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1. INTRODUCTION

Recently,1�11 we introduced a methodology that accurately com-
putes quantum dynamical effects in a subsystemwhile simultaneously
treating themotion of the surrounding atoms and coupled changes in
electronic structure. The approach is quantum�classical12�23 and
involves the synergy between a time-dependent quantumwavepacket
description and ab initiomolecular dynamics. As a result, the approach
is called quantum-wavepacket ab initio molecular dynamics
(QWAIMD). Because quantum dynamics is performed on a grid,
the predominant bottleneck is the computation of the grid-based,
time-dependent electronic structure potential and gradients generated
by the motion of the classical nuclei.1�4 This limitation is partially
surmounted through the following methodological improvements.
(a) A time-dependent deterministic sampling (TDDS) techniquewas
introduced in refs 3, 4, and 9, which when combined with numerical
methods such as an efficient wavelet compression scheme and low-
pass-filtered Lagrange interpolation,4 provides computational gains of
many orders of magnitude (Figure 1). (b) Multiple diabatic reduced
single-particle electronic density matrices are propagated simulta-
neously with the quantum wavepacket in ref 6, and the associated
diabatic states are used to construct an adiabatic surface at every
instance in time using a nonorthogonal CI formalism. The diabatic
approximation allows reuse of the two-electron integrals during the
on-the-fly potential energy surface computation stage and leads to
substantial reduction in computational costs (Figure 1). QM/MM
and QM/QM generalizations to QWAIMD have also been
completed.5 We have utilized QWAIMD to compute vibrational
properties of hydrogen-bonded clusters inclusive of quantum nuclear
effects4 and have also adopted the method to study hydrogen
tunneling in enzyme-active sites.7,24 The quantum dynamics scheme
in QWAIMD has also been used to develop a technique known as
multistage ab initio wavepacket dynamics (MSAIWD) to treat open,
nonequilibrium electronic systems.10,11

Here, we generalize QWAIMD to compute quantum dyna-
mical effects in extended systems. This generalization is geared

toward the following set of problems: (a) Extended, solid-state,
hydrogen-bonded networks that involve short, strong hydrogen
bonds have recently been studied25�37 to provide protonic and
superprotonic conductors25,26,38 that may be stable alternatives to
fuel cells. These materials also allow para-electric to ferroelectric or
antiferroelectric transitions, and in many cases, the physical proper-
ties of these materials change dramatically upon H/D isotope
substitution. Inelastic neutron scattering studies26,27,34 and solid-
state NMR31,32 methods have been utilized to probe the structural
and vibrational properties in such extended hydrogen-bonding
networks. Protonic and superprotonic conduction25,26,38 is thought
to arise fromcoupled dynamics ofmultiple protons in such extended
system. In a similar vein, imidazole chains39,40 have been considered
as alternatives to proton wires present in nafion.39�42 Imidazole
chains are similar to water wires in terms of their propensity to
display conductivity properties comparable to theGrottussmechan-
ism for proton transfer.36,43,44 (b) Miniature lithium batteries have
recently been studied for improved energy storage.45�48 It has been
shown that lithium ions in such confined environments can display
quantum nuclear behavior,49 and the methodologies provided in
this publication will be used in the future to study the confined
quantum nuclear effect from a lattice of lithium ions bound by solid
polymer electrolytes.45,46 (c) Extended electronic systems such as
those found in self-assembled monolayers are also included.10,11

The electronic dynamics that includes the extended nature of the
system may be critical in computing the nonequilibrium electronic
flux and conductance through such systems. To treat such problems,
here, we generalize QWAIMD to compute quantum dynamical
effects arising in extended (periodic) systems.
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The paper is organized as follows. In section 2, an introduction to
themethodological aspects ofQWAIMD is provided, wherewe also
outline the quantum dynamical propagation. QWAIMD is a
quantum�classical separation method. Hence, numerical bench-
marks from previous publications that lay out the foundations of
applicability of QWAIMD are discussed in Appendix A. The system
chosen in Appendix A is a highly anharmonic hydrogen-bonded
cluster, and the results are compared with other methods as well as
with experiment. In section 3, we introduce generalizations to the
quantum propagation scheme utilized in QWAIMD, where the
propagation is adapted to the inherent symmetry of the potential.
For example, for the periodic protonic conductor systems,25�28,34 a
quantumpropagator that accounts for the inherent periodicity of the
problem (inclusive of k-point symmetry) is desirable, and section 3
aims to provide such an approach. Because the quantum propaga-
tion scheme utilized here is based on the “distributed approximating
functional” propagation formalism, the expressions derived in
section 3 are called the extended symmetrized distributed approx-
imating functional propagator (ESDAF-P). Section IIIA describes
the appropriate symmetry-adapted nuclear coordinates that follow
the dynamics presented in section IIIB. The numerical benchmarks
are organized as follows. In section IVA, the free-particle case is
considered. In section IVB, an illustration is provided where a free-
particle system is perturbed by a weak potential. This example is
pertinent to the uniform electron gas treatment and also the nearly
free particle system such as a lattice of confined lithium ions,45�48

where again analytical solutions are available from perturbation
theory. The analytical solutions are provided in Appendix B. This
helps benchmark the accuracy and computational effectiveness of
the ESDAF-P formalism. In section IVC, we provide a preliminary
demonstration of the use of ESDAF-P in the quantum dynamics of
protons in extended protonic conductor systems.

2. BRIEF DESCRIPTION OF QUANTUM WAVEPACKET
AB INITIO MOLECULAR DYNAMICS (QWAIMD)

We first outline QWAIMD, before discussing generalizations to
the quantum dynamics scheme that will facilitate the treatment of
extended systems. As noted in the Introduction, results that provide
a benchmark for the quantum�classical separation in QWAIMD
are outlined in Appendix A. Comparison with experiment and other
theoretical methods is also presented in Appendix A.

The main features of QWAIMD are as follows. The quantum
dynamical evolution is described through a third-order Trotter
factorization of the quantum propagator.1,50�52 For local potentials,
the potential energy operator is diagonal in the coordinate repre-
sentation. The free propagator, exp{�iKt/p}may be approximated

in a number of ways. One approach is to recognize that this operator
is diagonal in the momentum representation. Hence, fast Fourier
transforms may be employed51,53�57 to obtain the result of the free
propagator operating on awavepacket.Other alternatives include (a)
the use of direct58 or iterative Lanczos59 based diagonalization of the
full Hamiltonian and the subsequent representation of the evolution
operator exp{�iHt/p} using the eigenstates, (b) the use of
Chebychev polynomial approximations for the propagator58,60�65

that are based on the Jacobi�Anger formula,66 (c) the use of
eigenstates of components of the Hamiltonian opera-
tor,67 and (d) the use of Feynman path integration techniques.68�75

The list here is not exhaustive and a detailed discussion on the topic
may be found in refs 76 and 77. In all cases, theHamiltonian needs to
be approximated in some representation. Two representations that
are popular in quantum dynamics are the discrete variable repre-
sentations (DVR)78�80 and the distributed approximating func-
tionals (DAF).81�86 The implementation ofQWAIMDdiscussed in
refs 1�11 employs the free propagator approximated in the
coordinate representation using a formally exact distributed approx-
imation functional (DAF)1,2,81,87,88 expression
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Here, {σ(Δt)}2 = σ(0)2 þ iΔtp/MQM, {H2n(x)} are even order
Hermite polynomials (note that the arguments for the Hermite
polynomials and the Gaussian function, [(RQM � RQM0 )/(21/2σ-
(Δt))], are complex in general), and RQM represents the quantum
mechanical degrees of freedom. The free propagation of a wavepack-
et is then given in the discrete coordinate representation as

χðRi
QM,ΔtÞ ¼ Δx ∑

j
ÆRi

QMjexpf�iKΔt=pgjRj
QMæχðxj, 0Þ

¼ Δx ∑
j

~
KðRi

QM � Rj
QM,MDAF, σ,ΔtÞχðRj

QM, 0Þ

ð2Þ
The parameters MDAF and σ above together1,81 determine the
accuracy and efficiency of the DAF propagator. AsMDAF increases,
the accuracy as well as the computational expense increases. It is

