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We present a generalization to our previously developed quantum wavepacket ab initio molecular
dynamics �QWAIMD� method by using multiple diabatic electronic reduced single particle density
matrices, propagated within an extended Lagrangian paradigm. The Slater determinantal
wavefunctions associated with the density matrices utilized may be orthogonal or nonorthogonal
with respect to each other. This generalization directly results from an analysis of the variance in
electronic structure with quantum nuclear degrees of freedom. The diabatic electronic states are
treated here as classical parametric variables and propagated simultaneously along with the quantum
wavepacket and classical nuclei. Each electronic density matrix is constrained to be
N-representable. Consequently two sets of new methods are derived: extended
Lagrangian-QWAIMD �xLag-QWAIMD� and diabatic extended Lagrangian-QWAIMD
�DxLag-QWAIMD�. In both cases, the instantaneous potential energy surface for the quantum
nuclear degrees of freedom is constructed from the diabatic states using an on-the-fly nonorthogonal
multireference formalism. By introducing generalized grid-based electronic basis functions, we
eliminate the basis set dependence on the quantum nucleus. Subsequent reuse of the two-electron
integrals during the on-the-fly potential energy surface computation stage yields a substantial
reduction in computational costs. Specifically, both xLag-QWAIMD and DxLag-QWAIMD turn out
to be about two orders of magnitude faster than our previously developed time-dependent
deterministic sampling implementation of QWAIMD. Energy conservation properties, accuracy of
the associated potential surfaces, and vibrational properties are analyzed for a family of hydrogen
bonded systems. © 2010 American Institute of Physics. �doi:10.1063/1.3504167�

I. INTRODUCTION

In a series of recent publications,1–9 we have introduced
a methodology that accurately computes quantum dynamical
effects in a subsystem while simultaneously treating the mo-
tion of the surrounding atoms and changes in electronic
structure. The approach is quantum-classical10–17 and in-
volves the synergy between a time-dependent quantum
wavepacket description and ab initio molecular dynamics.
As a result, the approach is called quantum wavepacket ab
initio molecular dynamics �QWAIMD�. Since the quantum
dynamics is performed on Cartesian grids, the predominant
bottleneck is the computation of the grid-based, time-
dependent electronic structure potential and gradients gener-
ated by the motion of the classical nuclei. This limitation is
partially surmounted through the introduction of a time-
dependent deterministic sampling �TDDS� technique,3,4

which when combined with numerical methods such as an
efficient wavelet compression4,18–23 scheme and low-pass fil-
tered Lagrange interpolation,4,24–26 provides computational
gains of many orders of magnitude. QM/MM generalizations
to QWAIMD have also been completed.5 We have utilized
QWAIMD to compute vibrational properties of hydrogen

bonded clusters inclusive of quantum nuclear effects4 and
have also adopted the method to study hydrogen tunneling in
enzyme active sites.6,7 The quantum dynamics scheme in
QWAIMD has also been used to develop a technique known
as multistage ab initio wavepacket dynamics �MSAIWD� to
treat the electronic dynamics and structure of open, nonequi-
librium systems.8 The approach is being generalized to treat
extended systems27 for condensed phase simulations; a bi-
ased QWAIMD formalism to sample rare events is also cur-
rently being developed.28

Significant challenges remain and a few of these are as
follows: At present it is only possible to study QWAIMD
using moderately accurate electronic structure methods, such
as hybrid density functional theory. More accurate, post-
Hartree–Fock calculations conducted on-the-fly with
QWAIMD are currently prohibitive. Due to the expense in-
volved in on-the-fly dynamics, currently it is only possible to
treat one quantum nuclear particle that is coupled to a set of
classical particles, and generalizations to multiple quantum
dynamical particles are in progress. Dynamics of the order of
several picoseconds is possible but longer time-scale dynam-
ics is expensive. This publication takes an important step in
the direction of �a� performing QWAIMD simulations with
efficient on-the-fly post-Hartree–Fock calculations and �b�a�Electronic mail: iyengar@indiana.edu.
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further reducing the computational cost involved in
QWAIMD calculations to facilitate longer time-scale dynam-
ics.

This paper is organized as follows: In Sec. III, we ana-
lyze the computational expense involved in QWAIMD using
a principal component analysis of the variance in electronic
structure on the quantum nuclear grid. This analysis leads us
to a technique that helps reduce the number of on-the-fly
calculations, beyond what is already possible with time-
dependent deterministic sampling. Consequently, in Sec. IV,
an extended Lagrangian generalization to QWAIMD is pro-
vided which allows multiple single particle electronic density
matrices to be simultaneously propagated with quantum/
classical dynamics of nuclei. The resultant potential energy
surface is computed using a nonorthogonal �configuration
interaction� CI-type method29–36 as discussed in Sec. IV A.
When the individual single particle electronic density matri-
ces are interpreted as diabatic states, the density matrices
remain independent of the quantum nuclear degrees of free-
dom. This in turn allows the reuse of two-electron integral
terms across all quantum nuclear grid points while comput-
ing the potential surface and produces large computational
savings as discussed in Sec. IV B, with little loss in accuracy
as shown in the numerical benchmarks, Sec. V. Conclusions
are given in Sec. VI. For completeness, QWAIMD is briefly
reviewed in Sec. II, with further details in the references
provided above. Before we proceed we note that four differ-
ent acronyms are used in this publication. We define these
here and also in the sections of first appearance. The methods
extended Lagrangian-QWAIMD �xLag-QWAIMD� and di-
abatic extended Lagrangian-QWAIMD �DxLag-QWAIMD�
are introduced in Sec. IV and refer to the generalization of
QWAIMD using the extended Lagrangian formalism. The
terms “full-QWBOMD” and “TDDS-QWBOMD” are uti-
lized to differentiate from the above and refer to the previ-
ously described implementation of QWAIMD1–5 that does
not utilize an extended Lagrangian formalism.

II. MAIN FEATURES OF QWAIMD AND ASSOCIATED
LIMITATIONS

For completeness, we state a few key features of
QWAIMD. Further details can be found in Refs. 1–5. In
QWAIMD, starting from the time-dependent Schrödinger
equation, a system is partitioned into three sections based on
complexity. Subsystem A comprises particles, such as pro-
tons, that display critical quantum dynamical effects. Sub-
systems B and C comprise the surrounding nuclei and elec-
trons that dynamically influence subsystem A. While
particles in subsystem A are studied using time-dependent
Schrödinger equation, subsystems B and C are treated simul-
taneously using ab initio molecular dynamics.

The quantum dynamical propagation is performed by us-
ing Trotter factorization37,38 where the free-propagator is ap-
proximated using the distributed approximating functional
�DAF�,1,2,39–41

�RQM�exp�−
ıK�tQM

�
	�RQM� 
DAF

=
1

��0�
exp�−

�RQM − RQM� �2

2���tQM�2 	
� �

n=0

MDAF/2 � ��0�
���tQM�

2n+1

��− 1

4
n 1

n!
�2��−1/2H2n�RQM − RQM�

�2���tQM�
 . �1�

Here ����tQM��2=��0�2+ ı�tQM� /MQM, �H2n�x�� are even
order Hermite polynomials �note that the arguments for the
Hermite polynomials and the Gaussian function, �RQM

−RQM� /�2���tQM��, are complex in general�, RQM represents
the quantum mechanical degrees of freedom, and the param-
eters MDAF and � are chosen as in previous studies1,40 for a
best compromise between accuracy and efficiency. Specifi-
cally, in all calculations performed here MDAF=60 �that is all
even Hermite polynomials up to order 60 are used� and
� /�=2.5742, where � is the grid spacing. Multidimensional
forms of the above propagator are obtained through direct
product.

The evolution of the classical nuclei involves the wave-
packet averaged Hellmann–Feynman forces obtained from
electronic structure calculations carried out on the discrete
wavepacket grid. To minimize the number of electronic
structure calculations carried out on the grid, while directing
their placement for maximum effect, in Refs. 3 and 4, we
introduced the adaptive, TDDS function

�TDDS�RQM� �
�	̃ + 1/I
� � �V�̃ + 1/IV��

Ṽ + 1/IV

, �2�

which is proportional to the wavepacket density, 	̃, the po-

tential gradients, V�̃, and inversely proportional to the grid

potential, Ṽ. As shown in Ref. 3, the choice of parameters,
I
=1, IV�=3, and IV=1, retains significant distribution in
both the classically allowed �minimum energy regions� and
classically forbidden �classical turning point� regions of the
potential and leads to a large reduction in computational cost,
with little perceivable loss in accuracy. The rationale behind
the choice of these parameters can be qualitatively noted
from the following arguments with details in Ref. 3. The

functions 	̃, V�̃, and Ṽ are shifted and normalized3 and hence,
�a� minimum energy regions of the potential surface are char-
acterized by low potential energy, low gradient and relatively
high wavepacket distribution, while �b� quantum tunneling
�or classical turning point� regions of the potential are ap-
proximately characterized by moderately large values of the
potential, high gradients, and smaller wavepacket values.
When one enforces the condition that the TDDS function
must be approximately equal in these two situations for mini-
mal bias between the classically allowed and classically for-
bidden regions, it is found that I
=1, IV�=3, and IV=1 pro-
vides the lowest order solution satisfying these
considerations.3 �Higher order solutions further increase the
sampling in the classically forbidden regions.� In addition to
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these formal considerations, the parameters have been nu-
merically tested in Ref. 3 for a set of 70 analytical and nu-
merical potentials and the results are found to be consistent
with the above physical arguments. The TDDS function is
evaluated at every instant in time to determine the grid points
where the potential and gradients will be evaluated for the
next time-step. Details on the TDDS algorithm as well as its
connections to Bohmian mechanics and the WKB approxi-
mation are discussed in Refs. 3 and 4. This technique allows
large scale reductions in computation time �by several orders
of magnitude�, with little perceivable loss in accuracy.

