

n50

m21

Tn11~Enorm!hn
d . ~57!

In this equation,H andHdamp are the grid Hamiltonian and
damped grid Hamiltonian matrices,d2 is a diagonal matrix
with elementsd l l 8d

2(xl), and thecm(E),R̃m(E), andhn are
discrete vectors. To obtain the final form of the result, we
have takenb051/2 andbn5Tn(Enorm) for n>1 as before.
An analogous result holds for the particular solution of Eq.
~1!.

We first remark that the modified Faber–Chebychev ba-
sis vectors arenot derived by applying Chebychev polyno-
mials of the damped Hamiltonian to a trial vector~cf. Eq.
~11!! as is obvious from the fact that Eq.~55! is not the same
recursion relation as Eq.~17!. However, in the interior region
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where d251, Eq. ~55! locally becomes equivalent to Eq.
~17!. As a resulthm propagates inm in the same manner as
Tm(Hnorm)x(0), until it reaches the boundary region. There,
the damping factor in the recursion attenuates the reflected
wave so that in the limit

limm→`hm
d 50 ~58!

and as a result

limm→`R̃m50. ~59!

Thus, Eq.~57! becomes

Hc̃~E!5Ec̃~E!1
1

2
~d221! (

n50

`

Tn11~Enorm!hn
d , ~60!

wherec̃(E)[ limm→`cm(E). It follows that, in the interior
region, (d221) can be made sufficiently small thatc̃(E)
obeys the time-independent~homogeneous! Schrödinger
equation for arbitraryE. If the reflected basis vectors are
completely attenuated so that they never return to the region
where the scattering analysis is carried out, thenc̃(E) obeys
causal boundary conditions, and one can use the simple
analysis based on Eq.~1! ~provided thatx(0) does not over-
lap the potential!. However, if the reflected basis vectors do
reach the analysis region asm increases, thenc̃(E) does not
satisfy any special boundary condition. In this case, one must
use a complete set of linearly independent initial packets to
construct a wave function that satisfies the desired boundary
conditions. It should be clear that the parallel development
can be given forjm

I , the particular solution of Eq.~1!, and
for the homogeneous solutionc(E), with remainder
Rm
H(E).

F. One-dimensional illustration

We now consider a one-dimensional problem to illus-
trate the analysis. Suppose the initial wave packet,x(0), is
located on the LHS of the potential~without overlapping it!
and is impinging on the target. The general solution of the
time-independent Schro¨dinger equation with arbitrary
boundary conditions is given by a linear combination of any
complete set of linearly independent solutions. These can be
chosen in a number of ways, for example as the real and
imaginary parts of a complex solution~assuming a real
Hamiltonian!. One particular choice of general solution is

C~Eux!5aCk
1~Eux!1bC2k

1 ~Eux!, ~61!

whereC6k
1 , k.0 are the linearly independent causal solu-

tions of the Lippmann–Schwinger~LS! equations corre-
sponding to scattering waves propagating in the6x direction
with energyE5\2k2/2m. Outside and to the left of the po-
tential we have that

Ck
1~Eux!5exp~ ikx!1R exp~2 ikx! ~62!

and

C2k
1 ~Eux!5T8exp~2 ikx! ~63!

and to the right of the potential

Ck
1~Eux!5T exp~ ikx! ~64!

and

C2k
1 ~Eux!5exp~2 ikx!1R8exp~ ikx!. ~65!

HereR ~andR8) andT ~andT8) are, respectively, the energy
dependent reflection and transmission amplitudes.~The
primed and unprimed quantities differ at most by a phase.!
These amplitudes and the constant coefficientsa andb can
be obtained by evaluatingC(Eux) at two points in the region
betweenx(0) and the beginning of the potential and at two
points beyond and to the right of the potential.4

G. Final state analysis for reactive scattering

The same analysis can be generalized readily for reactive
scattering. In the case of two arrangements,a and b, an
arbitrary solution of the time-independent Schro¨dinger equa-
tion can be written as a linear combination of the causal LS
solutions,Cla

1 (Eua) and Clb

1 (Eub). Here the subscripts

la and lb fix the solution by specifying the precollision
states in thea and b arrangement channels, respectively.
The asymptotic forms ofCla

1 (Eua) andClb

1 (Eub) are given
by

Cla

1 ~EuauxW !5cla

2 ~EuauxW !