Figure 1. (a) Computational expense for QWAIMD with and without time-dependent deterministic sampling (TDDS). Note that in all cases, the
vertical axis is the logarithm of CPU time. TDDS provides enormous reduction in computational time. Compare the two histgrams on the left in (a) to note
the ∼3.5 orders of magnitude reduction in computational effort afforded by TDDS. Similarly, the two histograms on the right in (a) indicate that TDDS
continues to reduce computational effort when combined with QM/MM calculation of the potential surface. (b) Further reduction in computation time is
facilitated through the introduction of a propagation scheme that involves multiple diabatic states.6 Note the two right histogram plots in (b).
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worth noting a few characteristics of eq 1. For any fixed level of
approximation, determined by the choice of parametersMDAF and
σ0(0), the kernel in eq 1 only depends on the quantity (RQM

i �
RQM
j ), which is the distance between points in the coordinate

representation and goes to 0 as this quantity becomes numerically
large on account of the Gaussian dependence. This yields a banded,
Toeplitz matrix approximation to eq 1 for any finite MDAF and
σ0(0). [The (i,j)th element of a Toeplitz matrix depends only on
|i � j|.] On account of these properties, eq 1 provides great
simplicity in computation of the quantum propagation. In fact, as
shown in ref 11, it is possible to computationally implement this
propagation scheme in a form that includes a series of scalar�vector
operations with the total number of operations given by

N þ ∑
W � 1

i¼ 1
2ðN � iÞ ¼ Nð2W � 1Þ �WðW � 1Þ � O ðNÞ

ð3Þ
where W is the width of the propagator in the coordinate
representation, that is, the maximum value of (RQM

i � RQM
j )/Δx

in eq 2 such that all values of the free propagator are less than a
numerical threshold for (RQM

i � RQM
j )/Δx >W. The quantityN is

the number of grid points used in the discretization scheme. Because
W does not depend on N [W in fact depends onMDAF and σ0(0),
that is, the required accuracy of propagation], this scaling goes as
O (N) for large grids. Thus, the approach allows for efficient
quantum dynamical treatment. In all calculations performed here,
MDAF = 20 (that is, all evenHermite polynomials up to order 20 are
used), and σ/Δ = 1.5744, where Δ is the grid spacing.

The utilization of the DAF is, however, not critical to QWAIMD,
and other propagation schemes such as those highlighted at the
beginning of this section can be readily employed. The choice here,
and in the previous QWAIMD studies, is governed by the
demonstrated accuracy of the DAF,89�95 where it has been
benchmarked89,90 and found to compare favorably with other
propagation methods (see Table 1 in refs 89 and 90 for bench-
marks and the Appendix in ref 11 for computational scaling).

For the remaining portion of this section, two different imple-
mentations of QWAIMD are described in sections IIA and IIB.
A. Time-Dependent Deterministic Sampling (TDDS)-Based

Implmentation of QWAIMD. In one form of QWAIMD,3,4 the
evolution of the classical nuclei involves the wavepacket averaged
Hellmann�Feynman forces obtained from electronic structure
calculations carried out on the discrete wavepacket grid.
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where the time dependence is explicitly noted and the symbol {|PC}
is said to imply that the gradients are to be computed either under
the usual variational conditions on the electronic density matrix or
by maintaining them as constant.96,97 To minimize the number of
electronic structure calculations carried out on the grid while

directing their placement for maximal efficiency, an adaptive TDDS
procedure has been introduced and benchmarked in refs 3, 4, and 9.
This technique allows large-scale reductions (by many orders of
magnitude) in computation time, with little loss in accuracy.3,4 The
mathematical formof the original TDDS function described in refs 3
and 4 is a function of the quantum nuclear degrees of freedon, RQM,
as follows. TheTDDS function is chosen to be directly proportional
to the wavepacket probability density, F(RQM), and gradient of the
potential, V0(RQM), while being inversely proportional to the
potential, V(RQM). That is

ω0ðRQMÞ � ½~FðRQMÞ þ 1=Iχ� � ½~V 0ðRQMÞ þ 1=IV 0 �
~VðRQMÞ þ 1=IV

ð7Þ

where ~F, ~V 0, and ~E are shifted and normalized3,4 according to

~VðRQMÞ � VðRQMÞ � Vmin

Vmax � Vmin
ð8Þ

and similarly for ~F(RQM) and ~V 0(RQM). The quantities Vmax and
Vmin are the maximum and minimum values for the potential,
respectively. The overall sampling function,ω0(RQM), isL

1-normal-
ized according to

)ω0ðRQMÞ )1 ¼
Z

jω0ðRQMÞj dRQM ¼ 1 ð9Þ

Large values of the TDDS function represent areas where sampling
should occur. The construction of TDDS has physical justifications
that ensure that both classical and quantum (tunneling) regions of
the dynamics are equally sampled.3,4,9 As shown in ref 3, the choice
of parameters, Iχ = 1, IV0 = 3, and IV = 1, retains significant
distribution in both the classically allowed (minimum energy
regions) and classically forbidden (classical turning point) regions
of the potential and leads to a large reduction in computational cost,
with little perceivable loss in accuracy. [As a result of the definition of
~F(RQM), ~V(RQM), and ~V 0(RQM) according to eq 8, these are
dimensionless, and hence, the parameters Iχ, IV0, and IV are also
dimensionless.] In addition to eq 7, other forms of the TDDS
functions that employ Shannon's entropy function98�101 have also
been derived and benchmarked in ref 9.
The TDDS function is evaluated at every instant in time to

determine the grid points where the potential and gradients will
be evaluated for the next time step. For this purpose, the TDDS
function is written as a linear combination of Haar wavelets4

where theHaar scaling function,H (x) is a square function equal to
1 for 0e xe 1 and 0 otherwise. The quantityNGEN is the number
of wavelet generations, and the underbrace below the summations is
meant to indicate that there are NDim summations, [j1, j2, ..., jNDim

],
and ci,{j} implies that the coefficients depend on i and the entire set
of j-indices. The Haar wavelets, {H (aix � jkNQ/a

i)} comprise a
hierarchy of translated and dilated forms ofH (x). Only the Haar
scaling function is used because the Haar wavelet function is the
orthogonal complement of the Haar scaling function and is not
positive semidefinite, which is one of the requirements on ω. The



D dx.doi.org/10.1021/jp112389m |J. Phys. Chem. A XXXX, XXX, 000–000

The Journal of Physical Chemistry A ARTICLE

quantity xk, in eq 10, is the kth component of theNDim dimensional
vector, and a is chosen to be 2 or 3, that is, we employ two- and
three-scale functions in our scheme.
Once the subset of grid points for on-the-fly potential energy

determination is computed using the TDDS function, the value of
the potential at the remaining points is obtained through Hermite
curve interpolation.102 The forces on classical atoms are subse-
quently determined through a low-pass-filtered Lagrange interpola-
tion technique introduced in ref 4. Time-dependent deterministic
sampling has played a pivotal role in converting QWAIMD into an
efficient computational tool through reduction of computational
costs by about three to four orders of magnitude.4 (See Figure 1.)
B. Further Computational Enhancements through Diabatic

Extensions to QWAIMD. To further enhance the computational
scaling of QWAIMD, in ref 6, we introduced a diabatic general-
ization to QWAIMD. Multiple single-particle electronic density
matrices were simultaneously propagated through an extended
Lagrangian scheme. Following this, the Slater determinant wave
functions corresponding to the density matrices were used in a
nonorthogonalCI formalism, on-the-fly, to obtain the instantaneous
adiabatic states. Computational efficiency arises through the diabatic
approximation for the multiple density matrices; this essentially
necessitates a limited dependence of the quantumnuclear degrees of
freedom on the individual electronic densitymatrix states. Once this
condition is enforced, it is found that two-electron integrals can be
reused over the entire grid, which reduces the computational
complexity in determining the potential surface enormously.
In ref 4, the quantum�classical separation scheme in QWAIMD

has been evaluated through computation of the vibrational spectrum
of a strongly anharmonic hydrogen-bonded system. The main
features of these results are summarized in Appendix A. In addition,
as noted in the Introduction, QWAIMD has been adopted to study
hydrogen tunneling in enzyme-active sites,7,24 and QM/MM gen-
eralizations to the TDDS implementation of QWAIMD have also
been completed.5 In ref 103, the quantum dynamics tools from
QWAIMD were used to compute the qualitative accuracy involved
in classical ab initio molecular dynamics calculations of vibrational
spectra in hydrogen-bonded systems.
While the classical equations of motion above can automati-

cally be applied for periodic electronic systems,104 in the next few
sections, we undertake generalizations to the quantum propaga-
tor in eq 1 to facilitate the treatment of extended systems.