In Ref. 4, the above formalism has been benchmarked
for accuracy in computing vibrational properties in hydrogen
bonded clusters. Specifically, the ClHCl− system was treated
since it provides significant challenges for accurate modeling
of electron-nuclear coupling.4,42–44 In Ref. 4 the TDDS
implementation of QWAIMD was found to accurately repro-
duce the experimental spectrum at limited computational
cost. The analysis of trajectories is facilitated through the
introduction of a novel velocity-flux correlation function.4 In
addition, as noted in the introductory section, QWAIMD has
been adopted to study hydrogen tunneling in enzyme active
sites6,7 and QM/MM generalizations to the TDDS implemen-
tation of QWAIMD have also been completed.5 In Ref. 45,
the quantum dynamics tools from QWAIMD were used to
compute the qualitative accuracy involved in classical ab
initio molecular dynamics calculations of vibrational spectra
in hydrogen bonded systems.

In Ref. 46, we have introduced further modifications to
the TDDS function, using the concept for Shannon’s infor-
mation entropy.47,48 The associated TDDS functions are also
utilized here for �a� placement of grid-based electronic struc-
ture basis functions, as discussed in Sec. IV C, and �b� iden-
tification of initial conditions for diabatic states as discussed
in Sec. IV B 1.

III. THE PRINCIPAL ELECTRONIC STRUCTURE
COMPONENTS ON THE QUANTUM NUCLEAR GRID

The electronic structure has explicit dependence on the
position of the quantum nuclear grid points, since at each
grid point, we obtain the electronic structure using converged
wavefunctions. Such electron-nuclear correlation is critical
for accurate description of the vibrational properties includ-
ing quantum nuclear effects.4,42 However, the extent of such
correlation is system dependent and the idea behind TDDS
has been to extrapolate the time-dependence of such a corre-
lation utilizing parameters available during dynamics as
highlighted above. In this section, we further explore the
electron-nuclear coupling through examination of the princi-
pal components of the electronic structure on the quantum
grid. This analysis leads to an alternate approach to further
“compress” the electron-nuclear coupling information as dis-
cussed in subsequent sections of this paper.

Our goal is to first investigate the “self-similarity” of
electronic structure on the quantum grid points. To probe the
similarity between different electronic density matrices, we
first define a self-similarity metric, or distance measure, be-
tween the density matrices,

Sij =
1

N
Tr�PiPj� , �3�

where Pi is the density matrix on grid point i and N is the
total number of electrons. When orthonormal density matri-
ces are used, the diagonal elements of this matrix have the
property that Sii= �1 /N�Tr��Pi�2�=1, where we have used
the idempotency49 of density matrix. For this case, the off-
diagonal elements are bounded as

Sij =
1

N
Tr�PiPj� =

1

N
�
l=1

N ��
k=1

N

��
l
j�
k

i 
�2	 � 1, �4�

because the quantity ��k=1
N ��
l

j �
k
i 
�2� is bounded by the

length of the vector �
l
j
 and is hence less than or equal to 1.

An expression similar to Eq. �3� has been employed as a
constraint in Ref. 50 to bias the SCF procedure toward non-
standard electronic structure wavefunctions.

Next, the principal components of the electronic struc-
ture on the nuclear grid are obtained through singular value
decomposition �SVD�26,51 of the distance measure in Eq. �3�
as

UTSV = � , �5�

where U and VT are orthogonal matrices and � is a diagonal
singular value matrix. The matrices U and VT, in general,
form a biorthogonal basis but since S is a symmetric square
matrix, V=U. The columns of the matrix V provide a rota-

tion �Pi�→ �P̄i�. The number of nonzero singular values, i.e.,

the dimension of �, determines the number of distinct P̄i
matrices and hence determines the number of principal com-
ponents of electronic structure on the quantum nuclear grid.

To showcase the principal components of electronic
structure on the quantum grid, we choose our example to be
ClHCl−, on account of the known challenges this system pre-
sents to accurately model electron-nuclear coupling.4,42–44

The shared proton was chosen to be the quantized particle
with the chlorine atoms being treated as classical. The shared
proton wavefunction is to be described using a potential en-
ergy surface where the electronic structure was obtained on
51 grid points along the Cl–Cl axis using single particle,
Hartree–Fock, and DFT formalisms. An illustration is pro-
vided in Fig. 1.

While these studies were performed for a large number
of density matrices with varying levels of bases and density
functionals, we summarize our results here by providing a
representative sample. In Figs. 2 and 3, the first few singular
values and singular vectors of the matrix S are shown. The
evolution of the largest singular value with change in Cl–Cl
distance is also shown in Fig. 4. For orthonormal as well as
nonorthogonal atomic orbital �AO� basis sets, only a few
singular values are nonzero and the number of principal

Cl1 Cl2
HRH-Cl1

RH-Cl2

FIG. 1. The parameters RH−Cl1
and RH−Cl2

are defined here and used in Figs.
2–4.
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components of the electronic structure that contribute at all
grid points for this case are small �4�. The singular vectors
represent the contributions from the original grid density ma-
trices to the principal electronic structural components. The
subtle variations in the principle components �Figs. 2�b� and
3�b�� indicate that the electronic structure can be grouped
into three regions, donor/acceptor bound, and unbound con-
tributions. More generally, it appears that the dependence of
the electronic structure on the quantum nuclear grid coordi-
nate is local. Exploiting the locality of the electronic struc-
ture is, of course, a hallmark of the TDDS function,3,4 which
uses this property to bring the number of computations down
by several orders of magnitude. In this sense TDDS is con-
nected to other nonlinear dimensionality reduction
techniques52,53 and these connections will be explored in fu-
ture publications. However, the question we address in the
remaining portion of this publication is whether, using such
properties it would be possible to design a method where
multiple single particle electronic density matrices are propa-
gated, each density matrix being independent of the quantum
grid, and the subtle variations of the electronic structure on
the quantum grid arise when these multiple single particle
density matrices are combined. This would make the result-
ant electronic structure at each grid point, intrinsically
multireference,54 and this multireference nature would be re-
sponsible for the variations in the dependence of electronic
structure with nuclear grid.

In summary, we note that the number of principal elec-
tronic structure components needed to describe the potential
surface in QWAIMD can be potentially a small number com-
pared to the size of the quantum nuclear grid. However, one
must stress an important caveat. The singular vectors deter-

mined above are linear combinations of multiple density ma-
trices and hence the associated electronic structure is intrin-
sically multireference. Hence, while superficially it might
appear that the problem has been simplified, the challenge
reappears in a different form. To address these concerns, in
the next section we present a scheme to obtain the electronic
potential surface, using multiple single particle electronic
density matrices. These density matrices are propagated si-
multaneously along with the classical nuclei and quantum
wavepacket, through an extended Lagrangian formalism. The
resultant surface is constructed using a nonorthogonal CI-
type method.29–36

IV. A DIABATIC EXTENDED LAGRANGIAN
FORMALISM

The high degree of self-similarity and relatively local
variations of the electronic structure on the quantum nuclear
grid demonstrated in the previous section is now exploited to
construct a QWAIMD formalism that �a� allows the simulta-
neous propagation of multiple single particle electronic den-
sity matrices and �b� construction of the quantum nuclear
potential surface from these multiple density matrices. To
begin the discussion, we introduce the set of variables
�RQM,RC , �Pi��, where RQM, as noted previously, is the quan-
tum nuclear grid coordinate, RC represents the coordinates of
the classically treated nuclei and �Pi� represent a family of
electronic single particle density matrices �to be treated as
diabatic states� in an orthonormal basis, to be propagated and
employed to construct the potential surface on the quantum
nuclear grid. The wavepacket depicting the quantum nucleus,

�RQM; t� is to be propagated in time using the free-
propagator in Eq. �1� along with the potential computed from
the multiple electronic density matrices.