1 (
la851

Na~E! Akla

kl
a8
Slal

a8
~E!cl

a8
1

~EuauxW !,

Clb

1 ~EubuxW !5 (
la851

Na~E! Aklb

kl
a8
Slbl

a8
~E!cl

a8
1

~EuauxW !,

~66!

valid outside the potential on thea arrangement side, and

Cla

1 ~EuauxW !5 (
lb8511Na~E!

Nb~E!1Na~E! Akla

kl
b8
Slal

b8
~E!cl

b8
1

~EubuxW !,

Clb

1 ~EubuxW !5clb

2 ~EubuxW !

1 (
lb8511Na~E!

Nb~E!1Na~E! Aklb

kl
b8
Slbl

b8
~E!cl

b8
1

~EubuxW !,

~67!

valid outside the potential on theb arrangement side.
cl

6(E) are theunperturbedchannel functions~consisting of
a product of an internal state and a traveling wave in the
appropriate Jacobi translational variable!. Na(b)(E) is the
number of open channels in thea(b) arrangement. We use a
notation convention commonly employed in calculations,
where the coefficients in the superposition of the linearly
independent unperturbed channel functions are indexed se-
quentially from 1 up toNa1Nb . Thus, e.g., a symmetric
reaction involves twice the number of channels as are open
in one arrangement, and theA andB matrices have indices
that range from 1 to 2Na . In Eq. ~61! ~and equations that
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follow! the b-arrangement channelsstart at Na11 and ex-
tend up toNa1Nb , which for a symmetric reaction equals
2Na .

Combining Eqs.~66! and ~67!, one obtains

j i~EuxW !5 (
la51

Na~E!

Aila
cla

2 ~EuauxW !

1 (
la51

Na~E!

Bila
cla

1 ~EuauxW ! ~68!

just outside the potential in thea arrangement, and

j i~EuxW !5 (
lb511Na~E!

Nb~E!1Na~E!

Ailb
clb

2 ~EubuxW !

1 (
lb511Na~E!

Nb~E!1Na~E!

Bilb
clb

1 ~EubuxW ! ~69!

just outside the potential in theb arrangement. The matrix
elements ofB are defined by4

Bila
5 (

la851

Na~E! Akl
a8

kla

Ail
a8
Sl

a8la
~E!

1 (
lb8511Na~E!

Nb~E!1Na~E! Akl
b8

kla

Ail
b8
Sl

b8la
~E!,

Bilb
5 (

la851

Na~E! Akl
a8

klb

Ail
a8
Sl

a8lb
~E!

1 (
lb8511Na~E!

Nb~E!1Na~E! Akl
b8

klb

Ail
b8
Sl

b8lb
~E! ~70!

for i51,2, . . . ,Na(E)1Nb(E). Equation~70! can be writ-
ten in a matrix form

B̃5ÃS, ~71!

where

Ãi j5AkjAi j ,
~72!

B̃i j5AkjBi j .

Equations ~68! and ~69! can be interpreted as two
coupled linear algebraic equations for the matricesA and
B, which can be found by several methods. Using the
method in paper I,4 one obtains the 2(Na(E)1Nb(E))
3(Na(E)1Nb(E)) matrix elements ofA andB by evaluat-
ing the solutionj(EuxW ) at 2Na(E) points in thea arrange-
ment and 2Nb(E) points in theb arrangement for each of
the initial, linearly independent wave packets,
x i(0),i51,2, . . . ,(Na(E)1Nb(E)). The full S-matrix can
be obtained by solving Eq.~71! together with Eq.~72!, i.e.,

S5Ã21B̃. ~73!

It should be noted that onecan reduce the number of packets
that must be propagated by taking advantage of the fact that

the solutions generated are complex. It is well known that the
real and imaginary parts of a complex solution of the homo-
geneous TISE are separate solutions. This has been discussed
in detail for simple 1D potential scattering in paper I, and
similar techniques can be used for reactive scattering.