3. EXTENDED SYMMETRIZED DISTRIBUTED APPROXIMAT-
ING FUNCTIONAL PROPAGATOR (ESDAF-P) FORMALISM

As noted above, the quantum dynamical propagation in
QWAIMD is carried out through a Trotter symmetric factorization

ψðxi; tÞ ¼ ∑
j
exp �iVðxi; tÞt

2p

� �
~
Kðxi, xj; tÞ

exp �iVðxj; tÞt
2p

( )
ψðxj; 0Þ ð11Þ

where ~K(xi,xj;t) is the DAF representation of the free propagator on
Cartesian grids shown in eq 1 and V(x;t) is the electronic structure
potential energy computed on-the-fly. For cases where the wavepack-
etψ(xj;0) is known to possess symmetry on account of the potential
V(x;t), as in the extended systems to be treated here, we may utilize
such symmetry to adapt the propagation scheme. Hence, as a first
step, nuclear coordinate transformations are introduced in section

IIIA. These transformations utilize the symmetry of the potential to
derive coordinate transformations that result in collective nuclear
modes that obey the crystal symmetry. Once these symmetry
transformations are outlined, in section IIIB, we obtain general
expressions for the free propagator acting on functions with periodic
boundary conditions.
A. Introducing Collective Nuclear Coordinates Using Projec-

tion Operators. In Figure 2, we present the aquonium perchlorate
system that has been the subject of recent neutron scattering studies
on account of its low-temperature protonic conductor properties.27

Systems displaying the ability to allow transport of protons, that is,
protonic and superprotonic conductors,25�28,34 while retaining
stability have application in the construction of solid-state fuel cells,
gas sensors, and electronic displays. Furthermore, many similar
periodic protonic conducting systems have also been found to
display para-electric to ferroelectric or antiferroelectric transitions
and nonlinear optical properties.
To study the quantum dynamics of the shared proton in such

systems, we first note that themass-weighted position of a proton
in the primary unit cell, designated as r0, is related to protons in
other unit cells of the supercell (ri) by the transformation

R ir0 � ri ð12Þ
If L is the length of the supercell, containingNG unit cells, then the
domain of definition of the position variables obeys r0∈ [0,L/NG ],
and ri ∈ [i / L/NG ,(i þ 1) / L/NG ]. The quantity R i is a
transformation operator, which could be a translation or a reflection
operation that connects the two coordinates. All such operations,
{R i}, form a group, G , which now contains NG elements. [Note
that the supercell defines the size of the problem in real space
about which the wave function is completely periodic, whereas NG
represents the number of unit cells inside of the supercell, about
which the wave function obeys Bloch symmetry.]
The Hamiltonian for this system is

�1
2 ∑

NG

i¼ 1
r2

i �
1
2 ∑

NH

I¼ 1
r2

I þHe ð13Þ

where the number of protons in the supercell is assumed to be the
same as the number of unit cells in the supercell and NH

represents the number of heavy nuclei in the system. The
operator He is the electronic Hamiltonian, which is a function
of the electronic coordinate, re, the associated momenta, and the
electron nuclear potential, V({~ri,~rI};{re}). The quantities {~ri,~rI}
represent the nuclear coordinates without mass-weighting. In the
discussion below, the heavy atom nuclei are assumed to obey
classical mechanics.

Figure 2. Rectangular unit cell of aquonium perchlorate, H5O2ClO4,
with four formula units. Unit cell dimensions are 5.79, 10.98, and 7.33 Å,
with all unit cell angles equal to 90�.
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We next introduce a symmetry-governed coordinate transfor-
mation for the light nuclei

sμ �
ffiffiffiffiffiffiffi
1
NG

r
∑

NG � 1

i¼ 0
ΓμðR iÞfR ir0g

¼
ffiffiffiffiffiffiffi
1
NG

r
∑

NG � 1

i¼ 0
ΓμðR iÞri ð14Þ

where {Γμ} are a set of irreducible representation transformation
matrices that represent the operations in the group, G . For the
case where all of the {R i} commute, the irreducible representa-
tions are one-dimensional, and Γμ � χμ, the characters of the
individual irreducible representations. In general, χμ = Tr[Γμ].
Furthermore, while ri ∈ [i / L/NG ,(i þ 1) / L/NG ], sμ ∈ [0,L].
In this transformed coordinate system, the Laplacian,ri

2�ri 3ri, in eq 13, with gradients given by

ri ¼ ∑
NG

ν¼ 1
ΓνðR iÞrsν ð15Þ

may be written as

r2
i ¼ ri 3ri ¼ jrij2

¼ ∑
NG

μ, ν¼ 1

1
NG

ΓμðR iÞ/ΓνðR iÞ
	 


rsμ 3rsν ð16Þ

For complex Γν(R i), a complex conjugate is introduced on the
left gradient operator of the Laplacian tomaintain the coefficients
of the sum on the right side of eq 16 as real. This is no different
from introducing a complex conjugation in the dual vector space
while computing expectation values in quantum mechanics. The
Hamiltonian in eq 13 then takes the form

H ¼ �1
2 ∑

NG

μ, ν¼ 1

1
NG

∑
NG

i¼ 1
ΓμðR iÞ/ΓνðR iÞ

" #
rsμ 3rsν

� 1
2 ∑

NH

i¼ 1
r2

i þHe ð17Þ

Using, now, the “Great orthogonality relation”105 reduces the
bracketed quantity, [ 3 3 3 ], in the above equation to δμ,ν. In other
words, this reduces the metric tensor for the transformation in
eq 14 to the diagonal form, and eq 17 reduces to

H ¼ �1
2 ∑

NG

μ¼ 1
r2

sμ
� 1
2 ∑

NH

i¼ 1
r2

i þHe ð18Þ

In other words, the symmetry-governed coordinate transformation in
eq 14 is a unitary transformation. The time-dependent Schr€odinger
equation corresponding to theHamiltonian in eq18 is then simplified
by assuming a quantum�classical separation of the light and heavy
nuclei and electrons. Here, the light nuclei as well as the electrons are
treated quantum mechanically, while the heavier nuclei are treated
classically. This yields1 a classical equation for the heavy nuclei, a time-
independent single-particle equation for the electrons, and a time-
dependent Schr€odinger equation for the collective variables, sμ

ip
∂

∂t
ψsμðsμ; tÞ ¼ Hsμψsμðsμ; tÞ ð19Þ

whereHsμ� ÆψHψe|H|ψHψeæ;ψH is a delta-function that represents
the position of the classically treated heavy nuclei and ψe is the

electronic wave function. The electronic degrees of freedom are
coupled to the motion of light and heavy nuclei through a potential
that depends on the light nuclear time-dependent wavepacket and
heavy atom coordinates.
We now provide relations that transform the single-particle

functions, fi(~ri), to functions associated with the collective
variable sμ. Toward this, we introduce a set of operations
{OR i} that are isomorphic105 to the set {R i} but differ on the
basis that each OR i acts on a function as opposed to a
real-space variable. Following this, we introduce projection
operators105

P μ �
ffiffiffiffiffiffiffi
1
NG

r
∑

R i∈G
ΓμðR iÞOR i

¼
ffiffiffiffiffiffiffi
1
NG

r
∑

NG � 1

i¼ 0
ΓμðR iÞOR i ð20Þ

that act on fi(~ri,t) to create fμ(sμ,t) according to

f μðsμ, tÞ ¼ P μf0ðr0, tÞ

¼
ffiffiffiffiffiffiffi
1
NG

r
∑

NG �1

i¼ 0
ΓμðR iÞOR i fiðro, tÞ

¼
ffiffiffiffiffiffiffi
1
NG

r
∑

NG �1

i¼ 0
ΓμðR iÞfiðR iro, tÞ

¼
ffiffiffiffiffiffiffi
1
NG

r
∑

NG �1

i¼ 0
ΓμðR iÞfiðri, tÞ ð21Þ

Equation 21 is to be interpreted as follows. The quantities fi(ri,t)
represent functions appropriate for each protonic coordi-
nate, that is, they are single-particle functions. Each proton
only has coordinates inside of a box of length L/NG .
The functions fμ(sμ,t) depend on the variable sμ, which extends
right through the supercell. The values of these functions outside
of a primary unit cell are determined based on symmetry, as given
in eq 21. It may be noted that the projection operators defined in
eq 20 were also used o define the coordinate transformation in
eq 14, that is, sμ � P μr0.
B. Quantum Dynamical Propagation of Functions of sμ.