We underline, as noted in the previous section, that the
individual Pi-matrices are independent of RQM. Any subtle
variations of the dependence of electronic structure wave-
function on the quantum grid coordinate must arise from the
multiconfigurational54 nature due to combination of the vari-
ous single particle wavefunctions arising from the individual
density matrices. The electronic basis set utilized to construct
the Pi-matrices is also RQM-independent and a generalized
grid-based electronic basis is introduced in Sec. IV C to
achieve this result. As a result of the associated limited cou-
pling of the individual Pi-matrices on RQM, we refer to the
states constructed from these density matrices as diabatic
states.55–62 In fact, as we will see later in Sec. IV B, the only
coupling retained between the density matrices and the
quantized nuclear degrees of freedom is a one-electron cou-
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pling. This allows for great reduction in computational effort,
as will be discussed in Sec. IV B, with limited loss in accu-
racy, as seen in the results Sec. V B.

To represent the dynamics of the single particle density
matrices and the classical nuclear framework, we introduce
the diabatic extended Lagrangian,

L =
1

2
Tr�VTMV� + �

i

NDM 1

2
Tr���� i

1/4Wi�� i
1/4�2�

− E�RC,�Pi�,RQM� − �
i

NDM

Tr��i�Pi
2 − Pi�� , �6�

where M ,V ,RC are the classical nuclear masses, velocity,
and position, whereas Pi ,Wi ,�� i are the diabatic density ma-
trix, density matrix velocity, and tensorial fictitious mass for
density matrices Pi, and NDM is the number of density ma-
trices. The multiple density matrices are coupled through the
energy function, E�RC , �Pi� ,RQM�, which is obtained using
the nonorthogonal CI-type formalism presented in Sec. IV A.

Equation �6� is an extension of the classical Lagrangian
used in atom-centered density matrix propagation
�ADMP�,63–66 but differs through �a� the use of multiple
single particle density matrix trajectories where each density
matrix has a separate N-representability constraint, and �b�
the energy E�RC , �Pi� ,RQM�, which as noted depends on
multiple electronic density matrices and hence is not derived
from a single particle formalism. The form of energy and
associated gradients are discussed in the next subsection.

The Euler–Lagrangian equations-of-motion for the den-
sity matrices and classical nuclei are

M
�2RC

�t2 = − ���� �E�RC,�Pi�,RQM�
�RC

�
�Pi�

��
 , �7�

�i
1/2�2Pi

�t2 �i
1/2 = − ����� �E�RC,�Pi�,RQM�

�Pi
�

�RC,Pj�i�

+ �iPi + Pi�i − �i��
� . �8�

When a single density matrix is involved, Eqs. �6�–�8� have
been well studied for classical nuclear dynamics45,65,67–72 and
provide good approximations to the dynamics of a set of
classical nuclei on the Born–Oppenheimer surface. It has
been shown that deviations from the Born–Oppenheimer sur-
face are bounded by variations in the fictitious kinetic
energy,64 Tr���� i

1/4Wi�� i
1/4�2�, and the commutator of the Fock

and density matrices.66

For the current formalism involving multiple density
matrices, the single particle states at the initial time-step are
chosen to represent a local region of the quantum grid ac-

cording to �Pi
RQM

i�

�RC��. That is the ith density matrix is cho-
sen at the initial time-step to be representative of the elec-

tronic structure around grid point RQM
i� . Thus each density

matrix represents some local electronic structure on the
quantum nuclear grid at the initial step. As the dynamics
proceeds, these density matrices mix and the full potential
surface is constructed from a CI-like description of the single

particle states obtained from these density matrices. This as-
pect is discussed in Secs. IV A and IV B. Hence, these den-

sity matrices, �Pi
RQM

i�

�RC��, are akin to “valence-bond”
states.73–77 In this situation, the individual fictitious kinetic
energies, Tr���� i

1/4Wi�� i
1/4�2�, represent deviations from con-

verged diabatic representations of the electronic structure de-

picting the neighborhood of RQM
i� . This is similarly the case

for the associated commutators of the Fock and density ma-
trices. Furthermore, since Eq. �8� represents dynamics of �Pi�
on surfaces where the commutator between the respective
Fock and density matrices, ��Fi ,Pi�� are small, we have also
utilized a converged form of Pi in this publication. From
hereon the dynamical formalism introduced in this section is
referred to as the extended Lagrangian-QWAIMD formalism.
Furthermore, when the density matrices Pi are converged,
rather than propagated, the formalism is referred to as diaba-
tic extended Lagrangian-QWAIMD. By contrast, the
QWAIMD prescription that does not utilize an extended La-
grangian formalism, which is the formalism discussed in
Refs. 1, 2, and 4–6 and is referred to in further discussion
here as QWBOMD.

A. Energy expressions from the multiple,
time-dependent density matrices

In this section, we construct the potential energy surface
from the multiple time-dependent single particle electronic
structure density matrices available from Eqs. �6� and �8�.
Toward this we use a nonorthogonal CI-type formalism29–36

constructed using the Slater determinants obtained from the
nonorthogonal density matrices, �Pi�,

� H̃1,1 ¯ H̃1,NDM

] � ]

H̃NDM,1 ¯ H̃NDM,NDM

�� c1

]

cNDM

�
= E� 1 ¯ S̃1,NDM

] � ]

S̃NDM,1 ¯ 1
�� c1

]

cNDM

� , �9�

where NDM is the number of density matrices in Eqs. �6� and
�8�. In the following discussion, we do not distinguish be-
tween the cases where the entire family of Slater determi-
nants ���i
� constructed from density matrices, �Pi�, is a non-
orthogonal set or if this set is comprised of sub-non-
orthogonal sets such as �¯ , ���iM−1

M−1
� , ���iM
M 
� ,¯�, where

each subset ���iM
M 
� is internally orthogonal �excited determi-

nants�. The latter would be case for an “on-the-fly” multiref-
erence CI-type description of on-the-fly dynamics. The for-
malism below also allows the flexibility for the multiple
density matrices to signify different spin states,78,79 if the
problem necessitates such a description. The numerical
benchmarks provided here, however, do not consider this
situation and will be considered in future publications. We
use the terminology “nonorthogonal CI-type” to encompass
all of these possibilities.

184105-5 Wavepacket extended Lagrangian dynamics J. Chem. Phys. 133, 184105 �2010�

Downloaded 10 Nov 2010 to 129.79.138.76. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



The diagonal elements for the Hamiltonian in Eq. �9� are
obtained using single particle energy expressions80,81

H̃ii = ��i�Ĥ��i
 = Tr�hP̃i + 1
2Gi�P̃i�P̃i� + VNN, �10�

where h and Gi�P̃i� are the one and two-electron matrices,

VNN is the nuclear repulsion energy and P̃i��3Pi
2−2Pi

3� is
the McWeeny purified49 idempotent reduced single particle
density matrix represented in an orthonormal basis set, �
l

M�.
The electronic Hamiltonian Ĥ, in an orthonormal set, �
l

M�,
is82

Ĥ = �
l,k

�
l
M�h�
k

M
al
M†ak

M

+
1

2 �
l,k,p,q

�
l
M
k

M�
p
M
q

M
al
M†ak

M†aq
Map

M . �11�

If density functional theory is utilized, Gi�P̃i� includes the
exchange-correlation functional. The off-diagonal elements
of the Hamiltonian and overlap matrices are constructed us-
ing a SVD30,31,33,83–86 of the matrix, s12,

s12 = ��
1
1�
1

2
 ¯ �
N
1 �
1

2

] ] ]

�
1
1�
N

2 
 ¯ �
N
1 �
N

2 

� , �12�

which is used to define elements of the overlap matrix, S̃ in
Eq. �9�, as

��1��2
 = S̃12 = det�s12� . �13�

Since the Slater determinants associated with the density ma-
trices are nonorthogonal, the individual single particle states,
��
i

1
� and � ��
i
2
�, where the subscript denotes orbitals in two

different determinants ��1
 and ��2
, are also nonorthogonal.
In addition s12 is an asymmetric matrix �see Eq. �12�� and
hence the SVD of s12 introduces a biorthogonal set of vec-
tors,

�
̃i
1
 = �

k

Uki�
k
1
 ,

�14�
�
̃i

2
 = �
k

Vki�
k
2
 ,

according to

�i
12�ij = �
̃i

1�
̃ j
2
 = �

k,l
Uki

� �
k
1�
l

2
Vlj = �U†s12V�ij , �15�

where U and V are the left and right singular vectors ob-
tained from SVD of s12, with singular values ��i

12�. In this

biorthogonal representation, the off-diagonal overlap and
Hamiltonian matrix elements are written as

S̃12 = �
i

�i
12 = �

i

�
̃i
1�
̃i

2
 = �
i

�
k

�
̃i
1�
k

M
�
k
M�
̃i

2
 , �16�

H̃12 = �
l,k,j

�
l
M�h�
k

M
�
̃ j
1�
l

M
�
k
M�
̃ j

2
�
i�j

�i
12

+
1

2 �
l,k,p,q,i,j

�
̃i
1�
l

M
�
̃ j
1�
k

M
�
q
M�
̃ j

2


��
p
M�
̃i

2
 �
m�i,j

�m
12��
l

M
k
M��
p

M
q
M
� , �17�

=�
j

�
̃ j
1�h�
̃ j

2
�
i�j

�i
12 +

1

2�
i,j

�
̃i
1
̃ j

1��
̃i
2
̃ j

2
 �
m�i,j

�m
12. �18�

The singular value decomposition of s12 greatly simplifies

computation of the H̃12, since the det�s12� appears as a minor
in all K4 terms �where K is the number of basis functions� in

H̃12. But note that the SVD is to be constructed for each pair
of density matrices and hence the complexity is expected to
grow quadratically with the number of density matrices.
However, based on the analysis presented in Sec. III, one
might expect that a few density matrices, judiciously placed
on various quantum grid points would suffice. When this is
true, a substantial reduction in computational complexity is
demonstrated in Sec. IV B using the current formalism.