The matricesA andB can also be obtained using appro-
priate final wave packets, or ‘‘test functions,’’ux f& ~again,
see paper I!. Constructing a final wave packet with a specific
channel in an arrangement,^x f(a(b)ula(b))u, and project-
ing the solutionuj(E)& onto the final wave packet, one gets

^x f~aula!uj~E!&5Aila
^x f~aula!ucla

2 ~Eua!&

1Bila
^x f~aula!ucla

1 ~Eua!&,

~74!
^x f~bulb!uj~E!&5Ailb

^x f~bulb!uclb

2 ~Eub!&

1Bilb
^x f~bulb!uclb

1 ~Eub!&

because of the orthogonality of the internal states of the sys-
tem. Using Eq.~74!, the matrix elementsAila

, Bila
, Ailb

,
andBilb

of channelsla and lb can be calculated by em-
ploying two linearly independent final wave packets,
x f(aula), f51,2, ina arrangement, and two linearly inde-
pendent final wave packets,x f(bulb), f51,2, inb arrange-
ment. TheS-matrix can thus be obtained from Eq.~73!.

The formulae for solving reactive scattering problems
with more than two arrangements are essentially the same as
those for the two arrangements case except that more expres-
sions forj(EuxW ) ~as given in Eqs.~68! and~69!! need to be
set up for the additional arrangements. Each arrangement
contributes to the sums determining the dimension-
ality (Na1Nb1Ng1•••)3(Na1Nb1Ng1•••) of the
matrixB. To solve for theS-matrix in the multi-arrangement
case, one must have 2(Na1Nb1Ng1•••)
3(Na1Nb1Ng1•••) linearly independent algebraic equa-
tions for theA andB matrices. For collision systems involv-
ing large numbers of channels, this procedure itself may be-
come a challenge computationally. However, with an
absorbing potential or the appropriately chosen attenuating
functions,d(xl), to be introduced in the following section,
and a slightly larger size of grid, boundary reflections can be
avoided. The inhomogeneous time-independent wave packet
Schrödinger or Lippmann–Schwinger equation formalism,
Eq. ~3!, or the TIW-S-matrix Kohn variational form of Eq.
~3!

S~bnbknb
uanakna

!5
i\2Akna

knb

m~2p!2Aa~kna
!Ab* ~knb

!

3^x~bnbu0!uG1~E!ux~anau0!&

~75!

for reactive scattering gives a single column of the
S-matrix with one initial wave packet and therefore may be
the preferred approach for the most complex problems. The
coefficientsAa andAb are the Fourier momentum compo-
nents of the initial wave packet,x(anau0), in a arrange-
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ment and final wave packet,x(bnbu0), in b arrangement at
the appropriate wave numbers,kna

andknb
, respectively.

III. COMPUTATIONAL DETAILS

A. Choice of the modified Faber–Chebychev
polynomial basis

We must now choose a specific damping factor,d(xl),
which will be used in the modified Faber–Chebychev recur-
sion to generate the damped polynomial basis for expanding
the wave function,c(Eux), or j(Eux). The resulting damped
basis is related to the type used by Mandelshtam and Taylor
by a simple transformation.6 We choose our damping factor
to be of a form that tends to preserve continuity and smooth-
ness of the wave function, subject to the constraint that the
damped grid Hamiltonian be identical to the original grid
Hamiltonian in the interior region. The damped grid Hamil-
tonian matrix thus constructed will smoothly attenuate the
wave function to zero in the boundary region due to the
modified Faber–Chebychev recursion’s dependence on the
d(xl) factors. We illustrate the procedure using the solution
of Eq. ~1!, j(Eux).

~1! We introduce a modified wave function,jd(Eux),
such thatjd(Eux) is attenuated smoothly to zero near the
boundary of the grid~which is equivalent to the effect of an
absorbing potential!, but in the interior region, it satisfies Eq.
~1! with the physical Hamiltonian. To minimize reflections,
rapid changes of the derivatives ofjd(Eux) on the grid and at
the boundary are avoided. This is achieved by an appropri-
ately damped Hamiltonian, so that in the interior region, the
expansion ofjd(Eux) in terms of thehn

d solves Eq.~1! ~or in
the case ofcd(Eux), the ordinary homogeneous time-
independent Schro¨dinger equation! with the physical Hamil-
tonian.

~2! We expand jd(Eux) in the polynomial basis,
hn
d(x), given by Eq.~55! with a choice of expansion coeffi-

cients, gn(Enorm), given by Eq. ~46!, which results in a
causal-like modified Faber–Chebychev basis expansion of
the solution of Eq.~2!:

jd~E!52
1

A~DH !22~E2H̄ !2
(
n

~22dn0!e
2 inw~E!hn

d

[
i

2p
Gdamp

1 ~E!x~0!. ~76!