We next derive a quantum evolution of the wave function given
in eq 19. The formulation includes the full symmetry of the
crystal.
From the continuous generalization of eq 2, the free propaga-

tion of a general function, f(x;t), defined from �¥ to þ¥, is
given by the action of the propagator ~K(xi,xj;t) as

f ðx, tÞ ¼
Z þ¥

�¥

~
Kðx, x0; tÞf ðx0; t ¼ 0Þ dx0 ð22Þ

Here, we utilize the generic variable x to depict the transformed
coordinate sμ introduced in the previous section. The numerical
portion of this paper is focused toward the choice ~K(xi,xj;t) �
~K(x�x0;t), from eq 1. However, the recipe provided in this
section for propagator symmeterization is general, and hence, we
first contrast three different choices for the propagator, ~K(xi,xj;t).
The first choice that we consider here is the one obtained from
fast Fourier transforms.51,53�57 In this case, the free propagator
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may be written as

x

�����
*

exp �iKΔt
p

� ������x0
+

�
Z

dk x

�����
*

exp �iKΔt
p

� �
jkæÆkj

�����x0
+

¼
Z

dk exp½ikðx� x0Þ� exp �ipk2Δt
2m

( )
¼ ð1� iÞ

ffiffiffiffiffiffiffiffi
mπ
pΔt

r
exp

imðx� x0Þ2
2Δtp

( )

ð23Þ
Clearly, this is a highly oscillatory function of (x� x0), and in fact,
as (x � x0) increases and/or Δt decreases, the oscillation
frequency also increases. Finite, fast Fourier transforms are often
used to partially alleviate this problem. The second approach that
we note here is the Bessel�Chebychev expansion derived from
the Jacobi�Anger formula66

expð�izxÞ ¼ ∑
¥

n¼ 0
ð2� δn, 0Þð�iÞnJnðzÞTnðxÞ ð24Þ

and hence

expð�iHnormt=pÞ ¼ ∑
¥

n¼ 0
ð2� δn, 0Þð�iÞnJnðtÞTnðHnormÞ

ð25Þ
where Hnorm is the normalized Hamiltonian, Hnorm = (H �
H
_
)/(ΔH), with H

_
= (1/2)(Hmax þ Hmin) and ΔH = (1/2)

(Hmax � Hmin). The quantities Hmax (Hmin) are the maximum
(minimum) eigenvalues of the truncated, finite matrix approxima-
tion to the Hamiltonian.106 The quantities {Tn(x)} are the Che-
bychev polynomials of the first kind, and Jn(z) are the cylindrical
Bessel functions. In the cases listed above, it is possible to write
~K(xi,xj;t) � ~K(x�x0;t), and thus, eq 22 may be rewritten as

f ðx, tÞ ¼
Z þ¥

�¥

~
Kðx� x0; tÞf ðx0; t ¼ 0Þ dx0 ð26Þ

Because eq 26 defines a general time-dependent convolution
relation, the analysis below applies to all such operations, including
Green's functions.
If the function f(x,t) is periodic, that is, f(x(mL;t) = f(x;t) for

all integer values ofm, then its quantum dynamical evolutionmay
be written as

f ðx; tÞ ¼
Z L

0
KPðx� x0; tÞf ðx0; t ¼ 0Þ dx0 ð27Þ

where

KP ðx� x0; tÞ ¼ ∑
þ¥

n¼ � ¥

~
Kðx� x0 þ nL; tÞ ð28Þ

is the free quantum propagator, adapted to the periodic symme-
try of the wavepacket f(x;t=0). The banded nature of the DAF
representation (see eq 1) reduces the infinite summation in eq 28
to a finite summation up to a (small) integer n0. Thus, in practice

KP ðx� x0; tÞ ¼ ∑
n0

n¼ � n0

~
Kðx� x0 þ nL; tÞ ð29Þ

For a discrete grid, the integral in eq 27 can be approximated
through the Trapezoidal rule or other approximations to numerical
quadrature. In this publication, we adopt the Trapezoidal approach.
Equation 27 describes the evolution of a state that obeys

periodic boundary conditions (PBC). The symmetry is enforced

by the potential. The variable, x, as stated earlier, refers to
transformed coordinate variables obtained in the previous sec-
tion. In such cases, additional symmetry may also be present.
That is, as in the previous section, consider a set of operations,
{R i}, that belong to the group G . Let the group G contain NG
operations. If the function f(x,t) in eq 27 conforms to the
symmetry of G , then there exists a symmetry operation R i ∈
G such that for every y0 ∈ [0,L/NG ], there existsR iy0 = x0, where
x0 ∈ [(iL)/(NG ),((i þ 1)L)/(NG )]. That is, if L/NG is the
length of a one-dimensional unit cell and L is the corresponding
supercell, y0 is a point belonging to the primary unit cell
(corresponding to the r0 variable used in the previous section),
and x0 belongs to the supercell (corresponding to the ri variable
used in the previous section). If we now assume that the initial
wavepacket, f(x0;t=0) in eq 27, belongs to the μth irreducible
representation of G , that is, f(x0;t=0) � fμ, then the propagated
wavepacket, projected onto the νth irreducible representation is

where the underbrace depicts the projected states. Furthermore, we
have used the fact that the projection operators are idempotent,105

that is P μP μ � P μ. Using the definition of the projection
operator given in eqs 20 and 21, the above equation reduces to

f νðx; tÞ

¼
Z L

0
½P νKP ðx� x0; tÞP μ�

ffiffiffiffiffiffiffi
1
NG

r
∑

R i∈G
ΓμðR iÞf ðR ix

0; t ¼ 0Þ
8<
:

9=
; dx0

¼
Z L

0

1
NG

∑
R i,R 0

i ∈G
ΓνðR iÞKP ðR ix�R

0
ix
0; tÞΓμðR 0

iÞ
2
4

3
5

�
ffiffiffiffiffiffiffi
1
NG

r
∑

R i∈G
ΓμðR iÞf ðR ix

0; t ¼ 0Þ
8<
:

9=
; dx0 ð31Þ

Now, because, by definition,R iy0 = x0, and the set of operations,R i

∈ G , form a group, there always exists an operation,R
0
i ∈ G , such

that R
0
ix
0 = y0. Thus, in the above expression, {x,x0 ∈ [0,L]}, and

{R ix,R ix0 ∈ [0,L/NG ]}. Using the change of variables,R
�1
i y0 =

x0, which implies {[R�1
i dy0] = dx0}, and y0 ∈ [0,L/NG ] while x

0 ∈
[0,L], we obtain

f νðy; tÞ ¼
Z L=NG

0
K ν, μ

P ðy� y0; tÞf μðy0; t ¼ 0Þ dy0 ð32Þ

where

K ν, μ
P ðy� y0; tÞ

¼ 1
NG

∑
R i,R

0
i ∈G

ΓνðR iÞK P ðR ix�R
0
ix
0; tÞΓμðR 0

iÞ

ð33Þ
and

f μðy0; t ¼ 0Þ ¼
ffiffiffiffiffiffiffi
1
NG

r
∑

R i∈G
ΓμðR iÞf ðR ix

0; t ¼ 0Þ ð34Þ

Note that in eq 32, the domain of the definition of the function in
real space has been reduced to the size of the unit cell as opposed to
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the supercell. [Compare with eq 27.] Thus, eq 33 yields the general
expression for the extended symmetrized distributed approximating
functional propagator (ESDAF-P) when the DAF free propagator
in eq 1 is used for ~K(x�x0;t).
1. Dimensionality of Γμ. We introduced general expressions

for the ESDAF-P propagator above. The numerical implementa-
tion of the expressions depends on the form of the Γμ transfor-
mation matrices. As we noted previously, when all of the {R i}
commute, Γμ � χμ, the characters of the individual irreducible
representations. The corresponding expression for the ESDAF-P
propagator is simply

K ν, μ
P ðy� y0; tÞ

¼ ∑
R i,R

0
i ∈G

ffiffiffiffiffiffiffi
1
NG

r
χν

�ðR iÞKP ðR ix�R
0
ix
0; tÞχμðR 0

iÞ
ffiffiffiffiffiffiffi
1
NG

r
ð35Þ

and χμ replaces Γμ in eq 34. However, when operations in G do
not commute with each other (non-Abelian groups), the Γμ

irreducible representations may be multidimensional. In such
cases, one case still uses eq 35 with χμ = Tr[Γμ]. However, if the
initial wavepacket belongs to the jth column of the μth irredu-
cible representation of G , the full transformation matrix, Γμ, can
be used as

f ðy0; t ¼ 0Þ � f μj ðy0; t ¼ 0Þ

¼
ffiffiffiffiffiffiffi
lμ
NG

s
∑

R i∈G
Γμ
j, jðR iÞf ðR ix

0; t ¼ 0Þ ð36Þ

where lμ is the dimensionality of the μth irreducible representa-
tion. The form of the ESDAF-P propagator in this case is

K ðν, jÞ;ðμ, jÞ
P ðy� y0; tÞ

¼
ffiffiffiffiffiffiffi
lνlμ

p
NG

∑
R i,R 0

i ∈G
Γν
j, jðR iÞKP ðR ix�R

0
ix
0; tÞΓμ

j, jðR
0
iÞ

ð37Þ
Although, in principle, any quadrature scheme (e.g., Monte Carlo
quadrature or any uneven grid) can be used to approximate the
integrals above; the results from a discrete representation of the
integrals using extended trapezoidal rule are used in this
publication.