1. Effect of singularities in s12

We next consider the case for singular and nonsingular
s12 overlap matrices. For the nonsingular case, the off-
diagonal elements of the Hamiltonian matrix in Eq. �18� can
be written as

H̃12 = �
i

�i
12�Tr�hP̃12� +

1

2
Tr�G�P̃2�P̃12�� , �19�

where P̃12 is the transition density matrix,85,87

P̃kl
12 = �
k

M���
j

�
̃ j
2
�
̃ j

1�
� j

12 ��
l
M
 = �

j

C̃kj
2 C̃lj

1

� j
12 . �20�

Here �
k
M � 
̃ j

2
= C̃kj
2 and �
̃ j

1 �
l
M
= C̃lj

1 . When s12 is singular,
we note that the off-diagonal elements of the Hamiltonian
matrix are affected due to appearance of singular values s12

in Eq. �17�. Depending on rank deficiency, the Hamiltonian
matrix elements take the form

H̃12 =��
i��

�i
12�Tr�hQ̃�� + Tr�Q̃�G��Q̃12��� , if ��

12 = 0

�
m��,�

�m
12 Tr�Q̃�G�Q̃��� , if ��

12 = ��
12 = 0

0, three or more zero singular values,
� �21�
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where we have introduced the density matrices,

�Q̃��kl = C̃k�
2 C̃l�

1 , �22�

��Q̃12�kl = �
j��

C̃kj
2 C̃lj

1

� j
12 , �23�

�Q̃��kl = C̃k�
2 C̃l�

1 . �24�

The majority of computational expense is the SVD of over-
lap matrix s12 between the nonorthogonal orbitals. Thus, the
total computational expense is O�NDM

2 K3�, where NDM is the
number of density matrix trajectories. This further reduces to
O�NDM

2 K� when sparse matrix technology is utilized.88–95 As
stated earlier, the analysis in Sec. III indicates that NDM is
expected to be small as compared to the number of quantum
grid points and hence the computational complexity is corre-
spondingly reduced as noted in Sec. IV B.

In Sec. V we employ the scheme presented above, along
with the generalized grid-based electronic basis functions
discussed in Sec. IV C and gradients in Sec. IV D. In all
calculations presented in this publication, only ground state
density matrices are used. But the formalism does not
present these restrictions and future publications will probe
these issues further.

B. Discussion of algorithmic issues and computational
advantages of xLag-QWAIMD and DxLag-QWAIMD
over QWAIMD

In this section, we illustrate the computational advantage
of the above formalism over traditional QWAIMD. We con-
sider the case where the overlap matrix between orbitals, s12,
is full rank. �Rank deficiency does not affect the computa-
tional performance significantly.� We use the expression for
the off-diagonal elements in Eq. �19� and emphasize that the
coupling elements are explicit functions of the classical
nuclear coordinates, RC, quantum nuclear grid coordinates,

RQM, and the transition density matrix, P̃12. However, the key
ideas that yield substantial computational gain arise from an
analysis of the Hamiltonian matrix elements in Eqs. �10�,
�19�, and �21� and are described as follows:

�a� The diabatic nature of �Pi� allows these density matri-
ces to be independent of RQM. This essentially implies
that the two-electron contributions in Eqs. �10�, �19�,
and �21� �for example consider, �1 /2�Tr�G�P̃12�P̃12� in
Eq. �19�� are independent of RQM. This is true because
the two-electron integrals can be computed using orbit-

als used to construct �P̃1� �see Eqs. �19� and �21��
which are independent of RQM. The independence of

�P̃1� on RQM is further facilitated by the introduction of
grid-based electronic structure bases introduced in Ref.
46 and discussed in Sec. IV C. As a result, at each
instant during the dynamics, only the one-electron por-
tion is recomputed.

�b� The potential surface at each instant for the quantum
nuclear Hamiltonian is formed by keeping all classical
nuclei fixed and by discretizing the quantum particle on

a set of grid points. Thus, a major portion of the one-
electron electronic Hamiltonian h is constant at each
classical time-step as well. Due to these factors, we

merely need to correct the coupling element H̃12 across
the quantum nuclear grid by calculating the one-
electron part �h�RQM�, which depends explicitly on the
quantum nuclear grid points. This leads to a large re-
duction in computation time, as noted in Fig. 5, with
negligible loss in accuracy as will be seen from the
numerical results in Sec. V B.

The sequence of operations in this approach is as fol-
lows. At the first quantum mechanical grid point chosen
�generally the wavepacket centroid�, the full Fock matrix is
computed from the propagated density matrix to provide the

H̃12 and gradients �H̃12 /�x �see Sec. IV D� at that grid point.
For all subsequent grid points of the same dynamics step,
only the one-electron integrals which depend on RQM need to
be recomputed. The change in the one-electron integral be-
tween the new and the old grid point further depend only on
the position of RQM and this change is introduced into the old
Fock matrix to obtain the new Fock matrix. This reduces the
computational cost associated with obtaining the potential
and gradients enormously, since computing the two-electron
integrals formally scales as O�K4 /8� �where the factor 8
arises due to permutation symmetry� while the one-electron
integral computation only scales as O�K2�, where K is the
number of basis functions used. Note that a parallel imple-
mentation further reduces this overhead, since the effort is
linear with quantum grid points. In Fig. 5, the logarithm of
the total CPU time for energy and gradient evaluations on the
quantum nuclear grid are compared for full-QWBOMD,
TDDS-QWBOMD, DxLAG-QWAIMD, and xLAG-
QWAIMD. It can be clearly seen that DxLAG-QWAIMD and
xLAG-QWAIMD are computationally advantageous by sev-
eral orders of magnitude. In our current implementation, par-
allelization has been exploited for full-QWBOMD and
TDDS-QWBOMD. The DxLAG-QWAIMD and xLag-
QWAIMD codes are currently OPENMP parallel and efforts
towards an MPI implementation are ongoing. �Since Fig. 5
depicts the total CPU time, parallelization is not reflected
here.�
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FIG. 5. The logarithm of the total CPU time for energy and gradient calcu-
lations during each QWAIMD step. The number of electronic structure cal-
culations �energy and forces� for “full-QWBOMD,” xLag-QWAIMD, and
DxLag-QWAIMD is 51�51�101 �size of the quantum nuclear grid�. For
TDDS-QWBOMD, this number has been reduced to 539 through adaptive
choice of grid points according to Eq. �2�. �See Refs. 3 and 4.� Only a single
density matrix has been utilized for the xLag and DxLag-QWAIMD
calculations.
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1. Algorithmic issues for multiple density matrices
including choice of density matrices at initial
step

When multiple density matrices are employed, it is first
necessary to construct diabatic states and associated coupling
elements from individual density matrices. These may then
be used to construct the adiabatic states using nonorthogonal
CI. Due to the diabatic nature of the individual density ma-
trices, there is limited �one-electron� coupling between the
quantum nuclear degrees of freedom and density matrix
states. To compensate for this reduced correlation between
electrons and quantum nuclear degrees of freedom, multiple
diabatic states were proposed in Sec. IV A. Each density
matrix, as discussed in Sec. IV, includes local interactions
between quantum nuclear degree of freedom and electronic
structure and these are used to construct a potential surface
from nonorthogonal CI. However, the choice of these diaba-
tic states is a matter of initial conditions for dynamics. As
noted in Sec. IV, the diabatic single particle states