Then as was noted in paper I4 and in the preceding discus-
sion in Sec. II, the real part of Eq.~76! delivers an approxi-
mation to

c~E!5d~E2H !x~0! ~77!

which solves the standard~homogeneous! TISE. We can
treat scattering using either Eq.~76!, or its real part. The
latter has the attractive feature that one can then place the
initial packetx(0) on top of the target~that is, the initial
packet is non-zero in the region of space associated with the
target and projectile being close enough to each other so as
to interact!.4 Thus, our approach applies both to solutions of
Eq. ~1! and of the homogeneous time-independent

Schrödinger equation and the extraction of the scattering in-
formation in the two cases is, in general, the same because
both kinds of wave functions involve a superposition of a
complete set~for any energyE) of linearly independent so-
lutions of the Schro¨dinger equation in the region outside the
potential but not yet in the boundary region.

~3! We can achieve~1!, by requiring that the damped
Hamiltonian, Eq. ~53!, be such that the basis functions
hn
d(x) generated by Eq.~55! decay to zero smoothly near the

boundary. To see how the damping can be made to ensure
smooth behavior, we examine Eq.~55! with a real space-
dependent damping,d(x), applied to the Hamiltonian. For a
weak spatial dependence of the damping function,d(x),
@H,d#'0 and it follows that

Hdamp5Ad~x!F2
\2

2m

d2

dx2
1V~x!GAd~x!.d~x!H,

~78!

and therefore

hn
d~x!'~d~x!!nhn~x!, ~79!

where thehn(x) are the basis functions generated by Faber–
Chebychev recursion with an undamped Hamiltonian,H.
This indicates that the damped basis functions,hn

d(x), decay
smoothly to zero near the boundary of the grid if the real
space-dependent damping,d, decreases from one to a value
between zero and one, in a small attenuating region includ-
ing the boundary of the grid. This also implies that the
smoothness of thehn

d(x) and of j(Eux) is related to the
smoothness ofd(x). The form of the space-dependent damp-
ing d(x) chosen for the present study is based on the distrib-
uted approximating functional21 and will be given in Section
IV.

B. Smoothed Green’s operator and Dirac delta
function

As noted by Mandelshtam and Taylor,6 and by Huang
et al. in a different context,9 to accelerate further the rate of
the convergence of the expansions, of the real and imaginary
parts of Eq.~76!, a smoothed Green’s or delta function can
be implemented. Since the expansion for the principal value
Green’s function GP(E) and Dirac delta function,
d(E2H), in Eq. ~76! can be viewed as a Fourier series
expansion with the variablew(E), one can use a well-known
local smoothing technique22 over energyE to accelerate the
Fourier series expansions ofGP(E) andd(E2H). There are
many possible ways to do the smoothing, and in earlier
work, we have used Lanczos’s-smoothing22 to accelerate
the conformal mapping in the Faber polynomial expansion.9

In this paper, we use a distributed approximating functional
or DAF-based smoothing function,21 dMs

(w(E)), given by

dMs
~w~E!!5

1

ss
expS 2

w~E!2

2ss
2 D (

n50

Ms

3S 2
1

4D n~2pn! 2!21/2H2nS w~E!

A2ss
D , ~80!
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and obtain the expansion for the smoothed and damped wave
function, j̄d(Eux),

j d̄~Eux!5
i

2pE dw8~E8!dMs
~w8~E8!

2w~E!!Gdamp
1 ~E8!x~0!, ~81!

which corresponds to an average over energy. The depen-
dence ofGdamp

1 (E8) on w8(E8), along with a change of in-
tegration variable fromdw8(E8) to d@w8(E8)2w(E)# re-
sults in a Fourier transform ofdMs

, multiplied by
exp(2inw(E)), and the result is

j̄d5
1

2pA~DH !22~E2H̄ !2
(
n

3~22dn0!e
2 inw~E!d̄Ms

~n!hn
d . ~82!

The smoothed and damped real part ofj̄d, c̄d(E), is given
by

c̄d~Eux!5
1

pA~DH !22~E2H̄ !2
(
n

~22dn0!

3cos@nw~E!#d̄Ms
~n!hn

d~x!. ~83!

Here, d̄Ms
(n) is the Fourier transform ofdMs

(w(E)),23

d̄Ms
~n!5 (

m50

Ms S 12ss
2n2Dm
m!

e2ss
2n2/2. ~84!