4. RESULTS AND DISCUSSION

There are two sets of symmetry operations and, consequently,
two kinds of groups in crystals, (1) point group symmetry
operations (rotation and reflection) and (2) translational opera-
tions along the Bravais lattice. Furthermore, the crystallographic
point group must comply to the extension of the crystal lattice,
that is, the rotation and reflection operations in the point group
must keep the Bravais lattice invariant. This additional property
separates the space groups into two categories: (a) When the
point group operations and the translation group are separable,
the space group is a semidirect product of the two subgroups
comprised of these operations. In this case, the space group is
called symmorphic. (b) When the point group and translation
group are nonseparable, that is, when a glide reflection or a screw
rotation is involved, the space group is nonsymmorphic. The
formalism outlined in the previous section is general and includes
both kinds of groups; however, in the numerical portion of this

paper, we benchmark the development for symmorphic group
representation of ESDAF-P. The study of nonsymmorphic space
groups will be part of future studies.

In this section, we benchmark the accuracy and efficiency of
the ESDAF-P formalism for both proton and electron dynamics
in extended systems. In section IVA, a free-particle state obeying
periodic boundary conditions is considered. Here, the wave
function outside of the unit cell is obtained using Bloch sym-
metry

Ψðrþ TÞ ¼ expfik 3TguðrÞuðrþ TÞ ¼ uðrÞ ð38Þ
where k � [kx,ky,kz] is a momentum space (or reciprocal space)
vector and T is the unit cell translation vector. The ESDAF-P
formalism is tested for large values of the reciprocal space index,
k, in section IVA. In all cases, the formalism is shown to provide
good accuracy and efficiency. In section IVB, the periodic system
of section IVB is perturbed to represent the dynamics of a single-
particle electronic state in a crystal lattice. As such, the studies in
section IVBmay be considered akin to a time-dependent density-
functional-type treatment of a periodic electronic system beyond
linear response.10,11,107,108 Section IVC includes the study of
proton dynamics in a two-dimensional extended lattice. The
system chosen here is a concentrated low-temperature lattice of
hydrochloric acid in water, [H(H2O)4

þ/C�]n=¥, which is
derived from the proposed structural motif,109 H(H2O)6

þ/C�,
for concentrated hydrochloric acid solution. This structure is
thought to be consistent with the X-ray measurements and
neutron scattering data.109 The hydrogen bonding network in
the structure facilitates protonic conduction in the presence of an
external field.
A. Quantum Dynamical Propagation of a Single Free-Parti-

cle State Obeying Periodic Boundary Conditions (PBC). We
propagate various linear combinations of eigenstates of the mo-
mentumoperator, exp{ikx}, where k= (2mπ)/(Nl) andm= 0, 1, 2,
..., N� 1 to demonstrate the accuracy of the ESDAF-P formalism.
We have tested the performance in propagating initial states for
systems with large k values, as discussed in Table 1. Specifically, we

Table 1. Simulation Details for the Free-Particle Benchmarks

dimensionalitya k-valuesb number of irrepsc Ng
d

1De 4 4 102

8 8 102

16 16 102

32 32 102

64 64 102

128 128 102

2De 4� 4 10 104

8� 8 36 104

16� 16 136 104

32� 32 528 104

3De 4� 4� 4 4 106

8� 8 � 8 8 106

16� 16� 16 12 106

aThe kinetic energy operator as well as the free propagator in multiple
dimensions are constructed through direct product. b In higher dimen-
sions, the k space is symmetric, that is, kx

max = ky
max = kz

max in 3D.
cNumber of irreducible representations. dNumber of grid points inside
of a unit cell. Equal in each dimension. eUnit cell length in each
dimension: l = π/2 au. Grid discretization in each dimension: Δ =
0.0157 au.
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first utilize an extended symmetrized form of the kinetic energy
operator (see below) to obtain a set of eigenstates of chosen
symmetry.We then construct an initial wavepacket from a collection
of these eigenstates, to be propagated using ESDAF-P. The unit cell
dimensions, grid discretization parameters, and information regard-
ing irreducible representations are provided in Table 1.
To represent the kinetic energy operator, we consider the

following general form of the DAF for propagation and
differentiation1,2,81�84,88,110

~
KNderðxi � xj;ΔtÞ ¼ 1

σð0Þ ffiffiffiffiffiffi
2π

p �1ffiffiffi
2

p
σð0Þ

 !Nder

exp �ðxi � xjÞ2
2σðΔtÞ2

 !

� ∑
M=2

n¼ 0

σð0Þ
σðΔtÞ
� �2n þ 1 �1

4

� �n 1
n!
H2n þ Nder

xi � xjffiffiffi
2

p
σðΔtÞ

 !
ð39Þ

where {σ(Δt)}2 = σ(0)2þ (iΔtp/m),Δt is the propagation time
step, and H2nþNder

(x) are Hermite polynomials of order 2n þ
Nder. Equation 39 is a generalization of eq 1 and includes both the
free propagation and differentiation. For example, eq 39 repre-
sents a formally exact representation of the quantum dynamical
free propagator2,81,88 for Nder = 0, as noted earlier, and also
represents a second-derivative operator, and hence the kinetic
energy operator, when Nder = 2 and Δt = 0.1,2,82,91 As in the case
of eq 1, eq 39 also provides a banded, sparse, Toeplitz repre-
sentation. Equation 39 is utilized in place ofK in eqs 28, 33, 35,
and 37 to obtained extended-symmetrized versions of both the
quantum propagator and derivative operators. The particle mass
is chosen to be the hydrogen mass, m = 1836.2 au.
The characters for the irreducible representations of the

translation group are {exp{iqn2π/N}}, for n = 0, ..., N � 1 and
q = 0, ..., N � 1. Here, q labels the irreducible representation, n
labels the translation vector, and N is the number of unit cells
inside of the supercell. Using these characters in eqs 28, 33, 35,
and 37, we arrive at the discretized version of ESDAF-P for the
propagator and kinetic energy operator as

K
q

G � CN
ðxi, xj; tÞ ¼ Δx

"
∑

N � 1

n¼ 0
eiqn2π=NKP ðxi � xj � nL=N; tÞ

#

ð40Þ
This allows efficient construction of the Hamiltonian and also the
quantum propagator. The Hamiltonian and the propagator in
multiple dimensions are constructed through direct product. We
obtain eigenstates for the symmetrized Hamiltonian by employing
the Arnoldi iterative diagonalization scheme.111�113 The Arnoldi
scheme is a variant of the Lanczos procedure112 and involves the

repetitive application of the Hamiltonian matrix on an initial vector
to form aKrylov basis set.112 The representation of theHamiltonian
in this newbasis set leads to aHessenberg form (tridiagonal form for
symmetric matrices)112 for the Hamiltonian matrix, which is
relatively easy to diagonalize and is used to obtain a subset of
eigenstates. The action of the Hamiltonian matrix on any vector is
calculated by taking full advantage of the banded, sparse, Toeplitz
structure of eq 39, as described in the appendix of ref 11.
For each ESDAF-P calculation adapted with a particular

irreducible representation, we obtained the first 80, 50, and 30
lowest-energy eigenstates in one, two, and three dimensions
respectively. We evaluated the accuracy of the eigenstates by
calculating the quantity

E ¼ �log10
jEESDAF � Eexactj

jEexactj
� �

ð41Þ

where EESDAF are the eigenvalues obtained from Arnoldi diag-
onalization of the ESDAF Hamiltonian and Eexact are the
analytical solutions for the free-particle case. Utilizing the
eigenstates for a given irreducible representation, μ, we construct
a Boltzmann weighted initial wavepacket

jψðx; t ¼ 0Þæ ¼ ∑
N

i¼ 1
cμi ð0Þjφiæμ ¼ expf�βEμi gjφiæμ ð42Þ

where β is the inverse temperature. The error in numerical
propagation is then computed using the L 2 norm of the
difference between the analytically propagated wavepacket

expf�iK tgjψðx; t¼ 0Þæ ¼ ∑
i¼ 1

cμi ð0Þ expf�iEμi tgjφiæμ

ð43Þ
and the ESDAF-P propagated form

jψðx; tÞæDAFμ ¼ ∑
N

i¼ 1
cμi, DAFðtÞjφiæμ ð44Þ

according to

ζ ¼ �log10
1
T

Z T

0
dt

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼ 1
jcμi, DAF � cμi ð0Þe�iEμi tj2

s0
@

1
A
ð45Þ

where T is the total propagation time.
In Table 2, we present the accuracy of one-dimensional

ESDAF-P results. It is clear that about 48, 57, and 68% of the
obtained eigenvalues are within 10�10, 10�8, and 10�6 accuracy