�Pi
RQM

i�

�RC�� are chosen such that each state represents a local
electronic structure on the quantum nuclear grid at the initial
step �discussed further below�. Hence, these density matri-

ces, �Pi
RQM

i�

�RC��, are similar to “valence-bond” states.73–77

The initial choice for �Pi
RQM

i�

�RC�� is as follows. First a
set of “important” regions in the potential �a function of the
quantum nuclear grid� is chosen as discussed in Ref. 46. In
Ref. 46, the TDDS functions based on Shannon entropy were
found to provide sufficient accuracy in probing important
regions of the potential surface. Here we employ the Shan-
non entropy based TDDS function,

�TDDS-Shannon�RQM� �
�S̃�RQM� + 1/IS�

�Ṽ�RQM� + 1/IV�
, �25�

to locate significant regions of the potential. The Shannon
information entropy, S�	�x���−	 log�	�, is a function of the
wavepacket density: 	�RQM�, which may be chosen based on
an estimate of the ground state of a reduced dimensional
potential or equivalently, 	�RQM���iexp�−�Ei�	i. The
quantity 	i refers to estimates of the individual eigenstates of

a reduced dimensional potential surface. The quantities S̃ and

Ṽ are L� normalized. These functions are shifted and scaled
such that the respective values are bounded by unity.3 The
algorithm involves a Haar wavelet fit of the sampling func-
tion in Eq. �25� to obtain points in configurational space as
discussed in Ref. 4. Once these significant points on the sur-
face are computed at the initial step, the quantized degrees of
freedom are placed on each of these points to compute a
family of single particle electronic density matrices. This set
of density matrices is then used for the propagation scheme
discussed above.

In Fig. 6, the set of points obtained from such an algo-
rithm are illustrated using vertical dashed lines. The associ-

ated diabatic states, H̃ii�RQM�, computed using the density
matrices, are shown in blue. These diabatic states combine

with the off-diagonal elements of H̃ �which are the black
curves on top panel� to produce the adiabatic states provided

using the red and black curves at the bottom panel of Fig. 6.

Specifically, the first set of off-diagonal elements of H̃ that
couple the diabatic states are seen in the top panel of the
figure. The vertical shaded �gray� rectangles depict the cou-
plings. That is, the leftmost shaded rectangle is positioned in
between the first and second diabatic states and hence points

towards the off-diagonal coupling, H̃12, between these diaba-
tic states. This coupling is represented using the top-left
black curve in the top panel. The second shaded rectangle
�from left� is positioned between the second and third diaba-
tic states. Hence it points toward the off-diagonal coupling in

the top panel, H̃23, which couples second and third diabatic
states, and so on. The resultant adiabatic state is obtained
from the nonorthogonal CI algorithm constructed at each
quantum grid point and is shown in red �scale: left vertical
axis�. This result is compared with a full scan surface.
Clearly, the agreement is very good and a quantitative error
analysis is presented in Sec. V B. The computational effort
of multiple density matrices is quadratic with NDM but the
calculation of each coupling element is independent and
hence can be performed in parallel to enhance computational
scaling. It must also be noted that in constructing the red
curve in the bottom panel, we have employed the ground
state arising from the nonorthogonal CI formalism. The use
of excited electronic states arising from this formalism will
be considered in future publications.

C. Generalized, grid-based electronic basis functions
that depend on the relative nuclear „RC… positions

As illustrated in Sec. IV B, a large number of computa-
tions can be eliminated by only calculating the one-electron
integral correction part to the Fock matrix arising from the
quantum nuclear grid dependence. This is done through
elimination of basis set dependence on RQM. Instead, a set of
electronic basis functions is introduced which depend on the
collective classical nuclear variables, RC, according to
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FIG. 6. An illustration for using multiple diabatic states to obtain the adia-
batic potential surface. See text for details. The diabatic surfaces are seen in
blue �energy axis on the right� and the resultant nonorthogonal CI surface is
shown in red �energy axis on the left�. The first set of off-diagonal elements
is shown in the top panel. The resultant nonorthogonal CI surface �red� is in
good agreement with a full potential scan �black� and a quantitative error
analysis is provided in Sec. V B.
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l,m,n
RF �r� = �x − Rx�l�y − Ry�m�z − Rz�nexp�− ��r − RF�2� ,

�26�

where RF���Rx ,Ry ,Rz��, the Gaussian center is now a func-
tion of all the classical nuclear variables according to RF
= f��RC��. This is a generalization of bond-centered basis
functions96–101 traditionally used in quantum chemistry. In
this publication, since the transferring quantum proton is of
primary concern, we define the Gaussian centers as function
of the hydrogen bond donor and acceptor coordinates,

RF
i � �

j

cjiRC
j + v� i = aiRA + diRD + v� i, �27�

where RA and RD are coordinate vectors for the donor and
acceptor atoms and v� i is a uniform shift that can be used to
create a three-dimensional grid of electronic basis functions.
The quantities l, m, and n, in Eq. �26�, are the usual orbital
angular momentum indices of the basis function. In practice,
the calculation can be made very accurate by placing suffi-
cient basis functions on the chemically relevant �bonding�
region. Furthermore, in a fashion similar to atom-centered
basis functions, the centers of these functions also transform
according to the classical nuclear positions.

In Ref. 46, these basis functions were benchmarked with
respect to regular atom-centered basis functions. To arrive at
a system independent choice for the grid-based basis param-
eters ai ,di ,v� i, the TDDS formalism was employed. Note that
the parameters I
, IV�, and IV in Eq. �2� are tuned to provide
an equal distribution of calculations in the classically al-
lowed �minimum energy regions� and classically forbidden
�classical turning point� regions.3,4 The associated interpreta-
tion of �TDDS�RQM� is that large values of this quantity indi-
cate regions where energy and gradient evaluations should be
conducted accurately using electronic structure methods.
When �TDDS�RQM� is small, the accuracy of energy and gra-
dients is not critical. Similarly, utilizing the information
given by TDDS in addition to other new sampling functions
that use Shannon �see Ref. 47 and Eq. �25��, a flexible and
accurate scheme for distributing the grid-based Gaussian ba-
sis functions was devised in Ref. 46. It was found46 that the
Shannon entropy based TDDS functions provide a very ac-
curate description of the potential surface while eliminating
the basis set dependence on the quantum nuclear degrees of
freedom. Furthermore, the electronic structure calculations
performed using these grid-based Gaussian basis functions
are computational efficient since far fewer basis functions are
found to be necessary as compared to atom-centered basis
functions. These results are directly utilized in the current
publication.

D. Gradients

In this section, we first derive general expressions for
gradients and then provide nuclear gradients in Sec. IV D 1.
The expressions for the density matrix gradients are pre-
sented in Appendices A and B. Both sets of expressions are
necessary for the multireference xLAG-QWAIMD formal-

ism. But, the density matrix gradients are not necessary for
the DxLAG-QWAIMD formalism since the density matrices
are converged.

The eigenvalue problem in Eq. �9� can be transformed,

using S̃=XTX, where X is either the Cholesky �upper trian-

gular�, Löwdin �S̃1/2�, or SVD transformation. The associ-
ated energy expression is

�ci��
TH̃�ci� = Ei, �28�

where H̃��X−TH̃X and c��Xc, with gradients

�Ei

�x
=

��ci��
T

�x
H̃�ci� + �ci��

T�H̃�

�x
ci� + �ci��

TH̃�
�ci�

�x
,

=Ei

���ci��
Tci��

�x
+ �ci��

T�H̃�

�x
ci� = �ci��

T�H̃�

�x
ci�, �29�

since �ci��
Tci�=1. Using H̃�=X−TH̃X−1, we obtain

�Ei

�x
= �ci��

T� �X−T

�x
H̃X−1 + X−T�H̃

�x
X−1 + X−TH̃

�X−1

�x
�ci�,

=�ci��
T� �X−T

�x
XTH̃� + X−T�H̃

�x
X−1 + H̃�X

�X−1

�x
�ci�,

=Ei�ci��
T� �X−T

�x
XT + X

�X−1

�x
�ci� + �ci��

TX−T�H̃

�x
X−1ci�,

=− Ei�ci��
T�X−T�XT

�x
+

�X

�x
X−1�ci�

+ �ci��
TX−T�H̃

�x
X−1ci�,

=− Ei�ci��
TX−T

�S̃
�x

X−1ci� + �c�i�TX−T�H̃

�x
X−1ci�,

=�ci�T� �H̃

�x
− Ei

�S̃
�x
�ci, �30�

where we have used the following identity:

X−T�XT

�x
+

�X

�x
X−1 = X−T

�S̃
�x

X−1, �31�

which can be obtained by differentiating both sides of S̃
=XTX.