In the limit of Ms→`, the DAF function, dMs
(w(E)),

equals the Diracd function and d̄Ms
(n)→1. For a finite

Ms , the DAF function,dMs
(w(E)), is strongly peaked at

zero and the Green’s functionG(E) is locally smoothed.
However, the exponential decay of the functiond̄Ms

(n) for
n.1/ss truncates the Fourier series expansion, Eq.~82!, ef-
fectively and results in an accelerated rate of convergence.

IV. EXAMPLE CALCULATIONS AND DISCUSSION

We have considered three types of calculations. These
are ~1! an initial wave packet which sits outside the interac-
tion region and the parameters are such that there is no re-
flection at the end of the grid,~2! an initial wave packet
which sits outside the interaction region and the parameters
are such that there is some reflection back into the analysis
region, ~3! an initial wave packet which sits on top of the
interaction. In the second and third cases, the damped and
smoothed wave functions,j̄d(E), over a range of energies,
E, can be obtained from Eq.~82! by building up the space-
dependent damped Faber–Chebychev basis vectors,hn

d , us-
ing the recursion~55!. One then projectsj̄d(E) on to a num-
ber of final wave packets,x f , located just outside the
potential in the various arrangement regions, and calculates
the elements of matricesA andB using Eq.~74!. The num-
ber of final wave packets is twice the number of open chan-
nels in the arrangement. Finally, the fullS-matrix as a func-

tion of energy can be obtained by repeating the above
procedure for a number of initial wave packets, which is
equal to the number of open channels of all arrangements,
and using Eq.~73!.

The damping function,d(x), is the key to constructing
the damped Faber–Chebychev basis vectors,hn

d , and attenu-
ating the wave functionj̄d(E) so that the effects of reflection
can be minimized. The attenuating region is chosen not to
overlap the interaction potential, the initial and final wave
packets. To avoid reflection in region of attenuation, the
function d should not decrease too abruptly. One wants,
however, the region of attenuation to be as small as possible.
These opposing constraints must be balanced and we have
found that reasonable results can be obtained with an attenu-
ating factord constructed using a functional form related to
the DAF.21We term the function the ‘‘conjugated DAF func-
tion’’ ~related to the Fourier transform of the standard DAF!.
In one dimension, the function is given by

d~x!5 (
m50

Md F12 ~sdx!pGm
m!

e2~sdx!p/2, ~85!

where the powerp is used to control the fall off ofd(x) in
the attenuation region. Withp52, the conjugated DAF func-
tion is exactly the Fourier transform of the DAF,21,23 which
is the same quantity used to smooth the Green and spectral
density operators. Thed(x) given in Eq. ~85! delivers a
smooth decay of thehn

d at the boundary. The parameters of
d(x) are chosen so that it does not decay to zero at the end of
the boundary, but rather to a value of 0.5. As a result, the
wave functionj̄ i

d(E) decays smoothly to a small value in the
attenuating region and reflection is reduced significantly.

We have applied this scaling of the Hamiltonian, the
space-dependent damped Faber–Chebychev basis vectors,
the smoothed Green’s function and delta function expres-
sions, and the final state analysis, to collinear H1H2 reactive
scattering. The LSTH potential24 and reactant arrangement
Jacobi coordinates (x, y) are used in the calculation. The
DAF method21 is used to represent the wave function and
kinetic energy operator on the grid, which has four grid
points per de Broglie wavelength at the energyE51.4 eV.
The attenuation region starts at 6.8 a.u. and extends out to
7.8 a.u. The three parameters determiningd(x) in Eq. ~85!
are: p52.0, sd510.0/6.8 andMd570. The ratio 10.0/6.8
yields a numerical value forsd that causes the damping to
begin at aboutx56.8. The value of the damping function,
d(x), at the end of the boundary is 0.5. The parameters of
the smoothing DAF for the Green and delta function opera-
tors, dMs

(w(E)), in Eq. ~80! are: ss51.0/220.0,Ms510.
The ratio 1.0/220.0 results in a numerical value ofss that
causes the smoothing to begin after about 220 terms in the
sum. The results are found to be very stable and to converge
without difficulty. The calculated transition probabilities at
1300 Faber–Chebychev iterations are given in Tables I, II,
and III for the Green’s function and initial packet outside the
target. In Table IV, similar results are given for the spectral
density or delta function, with the initial packet on top of the
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target. The results are all compared to those obtained with
the S-matrix Kohn variational method.25 Agreement is to
within 1.0% for most of the transitions. We found that the
spectral density operator method converged more quickly
than the Green’s function approach~the results are con-
verged after about 1000 Faber–Chebychev iterations!.4,9