Figure 3. Accuracy of ESDAF-P for 2D (a) and 3D (b) free-particle states. In both figures, the left vertical axis represents the percentage of eigenvalues
with accuracy ɛ > 10 (see eq 41). The right axis represents the propagation accuracy ζ defined in eq 45. (See text for details.)
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for a range of k-points. Furthermore, the propagation of the
wavepacket is also accurate through ζ≈ 10�9. In Figure 3a and b,
we present the two- and three-dimensional ESDAF-P results. In
higher dimensions, because only a small portion of the available
eigenstates is acquired through Arnoldi diagonalization, all of the
collected eigenvalues are accurate to 10�10. The propagation
error remains on the order of 10�9 all through. Again, the
accuracies of eigenvalues and propagation remain independent
of the choice of symmetry type. This is a clear indication of the
robustness of ESDAF-P. In Figure 4, we compare the ESDAF-P
results with those obtained in the absence of symmeterization.
Here, the propagation accuracy using the regular DAF (that, is
algorithms where eqs 1 and 39 are directly utilized without the
symmeterization procedure in eqs 28, 33, 35, and 37) is
compared with that obtained from ESDAF-P. It can be clearly
seen that the accuracy of the ESDAF-P is generally 4 orders of
magnitude superior.
In this section, we have utilized ESDAF-P to study the

quantum dynamics of free-particle states obeying Bloch symme-
try. It is shown that the ESDAF-P formalism is numerically
accurate, efficient, and robust. To further test this formalism, in
the next section, we study the quantum dynamics of a particle in a
weak potential.
B. Weak Periodic Potential. Drude114 used a classical free-

particle description to study electrical conductivity and the Hall
effect. In this model, the electron�electron interaction in the

conduction band and the electron�ion interaction are neglected,
and the valence electrons experience a constant periodic poten-
tial. In the previous section, we tested the ESDAF-P formalism to
investigate the quantum dynamics of a free-particle state obeying
PBC. In this section, this study is augmented by including a weak
perturbing periodic potential. The nearly free particle model
treated here has been successful in explaining electronic band
gaps in crystals.115 This is because the Coulomb interactions
between the conduction band and the ions are shielded by the
core electrons, giving rise to a smoother, weaker, periodic
interaction potential.
The analytical solution to the quantum dynamics in the

presence of a weak periodic potential is given in eq B10 in
Appendix B and provides a rigorous test for ESDAF-P. Because
the potential is periodic about the unit cell, that is, V(x þ l) =
V(x), where l is the length of the unit cell, the potential may be
expanded as a Fourier series V(x) = ∑n Cn exp{i2πn/l}. For our
tests, the potential is chosen to be a linear combination of the
kind

VðxÞ ¼ A½cosð4xÞ þ cosð8xÞ þ cosð12xÞ þ cosð16xÞ� ð46Þ
where A = 10�3. This function has the property of being bound
in the middle of a given unit cell, with repulsive barriers close to
the edges. The oscillations in the bound region may represent
interactions with ion cores. Because the potential is weak (by
choice of the parameter A = 10�3), eigenstates for the
Hamiltonian can be obtained using perturbation theory, as
discussed in Appendix B. These results are utilized to bench-
mark ESDAF-P.
We study the problem using k-point sampling withN = 1, 4, 8,

16, 32, 64, and 128. The length of unit cell is chosen to be l = π/2
au, with 100 grid points in the unit cell and grid spacing of Δ =
0.018 au. For each irreducible representation belonging to the
chosen k, we obtain the first 50 lowest-energy eigenstates. The
initial wavepacket is constructed as described in eq 42, and our
results for accuracy in computing eigenvalues and propagation
error are summarized in Table 3. It can be seen that both
eigenvalue and propagation accuracies are of the same order as
those for the free-particle case in the previous section.
To further probe the accuracy for different irreducible repre-

sentations, we have analyzed the errors for the case of N = 4 in
Table 4. To compare the ESDAF-P results with the perturbation
treatment for a particular representation, we notice that there is a
one-to-one correspondence between the free-particle wavevec-
tor k and the irreducible representation index q in eq 40. Utilizing
the results from Appendix B, the eigenstates corrected to first

Figure 4. Effect of symmeterization through the use of eqs 28, 33, 35,
and 37 on propagation accuracy. The quantity ζ is defined in eq 45.

Table 2. Accuracy of ESDAF-P for a 1D Free-Particle State

k-points Neig
a

ɛ > 10b ɛ > 8b ɛ > 6b propagation accuracyc

4 320 154 186 222 9.40

8 640 310 372 446 9.35

16 1280 620 746 890 9.34

32 2560 1240 1492 1780 9.34

64 5120 2480 2986 3560 9.34

128 10240 4962 5971 7120 9.34
aTotal number of eigenstates obtained. bNumber of eigenvalues with
accuracy ɛ (defined in eq 41) greater than 10, 8, and 6. c Propagation
error calculated according to eq 45 and averaged over all of the
calculations with different irreps. A temperature of 300 K is chosen to
populate the initial wavepacket. (See eq 42.) The total propagation time
is 100 fs with a time step of 0.01 fs. (The order of this time step is
consistent with previous quantum/classical QWAIMD studies,4,6 where
the quantum nuclear time step is generally one order of magnitude
smaller than the classical nuclear time step. The classical nuclear time
step in QWAIMD is in turn restricted by the fact that on-the-fly
electronic structure propagation is also performed within QWAIMD.)

Table 3. Accuracy of ESDAF-P for the Weak Perturbation
Case

k-points Neig
a

ɛ > 10 ɛ > 8 ɛ > 6b propagation accuracyc

1 50 33 46 49 9.91

4 200 140 185 199 9.93

8 400 294 371 399 9.89

16 800 600 745 799 9.89

32 1600 1212 1491 1599 9.89

64 3200 2436 2983 3199 9.89

128 6400 4880 5965 6399 9.89
aTotal number of eigenvalues obtained. bNumber of eigenvalues with
ɛ > 6 (eq 41). cDefined in eq 45. The error is averaged over all of the
irreducible representations.
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order can be written as

φk¼
1ffiffiffiffiffi
Nl

p eikxþ ∑
¥

n0 ¼ � ¥, n0 6¼0

1
l

	Z l

0
e�in0x2π=lVðxÞ dx



p2

2m
k2 � kþn02π

l

� �2
" # eiðk þ n02π=lÞx

¼ 1ffiffiffiffiffi
Nl

p eikx 1þ ∑
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n0 ¼ � ¥, n0 6¼0

1
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	Z l

0
e�in0x2π=lVðxÞ dx



p2

2m
k2 � kþ n0

2π
l

� �2
" # ein02π=lx

2
666664

3
777775

ð47Þ

where k = (2lπ/Nl), l = 0, (1, (2, ..., is the wavevector of the
single free-particle state obeying PBC andN is the value of the k-
point sampling. It is straightforward to show that the wave
function above has the Bloch symmetric form. Hence, in the
weak perturbation scenario, the wavevector k is still a good
quantumnumber. Thus, the index k can utilized to classify the states.
Specifically, k = (2(q þ 4l)π)/(4l) (q = 0, 1, 2, 3; l = 0, (1, (2)
corresponds to the qth irreducible representation for k value
given by N = 4. The results are summarized in Table 4. The
accuracy of calculations using different irreducible representa-
tions remain stable and accurate.
In sections IVA and IVB, we have benchmarked the ESDAF-P

formalism for propagation by comparison to exact analytical
results. In section IVB, the analytical result from Appendix B was
used to benchmark the ESDAF-P results. It is, however, im-
portant to note that while the analytical treatment in Appendix B
is only valid for weakly perturbative problems, on account of the
use second-order perturbation theory, the ESDAF-P formalism is
nonperturbative and is applicable to stronger perturbations as
well. The accuracy limits on ESDAF-P, as already indicated in
section IVA, may be governed by the choice of grid spacing
commensurate with the rate of change of potential. Particularly,
because the error in eq 11 is third order in intergration time step,
with a prefactor that depends on the commutator of the kinetic
and potential energy operators,1,50�52 the intergration error in
ESDAF-P is determined by the accuracy of the derivative of the
potential on the grid. This places numerical bounds on the choice
of the parameter A in eq 46 for a given spatial grid spacing. Of
course, as the spatial grid spacing is further reduced, these
restrictions disappear.