1. Nuclear gradients

To compute the nuclear gradients of the Hamiltonian
matrix, we first note that the expressions for the diagonal
elements are identical to those used in single surface
ADMP.63 Furthermore, the off-diagonal matrix elements are
also identical in form to those in single surface ADMP for
the case of nonsingular overlap matrix, when the density
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matrix is replaced by the transition density matrix. �Compare
Eqs. �10� and �19�.� Thus we utilize the single surface ADMP
�Ref. 63� for the diagonal elements and off-diagonal ele-
ments when the overlap matrix is nonsingular. It must be
noted that the single surface ADMP gradients are more gen-
eral than those standardly used in Born–Oppenheimer dy-
namics and optimization calculations102 since these include

additional terms that dependent on the commutator of the
Fock and density matrices and reflect the limited conver-
gence of the density matrix within the extended Lagrangian
procedure.63,66

The nuclear gradients for the off-diagonal Hamiltonian
matrix elements for the case of singular overlap may be writ-
ten as

� �H̃12

�RC

�
�Pi�

=��
i��

�i
12�Tr�� �h

�RC
�

�Pi�
Q̃�� + Tr�Q̃�� �G��Q̃12�

�RC
�

�Pi�
��, if ��

12 = 0

�
m��,�

�m
12 Tr�Q̃�� �G�Q̃��

�RC
�

�Pi�
�, if ��

12 = 0 and ��
12 = 0

0, if # ���
12 = 0� � 3,

� �32�

It must be noted that the gradients of the one-electron and
two-electron terms, �h /�RC ��Pi�

and �G /�RC ��Pi�
, above are

presented in the orthonormal basis. When transformed to the
nonorthogonal representation, additional terms including de-
rivatives of the transformation matrices �Löwdin or
Cholesky� arise as discussed in Refs. 63 and 66. These addi-
tional terms are included in our calculations.

V. NUMERICAL TESTS

This section is organized as follows. The single diabatic
state DxLag-QWAIMD and xLag-QWAIMD dynamics cal-
culations performed using grid-based basis functions are dis-
cussed in Sec. V A. Particular attention is directed in Sec.
V A toward energy conservation properties of the simulation

algorithm. The effect of using multiple density matrices on
the accuracy of the shared proton potential surface is dis-
cussed in Sec. V B. In Sec. V C, we present an analysis of
the DxLag-QWAIMD dynamics when multiple diabatic
states are used. Specifically, vibrational properties are con-
trasted between the single and multiple density matrix cases.

A. Dynamics using xLag-QWAIMD and
DxLag-QWAIMD: Single diabatic surface

In this section we analyze the energy conservation and
dynamical properties of the xLag-QWAIMD and DxLag-
QWAIMD algorithms. �Note that while xLag-QWAIMD in-
volves the quantum dynamical evolution of the shared proton
along with the extended Lagrangian dynamics of the classi-

TABLE I. Analysis of energy conservation and computational effort for xLag-QWAIMD and DxLag-QWAIMD. Single diabatic state, NVE ensemble.

Methodsa Grid basis, quantum/classicalb
Temp.c

�K�
Simulation time

�ps� �E d
Quantum grid

dimension
Number of grid

pointse
CPU timef

�s�

DxLagg HF STO-3G /6-31+G�� 551.1 2.2 0.008 1D 101 9.48
xLagh HF STO-3G /6-31+G�� 530.2 1.6 0.064 1D 101 9.48
QWBOMD HF STO-3G /6-31+G�� 417.6 1.7 0.052 1D 101 871.93
DxLage HF STO-3G /6-31+G�� 1553.2 0.9 0.044 3D 262 701 84.56
xLagg HF STO-3G /6-31+G�� 1421.6 1.2 0.855 3D 262 701 84.56
DxLage HF STO-3G/aug-cc-pvtz 1544.9 1.1 0.074 3D 262 701 326.15
xLagg HF STO-3G/aug-cc-pvtz 1413.7 0.4 0.035 3D 262 701 321.40
DxLage B3LYPi STO-3G /6-31+G�� 1699.0 1.2 0.014 3D 262 701 253.48
xLagg B3LYP STO-3G /6-31+G�� 1552.2 0.6 0.456 3D 262 701 163.43
DxLage B3LYP STO-3G/aug-cc-pvtz 1688.3 0.6 0.057 3D 262 701 585.32
xLagg B3LYP STO-3G/aug-cc-pvtz 1539.9 0.3 0.066 3D 262 701 409.42

aIn this column, HF implies Hartree–Fock. When DFT is used the functional is B3LYP.
bRefers to the fact that the grid-based basis is STO-3G and the atom-centered basis on the classical atoms is either 6-31+G�� or aug-cc-pvtz.
cComputed using Ekinetic= �3 /2�nkT, where n denotes the number of atoms and k denotes the Boltzmann constant.
drms deviation of total energy �kcal/mol�.
eFor 1D: 101 grid points along the Cl–Cl axis. For 3D: 101 grid points along the Cl–Cl axis and 51 along orthogonal directions.
fTotal CPU time for energy and gradients evaluations.
gDxLag: time-step for classical nuclei 0.25 and 0.05 fs for quantum propagation in all DxLag calculations.
hxLag: time-step for classical nuclei 0.1 and 0.02 fs for quantum propagation in all DxLag calculations. Fictitious mass is �180 a.u. in all xLag calculations.
iUltrafine exchange-correlation quadrature grid �99,590� �Refs. 115–118�.
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cal nuclei and electronic structure, as given by Eqs. �7� and
�8�, the DxLag-QWAIMD algorithm, differs through the use
of converged density matrices as discussed in the paragraph
following Eq. �8�.� The system studied here is �ClHCl�−. This
has been the subject of many experimental and theoretical
studies42,103–109 and contains a shared proton undergoing ex-
cursions between donor-acceptor moieties. It has also been
seen in previous studies that the system presents a challenge
on account of significant electron-nuclear coupling.4,42 Fur-
thermore, the stable triatomic configuration represents a
high-interaction region between the constituent atoms pre-
senting a significant challenge to perturbative treatments us-
ing Jacobi coordinates.110–113 Our goal here is to gauge the
accuracy and efficiency of the xLag-QWAIMD and DxLag-
QWAIMD frameworks. All calculations in this publication
are performed using a development version of the Gaussian
series114 of electronic structure codes.

We utilize the grid-based electronic basis functions
specified in Sec. IV C. These grid-based basis functions have
been well benchmarked in Ref. 46. We further note that in
practical calculations, although numerical techniques such as
SVD can be employed to eliminate basis set linear depen-
dency, it is preferable to perform calculations using basis sets
where the linear dependency is small. This is especially im-
portant for xLag-QWAIMD, since elimination of linear de-
pendent basis functions results in a change in the size of the
propagated density matrix. To avoid linear dependency of
basis set in xLag-QWAIMD, we have found that grid-based
basis functions with, ai=di=0.5 and spacing �v� i��0.2 Å �see
Eq. �27�� lead to sufficiently high accuracy. In addition split
valence bases, 6-31+G�� and aug-cc-pvtz, were employed
on the two chlorine atoms all through dynamics. Details of
simulations are summarized in Table I.

Firstly, it is important to note that the total energy and

angular momentum are well conserved in all trajectories. For
the xLag-QWAIMD method, fictitious kinetic energy is
maintained to be two orders of magnitude smaller than the
nuclear kinetic energy in these NVE simulations. This pro-
vides the expected separation between the electronic and
nuclear degrees of freedom and hence conserves
diabaticity.64,66 However, the conservation properties for
DxLag-QWAIMD are an order of magnitude superior to that
in xLag-QWAIMD. This when coupled with the fact that the
time-steps used during the DxLag-QWAIMD simulations are
larger than those for the xLag-QWAIMD indicate that the
former is the preferred approach for larger sized systems.
Furthermore, there is an insignificant difference in computa-
tional effort between the xLag-QWAIMD and DxLag-
QWAIMD formalisms as noted from Table I and Fig. 5.

To benchmark the accuracy of xLag-QWAIMD and
DxLag-QWAIMD, we compare the results obtained from
these simulations with a one-dimensional QWBOMD simu-
lation, where the potential surface is obtained from con-
verged SCF calculations on all 1D grid points. Differences in
the potential energy between xLag-QWAIMD, DxLag-
QWAIMD, and QWBOMD are shown in Fig. 7�a� and the
corresponding motion of the wavepacket centroid is shown
in Fig. 7�b�. The Cl–Cl oscillation time-scales are shown in
Fig. 7�c�. As noted earlier, these calculations are performed
using a single diabatic surface. In Sec. V C, the results ob-
tained here are compared with those from DxLag-QWAIMD
trajectories using multiple diabatic states. While the potential
energies from xLag-QWAIMD and DxLag-QWAIMD are in
close agreement, they differ from that obtained in QW-
BOMD. The discrepancy is the result of the fact that only a
single diabatic density matrix has been used in these calcu-
lations and underlines the need for multiple density matrices
within xLag-QWAIMD and DxLag-QWAIMD formalisms.

TABLE II. Nonorthogonal CI error analysis using five density matrices.