This probably reflects the fact that the packet already is on
top of the target so one does not have to ‘‘propagate’’ it from
outside into the target. Furthermore, we find that the present
version of the delta function approach is considerably less
sensitive to the details of the initial packet than was the ear-
lier version of the approach~which did not employ the
damped Hamiltonian and concomitant damped Faber–
Chebychev basis vectors4!. It is also found in both forms of
this method that results at some energies converged more
quickly than others. Thus, fewer numbers of polynomials are
needed to obtain converged results at some energies than
others.

The disadvantage of allowing reflections from the
boundary is that one must solve linear algebraic equations
for the full S-matrix in order to obtain transition probabilities
from any one state. If there are a very large number of states
accessible at the range of energies of interest, then this can
become a computationally demanding part of the calculation.
In that case, it may be better to do the calculation in a rela-

TABLE I. Reactive and inelastic transition probabilities of collinear
H1H2 at E50.5 eV calculated using Green’s function operator.

Arrangement a b
State 0 0

a 0 0.917 8.3331022

~0.917!a ~8.3031022)

b 0 8.3531022 0.919
~8.3031022) ~0.917!

aData given in parentheses are calculated in terms ofS-matrix Kohn varia-
tional method.

TABLE II. Transition probabilities of collinear H1H2 at E51.1 eV using
Green’s function.

Inelastic a → a b → b

0→ 0 0.170 ~0.172! a 0.170 ~0.172!
0→ 1 0.154 ~0.153! 0.150 ~0.153!

1→ 0 0.152 ~0.153! 0.150 ~0.153!
1→ 1 0.122 ~0.123! 0.123 ~0.123!

Reactive a → b b → a

0→ 0 0.295 ~0.296! 0.298 ~0.296!
0→ 1 0.383 ~0.380! 0.381 ~0.380!

1→ 0 0.380 ~0.380! 0.380 ~0.380!
1→ 1 0.341 ~0.344! 0.340 ~0.344!

aData given in parentheses are calculated in terms ofS-matrix Kohn Varia-
tion principle.

TABLE III. Transition probabilities of collinear H1H2 at E51.4 eV using
the Green’s function.

Inelastic a → a b → b

0→ 0 0.301 ~0.300! a 0.302 ~0.300!
0→ 1 0.222 ~0.220! 0.223 ~0.220!
0→ 2 8.9831022 ~8.9131022) 9.1031022 ~8.9131022)

1→ 0 0.220 ~0.220! 0.224 ~0.220!
1→ 1 8.9431022 ~8.7431022) 8.8531022 ~8.7431022)
1→ 2 4.0131022 ~3.8631022) 4.4431022 ~3.8631022)

2→ 0 9.0731022 ~8.9131022) 9.3631022 ~8.9131022)
2→ 1 4.0731022 ~3.8631022) 3.7131022 ~3.8631022)
2→ 2 0.153 ~0.157! 0.151 ~0.157!

Reactive a → b b → a

0→ 0 5.8931022 ~5.9631022) 5.9431022 ~5.9631022)
0→ 1 0.228 ~0.224! 0.221 ~0.224!
0→ 2 0.104 ~0.107! 0.102 ~0.107!

1→ 0 0.226 ~0.224! 0.225 ~0.224!
1→ 1 0.307 ~0.305! 0.306 ~0.305!
1→ 2 0.120 ~0.126! 0.120 ~0.126!

2→ 0 0.103 ~0.107! 0.101 ~0.107!
2→ 1 0.121 ~0.126! 0.116 ~0.126!
2→ 2 0.503 ~0.482! 0.502 ~0.482!

aData given in parentheses are calculated in terms ofS-matrix Kohn varia-
tional method.

TABLE IV. Transition probabilities of collinear H1H2 at E51.4 eV cal-
culated using spectral density operator.

Inelastic a → a b → b

0→ 0 0.295 ~0.300! 0.299 ~0.300!
0→ 1 0.222 ~0.220! 0.225 ~0.220!
0→ 2 8.9631022 ~8.9131022) 9.1431022 ~8.9131022)

1→ 0 0.221 ~0.220! 0.225 ~0.220!
1→ 1 8.8531022 ~8.7431022) 8.8331022 ~8.7431022)
1→ 2 3.9631022 ~3.8631022) 4.3331022 ~3.8631022)

2→ 0 9.2031022 ~8.9131022) 9.4531022 ~8.9131022)
2→ 1 4.0031022 ~3.8631022) 4.6431022 ~3.8631022)
2→ 2 0.162 ~0.157! 0.160 ~0.157!