In the next section, further numerical benchmarks are
provided, where we compute the vibrational spectrum of a
protonic conductor using a novel velocity�flux correlation
function (see ref 4 and eq 48 in the current publication).
When such a flux formalism is used for the electronic
dynamics case treated in this section and also treated in refs
10 and 11, one may treat the Hall conductance problem of
conductivity orthogonal to the direction of electronic trans-
port. This will be probed in future publications. In addition,
the potential used in this section, namely, V(x) = A[cos(4x)þ
cos(8x) þ cos(12x) þ cos(16x)], where A = 10�3, has the
property of being bound in the middle of a given unit cell, with
repulsive barriers close to the edges. For such a potential,
when the size of the unit cell is doubled and the wave function
is periodic about this new unit cell, the barrier appears at the
center of the new unit cell. In such cases, electron tunneling
may occur. The quantum mechanical tunneling problem has
already been well studied using QWAIMD in ref 7 for nuclear
dynamics problems. The modification proposed here allows
the treatment of tunneling in extended electronic systems
(electron tunneling in nonequilibrium open systems has
already been studied in refs 10 and 11) and will be pursued
in future publications where the applications of the current
formalism are discussed.
C. Quantum Dynamics of Collective Protonic Modes in

Extended System. In this section, we provide preliminary
results on the dynamical treatment of an extended protonic
conducting system. As a benchmark of the ESDAF-P formalism,
only the quantum dynamically treated collective modes corre-
sponding to one excess proton per unit cell are studied here.
Future studies will include the simultaneous time development of
all other, classically treated nuclei in the periodic system, along
with time-dependent treatment of the electronic structure as is
customary in the quantum wavepacket ab initio molecular
dynamics (QWAIMD) formalism.1�11

In ref 109, Agmon analyzed X-ray and neutron scattering data
to propose a possible structural candidate to explain the 1:6 ratio
of hydrochloric acid to water in concentrated hydrochloric
solution. It was also hypothesized that this structure may poly-
merize to form a one-dimensional long-range ordered structure
as indicated in Figure 5a and b. Optimization calculations using
periodic boundary conditions and performed with the B3LYP
density functional and double-ζ 6-31g(d) basis, implemented
within the Gaussian suite of electronic structure codes, show that
the unit cell length along the Cl�Cl direction is 8.60 Å, and that
along the vertical oxygen�oxygen direction is 4.68 Å. While, in
principle, all protons in this system can be studied using the
formalism described here to simulate low-temperature dynamics,
the collection of all transformations that incorporate both
translational symmetry as well as internal symmetry in a unit
cell form a nonsymmorphic group. As a first level of benchmark
of the ESDAF-P formalism, we specialize here to symmorphic
groups and hence only treat one proton inside of a unit cell
quantum mechanically.
To study the collective modes of the shared proton in the

vertical Zundel motif (see Figure 5b), the quantum dynamics of
the shared proton is represented in a discrete Cartesian grid that
is comprised of 300 grid points along each dimension. Using the
time-dependent deterministic sampling (TDDS) algorithm dis-
cussed in refs 3, 4,and 9 with a summary provided in section IIA,
the grid size is compressed to 441 points, which is the size of the
set where electronic structure calculations were performed to

Table 4. Accuracy of ESDAF-P with k-Points N = 4 for the
Weakly Perturbed Free-Electron Gasa

NEig
b

ɛ > 10 c
ɛ > 8 ɛ > 6 ζ NEig ɛ > 10 ɛ > 8 ɛ > 6 ζ

q = 0 q = 1
50 33 46 49 9.91 50 38 47 50 10.25

q = 2 q = 3
50 31 45 50 9.33 50 38 47 50 10.25

aCharacters defined in eq 40. bNumber of eigenstates acquired.
cNumber of eigenvalues with accuracy ɛ > 10, 8, and 6 as defined
in eq 41.
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obtain a potential surface. The potential values at the remaining
grid points are obtained through Hermite curve
interpolation.102 Each potential energy value is obtained at
the density functional theory (DFT), PBE/3-21g level of
theory. The periodic electronic structure calculations per-
formed to obtain this surface include k-point-sampling used
with 12 electronic structure k-points along the Cl�Cl dimen-
sion and 18 along the vertical oxygen�oxygen direction. Thus,
the total number of k-points used in each of the electronic
structure calculations described below to obtain yjr surface is 216.
Density fitting116,117 was employed to accelerate the coulomb
portion of the electronic calculations. The potential energy
surface for the shared proton in the periodic H(H2O)4

þ/Cl�

system is shown in Figure 6. We obtained 10 eigenstates using
the Arnoldi iterative diagonalization scheme111�113 described
earlier and constructed an initial wavepacket from a linear
combination of the first 5 eigenstates, each carrying an equal
weight. The wavepacket was then propagated using the ESDAF-
P propagator.

The vibrational properties corresponding to the propagated
state were computed as in ref 4 (also see Appendix A) through
introduction of the wavepacket flux autocorrelation function

CJðωÞ ¼
Z þ¥

�¥
dt exp½�iωt�fÆJðtÞJð0ÞæQ g ð48Þ

where the average flux, J(t), of the quantum wavepacket is

JðtÞ ¼ ÆJ æ ¼ R ψðtÞ
�����

*
�ip
m

r
�����ψðtÞ

+2
4

3
5 ð49Þ

R [A] represents the real part of the complex number A.
Equation 48 represents a reduced form of the velocity�flux
autocorrelation function technique introduced in ref 4 to obtain
quantum dynamical effects on vibrational spectral properties of
potentially large systems.5 The velocity�flux correlation func-
tion has been used in ref 4 to accurately compute vibrational
properties in hydrogen-bonded systems. A rationalization for this

Figure 5. Periodic lattice structure for concentrated hydrochloric acid. (a) The structure proposed in ref 109 based on X-ray and neutron diffraction
data. Note that the distance between the two oxygens in the Zundel cation H5O2

þ is 2.4 Å. (b) Optimized geometry of H(H2O)4
þ/Cl� using DFT

calculation with 2D PBC. The level of theory used in PBE with the 6-31g basis set. The lattice vector along the Cl�Cl direction is 8.06 Å, and that along
the O�O direction is 4.68 Å. Green spheres depict the chlorine atoms, red spheres represent the oxygen atoms, and silver spheres denote
hydrogen atoms.

Figure 6. A two-dimensional potential surface for a shared proton in a
periodic replicated lattice of H(H2O)4

þCl� (see Figure 5b.) The surface
is obtained using the PBE/3-21G level of theory with density fitting. The
Y-direction represents the O�O distance.

Figure 7. Fourier transform of the flux autocorrelation function gener-
ated using eq 48.
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expression can be found from the following set of arguments. In
ref 4, it has been shown that for a time-independent Hamiltonian,
H, the Fourier transform of the flux autocorrelation function is
related to the vibrational properties through

Z þ¥

�¥
dt exp½�iωt��ÆJðtÞJð0ÞæQ g ¼

����
Z þ¥

�¥
dt exp½�iωt�JðtÞ

����
2

¼
�����
Z þ¥

�¥
dt exp½�iωt�R ∑

i, j
exp

iðEi � EjÞt
p

( )
Æφijp̂jφjæ

m

" #�����
2

¼
�����∑i, j δ ω� ½Ei � Ej�

p

 !
Æφijp̂jφjæ

m
þ δ ω� ½Ej � Ei�

p

 !
Æφijp̂jφjæ�

m

�����
2

ð50Þ

where Ei and φi are eigenvalues and eigenstates and p̂ is the
momentum operator. Equation 50 indicates spectral peaks at
eigenvalue differences, with intensities given by Æφi|p̂|φjæ. On the
other hand, the dipole intensities Æχîxχjæ can be obtained in the
harmonic limit using

χi

�����
*

ðâþ â†Þffiffiffiffiffiffi
2m

p
ω

�����χj
+

¼ 1ffiffiffiffiffiffi
2m

p
ω
ðδi, j¼ i�1 þ δi, j¼ iþ1Þ ð51Þ

where χi are the eigenstates of the harmonic oscillator and â† and
â are the creation and annihilation operators

â ¼ 1ffiffiffi
2

p ffiffiffiffi
m

p
ωx̂ þ i

1ffiffiffiffi
m

p p̂

� �

â† ¼ 1ffiffiffi
2

p ffiffiffiffi
m

p
ωx̂� i

1ffiffiffiffi
m

p p̂

� �
ð52Þ

Along similar lines, in the harmonic limit

Æχijp̂jχjæ ¼ χi

�����
* ffiffiffiffi

m
p ðâ� â†Þ

2i

�����χj
+

¼
ffiffiffiffi
m

p
2i

ðδi, j¼ i�1 � δi, j¼ iþ1Þ ð53Þ

which provides similar selection rules as those corresponding to
the transition dipole bracket in eq 51. It must be noted that the
flux autocorrelation function in eq 48 has also been employed in
refs 10 and 11 to compute the electrical conductivity through a
molecular wire system that is connected to external probes.
Utilizing the general expression for the DAF in eq 39, with

Nder = 1 and Δt = 0, that is, K~Nder=1(xi�xj;Δt=0) from eq 39, we

Figure 8. Ground through third excited state for the shared proton in the periodic H(H2O)4
þ/Cl� system.