System
Donor-acceptor distance

�Å� Grid basis, quantum/classicala

Error in PESb

Barrier height
�kcal/mol��V c �V d

�ClHCl�−1 3.05 STO-3G /6-31+G�� 0.05 0.75 e

3.13 STO-3G /6-31+G�� 0.04 0.28 0.34
3.23 STO-3G /6-31+G�� 0.05 0.48 1.64
3.33 STO-3G /6-31+G�� 0.17 1.94 3.79

�H3O2�−1 2.40 STO-3G /6-31+G�� 0.01 0.21 0.23
2.48 STO-3G /6-31+G�� 0.03 0.92 1.46
2.58 STO-3G /6-31+G�� 0.19 1.86 4.10
2.68 STO-3G /6-31+G�� 0.51 f 7.87

�H5O2�−1 2.39 STO-3G /6-31+G�� 0.01 0.23 g

2.49 STO-3G /6-31+G�� 0.01 0.71 0.66
2.59 STO-3G /6-31+G�� 0.07 2.73 2.69

aRefers to the fact that the grid-based basis is STO-3G and the atom-centered basis on the classical atoms is
either 6-31+G��.
bErrors �in kcal/mol� computed using Eq. �33� between full-QWBOMD and nonorthogonal CI utilizing five
multiple diabatic states.
cRange is chosen as �1=0.0, �2=Ebarrier, where Ebarrier is the barrier height given by the last column. See Eq.
�33�.
dRange is chosen as �1=Ebarrier, �2=15.0, where Ebarrier is the barrier height given by the last column. See Eq.
�33�.
eSingle well potential. Ranges for comparison are chosen as the same as Cl–Cl distance of 3.13 Å.
fRegion not sampled under the temperature conditions chosen for dynamics.
gSingle well potential. Ranges for comparison are chosen as the same as oxygen-oxygen distance of 2.49 Å.
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In the next section we benchmark the accuracy of nonor-
thogonal CI based method in reproducing the potential sur-
face correctly when multiple density matrices are employed,
before embarking into a benchmark on multiple density ma-
trix propagation in Sec. V C.

B. Analysis of energy surfaces obtained from the
nonorthogonal CI formalism

In this section we evaluate the accuracy of the potential
surface when multiple density matrices are utilized within
the xLag-QWAIMD and DxLag-QWAIMD formalisms. Our
test case involves three well studied ion
clusters:42,67,68,103,107,108,119–125 the bihalide cluster �ClHCl�−1,

the hydroxide water cluster �OH–H2O�−1, and the Zundel
cation �H2O–H–H2O�+. Potential surfaces utilizing multiple
density matrices through the nonorthogonal CI formalism are
obtained for each cluster at different hydrogen bond donor-
acceptor distances. While a detailed examination of the ac-
curacy of the associated potential surface has been con-
ducted, a few representative samples are provided here. The
surfaces obtained from the xLag-QWAIMD, nonorthogonal
CI formalism presented above are compared to those ob-
tained from a full scan of the potential surface obtained using
converged wavefunctions as performed in QWBOMD. To
quantify numerical error, we define

�V��1,�2� =��
i

�V1�RC,RQM
i � − V2�RC,RQM

i ��2��1,�2
�V�RQM

i ��

�
i

��1,�2
�V�RQM

i ��
, �33�

where the boxcar function is defined as linear combination of
Heaviside functions, ��1,�2

�V�=H�V−�1�−H�V−�2�. Equa-
tion �33� allows us to inspect the accuracy in the potential
surface in a tiered fashion by focusing on specific energy
domains.

The algorithm used to obtain the potential surfaces is
described in Sec. IV B 1. The valence-bond regions are cho-
sen as per Eq. �25� and diabatic surfaces and coupling ele-
ments are constructed. The associated CI matrix is then di-
agonalized at each grid point to obtain the adiabatic surface.
�See Fig. 6 and associated discussion in Sec. IV B 1 for an
illustration of the algorithm.� While in principle any of the
adiabatic surfaces �ground or excited� could be chosen, in
this publication we have only benchmarked the ground state
surfaces. Specifically, the energy surface is constructed using
five diabatic states through the nonorthogonal CI specifica-
tion in Sec. IV A and compared with surfaces obtained from
full-QWBOMD. A detailed error analysis is presented in
Table II and surfaces obtained from both methods are shown
in Figs. 8–10. The figures present the energy surface con-
structed using five diabatic states through the nonorthogonal
CI formalism. The resultant energy surfaces are numerically
accurate over a range of donor-acceptor distances as noted in
Table II.

C. Dynamical DxLag-QWAIMD studies using multiple
diabatic single particle density matrix states

In this section, we present preliminary results of DxLag-
QWAIMD by utilizing multiple diabatic states. The system
studied here is �ClHCl�−1. In Sec. V A, it was shown that
although reasonable energy conservation was obtained in
both xLag-QWAIMD and DxLag-QWAIMD simulations, the
dynamical results differed from those in QWBOMD. See, for
example, the evolution of potential and ClCl distance in Fig.
7. Since these diabatic states are defined as having minimal
coupling with the quantum nuclear degrees of freedom, the
resultant single diabatic surface is highly confining leading
to the results seen in Fig. 7. Here, we utilize multiple diaba-
tic states to compute a DxLag-QWAIMD trajectory. The
number of diabatic states chosen here is influenced by the
fact that five diabatic states provided reasonable accuracy in
computing the energy surfaces given in the previous section.
As a result, to study the behavior of the algorithm with num-
ber of diabatic states, in this section we include results ob-
tained from five, seven, and nine states. The initial positions
of these diabatic states are determined using the Shannon
entropy based TDDS as discussed in Sec. IV B. To make
direct comparison, the initial conditions in our multiple di-
abatic states DxLag-QWAIMD trajectory are adjusted to be
identical to those in a referenced QWBOMD trajectory. The
resultant trajectory again conserves energy well, with fluc-
tuations in total energy of the order of few-tenths kcal/mol
over about picosecond length simulation time. We further
note that both the classical and quantum time-step in these
multisurface DxLag-QWAIMD trajectories can be as large as
0.5 and 0.1 fs, respectively, without significant loss in total
energy conservation. This indicates that the multisurface
DxLag-QWAIMD trajectories are stable in terms of finite
step numerical integration.
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To probe the resultant vibrational properties, we calcu-
late the density of states for the classical motions �Cl–Cl
stretch� by evaluating the Fourier transform of velocity au-
tocorrelation function �FT-VAC�:45,67,71,72

IV��� = lim
T→�

�
t=0

t=T

dt exp�− ı�t��Ṽ�0� · Ṽ�t�
 . �34�

It has been shown in Ref. 4 that spectral results from three-
dimensional QWBOMD simulations, obtained using the ex-
pression above, reproduce the motion of the heavy atoms
well and in good agreement with the velocity modulation
spectroscopy results obtained by Kawaguchi and
co-workers.103 In the current study we compare the DxLag-
QWAIMD spectral results with those from one-dimensional
QWBOMD to ascertain the validity of the proposed method-
ology in reproducing results from the more expensive QW-
BOMD formalism, at cheaper computation cost. Future stud-
ies will be directed towards direct comparison with
experiment. The FT-VAC from fully converged QWBOMD
and DxLag-QWAIMD trajectories are presented in Fig.
11�a�. We note that the single diabatic state trajectory pro-
vides a poor approximation to Cl–Cl vibrations. The multiple
diabatic state approximation drastically improves on this re-
sult due to better performance in modeling the dynamical
potential surface that is experienced by the quantized nuclear
degrees of freedom as seen in the previous section. Further-
more, there appears a monotonic improvement of Dx-Lag-
QWAIMD results tending towards the more expensive QW-
BOMD results, as the number of diabatic states is increased.
�See Fig. 11�a�.�

To further quantify the errors in multisurface DxLag-
QWAIMD, an error estimate of the difference in wavepacket
density, defined as

�	�t� =� dx�	DxLag-QWAIMD�x;t� − 	QWBOMD�x;t�� , �35�

is provided in Fig. 12�a�. This allows direct inspection of
wavepacket density between the two trajectories over grid
and over time. Clearly the errors are small. In summary we
note that the multisurface DxLag-QWAIMD formalism pro-
vides results in reasonable agreement with QWBOMD with
much improved computational performance.