Reactive a → b b → a

0→ 0 6.0431022 ~5.9631022) 6.0931022 ~5.9631022)
0→ 1 0.225 ~0.224! 0.220 ~0.224!
0→ 2 0.106 ~0.107! 0.104 ~0.107!

1→ 0 0.225 ~0.224! 0.222 ~0.224!
1→ 1 0.305 ~0.305! 0.304 ~0.305!
1→ 2 0.120 ~0.126! 0.122 ~0.126!

2→ 0 0.109 ~0.107! 0.107 ~0.107!
2→ 1 0.124 ~0.126! 0.128 ~0.126!
2→ 2 0.473 ~0.482! 0.471 ~0.482!

aData given in parentheses are calculated in terms ofS-matrix Kohn Varia-
tion principle.
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tively larger region to avoid boundary reflections, and use
the expressions, Eqs.~3! and ~75!, we presented earlier for
the causal solution.2,9 In that case, one can completely avoid
having to solve large systems of algebraic equations and the
calculation reduces to applying the highly banded, sparse
Hamiltonian matrix to a vector. To reduce boundary reflec-
tions to a small, negligible amount, we enlarged the attenu-
ation region~which starts at 8.0 a.u.! to 3.0 a.u. The shift of
the region allows for the initial wave packet to be placed
outside the potential. The parameters ford(x) are the same
exceptsd510.0/9.5 is chosen, so the damping region now
begins at aboutx59.5.Smoothing was not used in this case.
The results for a single column of theS-matrix, Eq. ~75!,
calculated at 1500 Faber–Chebychev iterations, are given in
Table V. Agreement is to within 5.0%.

V. CONCLUSIONS

We have presented an detailed analysis of how one can
obtain scattering as a continuous function of energy even
though the Hamiltonian is approximated by a finite discrete
matrix ~resulting from enclosing the system artificially in a
finite region and discretizing the coordinates!. Such solutions
are constructed for both the standard homogeneous time-
independent Schro¨dinger equation and the inhomogeneous
time-independent wave packet Schro¨dinger equation. An im-
portant additional result is an analytical expression for the
error incurred in a finite truncation of the expansion of these
solutions. Effects due to reflections off the boundaries are
brought under control by introducing a spatially damped real
Hamiltonian, which agrees with the ordinary one except in
the boundary region, as done by Mandelshtam and Taylor.6

In the boundary region, the damped Hamiltonian is attenu-
ated smoothly. This leads naturally to a space-dependent
damped modified Faber–Chebychev polynomial basis, and
expressions have been developed for corresponding approxi-
mate solutions to the inhomogeneous time-independent wave
packet Schro¨dinger and homogeneous time-independent
Schrödinger equations. This makes it possible to use smaller
regions in which to carry out scattering calculations, thereby
improving the efficiency. In addition, new analytical expres-
sions were derived for the truncation error. These should be

extremely useful in determining the optimal points at which
to carry out the evaluation of the scattering information.

We also introduced a ‘‘conjugated DAF function’’ as a
particular choice of damping function which smoothly at-
tenuates the solutions of Eqs.~1! and ~2! to zero at the
boundary. A method for accelerating the rate of the conver-
gence of the polynomial expansion is also introduced, based
on locally averaging~smoothing! the operators in the energy
space. This convergence acceleration method is applied both
to the modified Faber–Chebychev expansion of the
principle-value Green’s function and to the spectral density
operator acting on initial wave packets. Further, the expres-
sions can also be evaluated in terms of the eigenvalues and
eigenstates of the damped Hamiltonian, and they yield accu-
rate results for energies both at and away from the eigenval-
ues. We will be reporting applications to other systems~in-
cluding full three dimensional reactive scattering! in later
communications.

ACKNOWLEDGMENTS

Y.H. is supported in part under National Science Foun-
dation Grants Nos. CHE94-03416 and is a NSF Advanced
Scientific Computing Fellow under Grant No. ASC93-
10235. S.I. is supported in part under R. A. Welch Founda-
tion Grant No. E-0608. D.J.K. is supported in part under R.
A. Welch Foundation Grant No. E-0608. The Ames Labora-
tory is operated for the Department of Energy by Iowa State
University under Contract No. 2-7405-ENG82.