VI. CONCLUSION

In this study, we present a new scheme which general-
izes our quantum wavepacket ab initio molecular dynamics
using nonorthogonal multireference single particle electronic
density matrices within a diabatic extended Lagrangian for-
malism. Triggered by a principal component analysis of the
electronic structure on a quantum grid, we arrive at the fact
that localized diabatic states can be propagated using a modi-
fied extended Lagrangian scheme, in a coupled, concerted
fashion. The propagation scheme for the electronic structure
is obtained when the diabatic electronic states are mapped
onto a set of classical parametric variables and subsequently
propagated simultaneously with the quantum wavepacket
and classical nuclei. The potential energy surface for the
quantum propagation is constructed from these diabatic

states using an intrinsically multiconfigurational nonorthogo-
nal CI representation. Computational gains arise by adopting
generalized grid-based electronic basis functions to account
for the electronic structure in the bonding region, where the
basis function centers are collective variables that depend on
all classically treated nuclei. The judicious placement of ba-
sis functions arises from a novel sampling function that is
tempered through the use of Shannon entropy. Essentially,
the sampling function yields a compact and efficient distri-
bution of electronic basis functions, where both numerical
accuracy and stability are achieved compared to large atom-
centered basis set results. Such grid-based electronic basis
functions eliminate the basis set dependence on the quantum
nucleus thus reinforcing the diabatic nature of the density
matrices used in the proposed generalizations to QWAIMD.
In fact, the diabatic nature of these density matrices modu-
lates the coupling between the quantum nuclear degrees of
freedom and the density matrix states. In this case the cou-
pling is reduced to one that only includes single particle
interactions between the electronic and quantum nuclear de-
grees of freedom. Further correlation, of course, arises when
these single particle density matrix states are combined
through the nonorthogonal CI procedure. Thus, by reusing
two-electron integrals during the on-the-fly potential energy
surface computation stage, we note that the computational
costs can be substantially reduced. Specifically, the methods
derived here turns out to be about two orders of magnitude
faster than our previous developed time-dependent determin-
istic sampling implementation of QWAIMD.

The dynamical trajectory calculations are stable. Accu-
racy is probed through computation of potential surfaces for
several hydrogen bonded clusters. Furthermore, vibrational
properties are also computed and found to be reproduced by
the new formulations at a fraction of computational cost.
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APPENDIX A: DENSITY MATRIX GRADIENTS

The density matrix gradients are essential for the xLag-
QWAIMD formalism but are not required for the DxLag-
QWAIMD formalism. The associated forms for the diagonal
elements of the Hamiltonian are identical to those in single
surface ADMP and are written using the McWeeny
purification,49 Pi

Mc=3Pi
2−2Pi

3, as
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� �Hii

�Pi
�

�RC,Pj�i�
= 3FiPi + 3PiFi − 2FiPi

2 − 2PiFiPi

− 2Pi
2Fi. �A1�

The gradients for the off-diagonal elements of the Hamil-
tonian and overlap are complicated since these are not pure
functions of �Pi�. �See Eqs. �16�, �19�, and �21�.� These can,
however, be written in terms of MO coefficients as

�H̃12

�P1
�� = �

��

�H̃12

�C̃��
1

�C̃��
1

�P1
�� , �A2�

where C̃��
1 are the SVD basis vectors defined in Eq. �20� and

�H̃12 /�C̃��
1 can be obtained from Eq. �17�. To simplify the

discussion, we present the �1,2�th elements of the diabatic
Hamiltonian and all other cases are similar. Additionally, we
have dropped the symbol � ��RC,Pj�i�

� all through for nota-

tional convenience. Since the C̃1 are eigenstates of P1, i.e.,

P1C̃1= C̃1, we obtain

�
k
� �P1

jk

�P1
�� C̃kl

1 + P1
jk �C̃kl

1

�P1
��� =

�C̃jl
1

�P1
�� , �A3�

or

�C̃jl
1

�P1
�� − �

k

P1
jk �C̃kl

1

�P1
�� = � j�C̃�l

1 . �A4�

These equations define a set of linear equations for the

rank-4 tensor ��C̃jl
1 /�P1

��� and are solved by inverting the
rank-8 tensor with elements

�� j j� − P1
j j���ll���������, �A5�

to obtain

���������ll��� j j� − P1
j j��−1. �A6�

The inverse above acts on the rank-4 tensor, � j�C̃�l
1 , where all

indices are summed over, leading to an expression for

��C̃jl
1 /�P1

���. Note that the generalized inverse �density ma-
trix P1 is singular� in Eq. �A6� can be performed by utilizing
the eigenstates of P1. Some comments are in order with re-
spect to the structure of density matrix gradients. In Eq.
�A4�, the right hand side is comprised of the occupied orbit-
als whereas the left-hand side consists of virtual orbitals �in
the form I−P1�, hence, the density matrix gradients involve
occupied-virtual block mixing inside each �Pi ;I−Pi� space
�which may be different for different quantum grid points�.
Furthermore, different diabatic density matrices are coupled

with each other through the off-diagonal terms �H̃12 /�C̃��
1 as

specified in Eq. �A2�.
With regards to the overlap derivatives, from Eq. �16�,

we obtain

�S̃12

�C̃��
1

= C̃��
2 �

i��

�i
12. �A7�

To facilitate the discussion for gradients of off-diagonal ele-

ments with respect to MO coefficients �H̃12 /�C̃��
1 as speci-

fied in Eq. �A2�, we also write out derivatives of terms simi-

lar to the overlap S̃ in Eq. �A7� as

���i�j�i
12�

�C̃��
1

= C̃��
2 �

i�j,�

��j

�i
12, �A8�

���m�i,j�m
12�

�C̃��
1

= C̃��
2 �

m�i,j,�

��i,j

�m
12, �A9�

where both terms appear in the expression for off-diagonal
elements as in Eq. �17�.

Using expression in Eq. �A7�, the density matrix gradi-

ents of the overlap S̃ can be written as
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FIG. 8. Energy surface constructed using five diabatic
states through nonorthogonal CI as specified Sec. IV A
is compared with the surface from full-QWBOMD for
�ClHCl�−1 at Cl–Cl distance �a� 3.05, �b� 3.13, �c� 3.23,
and �d� 3.33 Å. The vertical dashed lines represent the
locations for diabatic state �Pi�RQM��, determined using
the Shannon entropy form of TDDS, Eq. �25�.
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FIG. 9. Energy surface constructed using five diabatic
states through nonorthogonal CI as specified Sec. IV A
is compared with the surface from full-QWBOMD for
�H3O2�−1 at oxygen-oxygen distance �a� 2.40, �b� 2.48,
�c� 2.58, and �d� 2.68 Å. The vertical dashed lines rep-
resent the locations for diabatic state �Pi�RQM��, deter-
mined using the Shannon entropy form of TDDS, Eq.
�25�.
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FIG. 10. Energy surface constructed using five diabatic states through non-
orthogonal CI as specified in Sec. IV A compared with that of full-
QWBOMD for �H5O2�−1 at oxygen-oxygen distance �a� 2.39, �b� 2.49, and
�c� 2.59 Å. The vertical dashed lines represent the locations for diabatic state
�Pi�RQM��, determined using the Shannon entropy form of TDDS, Eq. �25�.
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�S̃12

�P1
�� = �

��

� S̃12

�C̃��
1

�C̃��
1

�P1
�� = �

��

C̃��
2 �

i��

�i
12 �C̃��

1

�P1
�� . �A10�

We can conveniently write the above equation in matrix form
as

�S̃12

�P1
��

=�S̃12 Tr��C̄2�TD��� , if # ���
12 = 0� = 0

�
i��

�i
12 Tr�C̄�

2 �C̄�
2 �TD�

��� , if ��
12 = 0

0, if # ���
12 = 0� � 3,

�
�A11�

where

C̄��
2 =

C̃��
2

��
12 ,

�C̄�
2 �� = C̄��

2 ,

D��
�� =

�C̃��

�P1
�� ,

�D�
���� = D��

��. �A12�

For density matrix gradient of off-diagonal elements, we
only write the expression for the case where all the singular
values of the orbital overlap matrix s12 are nonzero, all the
other cases can be found in Appendix B. From Eq. �17�, we

can write down the expression for �H̃12 /�C̃��
1 as
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where the last two terms come from Eqs. �A8�. Note that the
summation over � is constrained in the last two terms.
Hence, we can write down the expression for density matrix
gradient for off-diagonal elements as
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When the orbital overlap matrix s12 is singular, we present
results in an appendix.

APPENDIX B: DENSITY MATRIX GRADIENTS FOR THE SINGULAR CASES

When orbital matrix s12 is singular, similar to Eq. �32�, we can write down density matrix gradients according to number
of singular values equal to zero. Note that in Eq. �A12�, by applying general Frank–Condon rule to the expression, and
subsequently combine with Eq. �A2�, we reach the expression for density matrix gradients for the singular s12 cases as
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FIG. 11. Comparison of FT-VAC, Eq. �34�, for the classical chloride atoms
in the multistate DxLag-QWAIMD trajectories, full-QWBOMD, and single
diabatic surface DxLag-QWAIMD. It is clear that the multistate DxLag-
QWAIMD vibrational structure approaches the full-QWBOMD result.
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FIG. 12. Evolution of wavepacket density difference �	 as defined in Eq.
�35� between multistate DxLag-QWAIMD and full-QWBOMD. The simu-
lation uses five density matrices.
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0, four or more zero singular values.
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