1D.J. Kouri, M. Arnold, and D.K. Hoffman, Chem. Phys. Lett.203, 166
~1993!.

2Y. Huang, W. Zhu, D.J. Kouri, and D.K. Hoffman, Chem. Phys. Lett.206,
96 ~1993!; 213, 209 ~1993!.

3W. Zhu, Y. Huang, D.J. Kouri, M. Arnold, and D.K. Hoffman, Phys. Rev.
Lett. 72, 1310~1994!.

4D.K. Hoffman, Y. Huang, W. Zhu, and D.J. Kouri, J. Chem. Phys.101,
1242 ~1994!.

5D.J. Kouri, Y. Huang, W. Zhu, and D.K. Hoffman, J. Chem. Phys.100,
3662 ~1994!.

6V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys.102, 7390 ~1995!;
103, 2903~1995!.

7H.W. Jang and J.C. Light, J. Chem. Phys.102, 3262~1995!.
8Y. Huang, D.J. Kouri, and D.K. Hoffman, Chem. Phys. Lett.225, 37
~1994!.

9Y. Huang, D.J. Kouri, and D.K. Hoffman, J. Chem. Phys.101, 10493
~1994!.

10H. Tal-Ezer and R. Kosloff, J. Chem. Phys.81, 3967~1984!.
11R. Kosloff, J. Phys. Chem.92, 2087~1988!.
12I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series, and Products

~Academic, New York, 1980!.
13D.J. Kouri, W. Zhu, G.A. Parker, and D.K. Hoffman, Chem. Phys. Lett.
238, 395 ~1995!.

14G.A. Parker, W. Zhu, Y. Huang, D.J. Kouri, and D.K. Hoffman, Comp.
Phys. Commun.~in press!.

15G. Arfken,Mathematical Methods for Physicists, 3rd ed.~Academic, New
York, 1985!, pp. 736–739.

16D. Neuhauser and M. Baer, J. Chem. Phys.90, 4351~1989!.
17D. Neuhauser, M. Baer, R.S. Judson, and D.J. Kouri, J. Chem. Phys.90,
5882 ~1989!; 93, 312 ~1990!.

18M. Reed and B. Simon,Scattering Theory~Academic, New York, 1979!,
Vol. III; M.L. Goldberger and K.M. Watson,Collision Theory~Krieger,
New York, 1975!.

TABLE V. Transition probabilities of collinear H1H2 calculated using the
TIW-S-matrix Kohn variational equation.

Transition
Energy
~eV! Inelastic Reactive

0.5 0.871 ~0.917! 8.2831022 (8.3031022)
0→0 1.1 0.177 ~0.172! 0.297 ~0.296!

1.4 0.288 ~0.300! 6.3031022 (5.9631022)

0→1 1.1 0.152 ~0.153! 0.379 ~0.380!
1.4 0.226 ~0.220! 0.228 ~0.224!

0→2 1.4 8.8031022 (8.9131022) 0.104 ~0.107!

aData given in parentheses are calculated in terms ofS-matrix Kohn varia-
tional method.

938 Huang et al.: Wave packet equations of quantum dynamics

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996



19T. Seideman and W.H. Miller, J. Chem. Phys.96, 4412~1992!.
20A. Vibok and G.G. Balint-Kurti, J. Chem. Phys.96, 7615~1992!.
21D.K. Hoffman, N. Nayar, O.A. Sharafeddin, and D.J. Kouri, J. Phys.

Chem.95, 8299~1991!.
22C. Lanczos,Discourse on Fourier Series~Hafner, New York, 1966!.

23Y. Huang, D.J. Kouri, M. Arnold, T.L. Marchioro II, and D.K. Hoffman,
Comp. Phys. Commun.80, 1 ~1994!.

24B. Liu, J. Chem. Phys.58, 1925~1973!; P. Siegbahn and B. Liu,ibid. 68,
2457 ~1978!; D.G. Truhlar and C.J. Horowitz,ibid. 68, 2466~1978!; 71,
1514~E! ~1979!.

25G.C. Groenenboom and D.T. Colbert, J. Chem. Phys.99, 9681~1993!.

939Huang et al.: Wave packet equations of quantum dynamics

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996