Table 5. Transition Frequencies and Dipole Intensities, Æχi|x̂|χjæ, for H(H2O)4
þ/Cl� Using ESDAF-Pa

FT-FAC (cm�1) eigenvalues difference transitionsb transition dipole moment

193.5 189.7 2 f 3 0c

1302.4 1296.0 3 f 4 0

1483.4 ν1f2 = 1485.8, ν2f4 = 1485.8d 1 f 2 and 2 f 4 d1f2 = 0.12, d2f4 = 0.24

1664.3 ν1f3 = 1675.5, ν2f5 = 1655.8 2 f 5 and 1 f 3 d1f3 = 0.012, d2f5 = 0.012

2973 2971.6 1 f 4 0
aBased on the Nyquist�Shannon sampling theorem, the resolution in our analysis is 33 cm�1. bThe ground state starts with label 1. cThe dipole
transition moment less than 1.0 � 10�4 is shown to be zero. d Eigenvalue calculations show that these two transitions are degenerate.
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obtain the extended symmetrized flux operator as

JðtÞ ¼ ÆJ æ ¼ R ψðtÞ
�����

*
�ip
m

r
�����ψðtÞ

+2
4

3
5

¼ R
�ip
m

Z L=NG

0
dx ~ψðμÞ�ðx; tÞ

Z L=NG

0
dx0

"

� ∑
R i0 ,R i ∈ G

ffiffiffiffiffiffiffi
1
NG

r
χμ

�ðR i0 Þ ~
KNder¼ 1
P ðx� x0;Δt ¼ 0ÞχμðR iÞ

ffiffiffiffiffiffiffi
1
NG

r8<
:

9=
;

�~ψðμÞðx0; tÞ
#

ð54Þ

We obtained the vibrational properties by computing the Fourier
transformof theflux autocorrelation function according to eq 48.The
result is presented in Figure 7, and the peaks in the spectra are
summarized in Table 5. To resolve the peaks in the spectrum, we
compare the peak positions with the energy difference between
eigenvalues. As seen in Table 5, the flux autocorrelation function
provides results in agreement with eigenvalue calculations. The peaks
with high intensities are those that are dipole-allowed. For example,
the small bump at around 193 cm�1 is identified to be the transition
from the first excited state to the second excited state. The peak at
around 1302 cm�1 corresponds to the transition from the second
excited state to the third excited state. The first four eigenstates are
shown in Figure 8. The density distribution indicates that the
delocalization of the proton is similar to that in a two-dimensional
harmonic oscillator. In fact, upon fitting the ground-state wave
function to a two-dimensional Gaussian, the energy quanta along
the two dimensions are found to be 1488 and 1685 cm�1, which are
in close agreement with the 1f 2 and 1f 3 transitions in Table 5.

5. CONCLUSIONS

In this study, we have introduced a formalism to treat quantum
dynamical effects in extended systems. Specifically, the extended
symmetrized distributed approximating functional propagator
(ESDAF-P) has been derived for quantum dynamics in extended,
condensed-phase systems. In the ESDAF-P approach, the free
propagation of a wavepacket is adapted according to the inherent
symmetry of the system. The approach is tested for numerical
accuracy and efficiency for three cases. We investigated (a) the
quantum dynamics of periodic free-particle states, (b) a weakly
perturbed, nearly free electron gas problem, and (c) a periodic lattice
created from a protonic conductor. In all cases, the formalism is
found to be accurate and efficient. Furthermore, for the case of the
protonic conductor, we have also demonstrated applicability of
ESDAF-P in computing vibrational properties including qunatum
nuclear effects arising from the lightmass of the hydrogen nucleus as
well as from the periodic nature of the problem. This is done by
adapting ESDAF-P to the velocity�flux correlation function ap-
proach described in ref 4. Future studies will include the simulta-
neous dynamics of extended quantum dynamical states in
conjunction with classical treatment of the remaining nuclei and
evolution of electronic structure as is customary in the quantum
wavepacket ab initio molecular dynamics (QWAIMD) formalism.

’APPENDIX A

Benchmarking the Quantum Classical Separation of Elec-
trons and Nuclei in QWAIMD. In ref 4, the QWAIMD formalism
has been benchmarked for accuracy in computing vibrational

properties in hydrogen-bonded clusters. Specifically, the ClHCl�

system was treated because it provides significant challenges for
accuratemodeling of electron�nuclear coupling.4,119�120 In ref 4, the
TDDS implementation of QWAIMD was found to accurately
reproduce the experimental spectrum at limited computational cost.
The data from ref 4 is excerpted here in Table 6 for convenience. The
analysis of trajectories within QWAIMD is facilitated through the
introduction of a novel velocity�flux correlation function4

CðωÞ ¼
Z þ¥

�¥
dt e½�iωt�fÆvðtÞvð0ÞæC þ ÆJðtÞJð0ÞæQ g ðA1Þ

where the wavepacket flux is J(t) =R [Æψ(t)|(�ip)/(m)r|ψ(t)æ].
Here, R [ 3 3 3 ] represents the real part of the complex number in
square parentheses. The symbols Æ 3 3 3 æC and Æ 3 3 3 æQ represent
classical and quantum ensemble averages. We have shown4 that the
expression above describes spectral transition frequencies well for
both time-independent and time-dependent Hamiltonians, and this
expression is further analyzed in section IVC. Also note that the flux
portion of this expression is used in section IVC.
The first block of data in Table 6 depicts harmonic frequencies

obtained from electronic structure calculations as well as excitation
energies obtained using potential surfaces for the shared proton for
frozen Cl�Cl distances. The second block of data is obtained from
(a) QWAIMD, (b) NEO-MP2,119 and (c) CC-VSCF-MP2.119�122

In the last block, experimental data are provided from velocity
modulation spectroscopy124,125 work in ref 123.
As indicated by the first block of data, the harmonic approx-

imation is inadequate at all levels of electronic structure theory.
In fact, borrowing the diatomic molecular spectroscopy notation,
the anharmonic constant wexe, for ν3 is a large negative number
(see the last column of Table 6) as the spacing between the
vibrational levels increases as opposed to that in the harmonic
approximation. In Table 6, we also provide corrections to the
harmonic approximation by computing three-dimensional pro-
ton eigenstate transition energies at the equilibrium Cl�Cl
geometries for the respective levels of theory. (See footnote d
in Table 6.) Even these calculations only provide an upper bound
to the experimental results, though they significantly improve
over the harmonic results. Clearly, in addition to anharmonicity,
coupling between the proton and chloride motions is critical and
is missing in the first block of data provided in Table 6.
The agreement with experiment is drastically improved when

QWAIMD is used. The QWAIMD frequencies and band assign-
ments are computed using the velocity�flux correlation function
in eq A1 for two different temperatures for each level of theory.
These are confirmed by calculating the average 1r 0 transition
energies over the course of a trajectory. As can be seen, the
agreement between the QWAIMD results and experiment im-
proves with increasing temperature. Due to a dependence of ν3
on the simulation temperature, it is important to note that the
experiments in ref 123 were performed using velocity modula-
tion spectroscopy where the effective vibrational temperature
could be as high as 1000 K.124,125 Hence, it is not surprising that
the higher-temperature QWAIMD results get closer to the
experimental result. The high-temperature QWAIMD results
for the shared proton stretch (ν3) in this particular system are in
better agreement with experiment as compared to the imple-
mentation of correlation-corrected VSCF discussed in ref 119.
The reason why QWAIMD exhibits a temperature dependence
in its vibrational properties is because as the temperature
increases, the Cl�Cl geometry samples larger distances. Because
the electronic potential surface adapts to this change within
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QWAIMD, this effectively flattens out the potential energy
surface on the shared proton along the Cl�Cl distance at larger
temperatures. Compare the higher temperature potential de-
picted using the red curve in Figure 9 with the corresponding
lower-temperature black curve. This reduced confinement on the
shared proton lowers the transition energies as the wavepackets
exhibit a broader distribution at higher temperatures. Compare
the gray andmagenta wavepacket curves in Figure 9. These lower
transition energies for the higher temperature QWAIMD calcu-
lation are seen as a red shift in the ν3 transition computed from
the velocity�flux correlation function (eq A1).

’APPENDIX B

Perturbation Theoretical Treatment of the Weak Poten-
tial Problem. The real potential can be written as a sum of a
constant term

V � 1
Na

Z Na

0
VðxÞ dx ðB1Þ

and a correction termΔV that is treated as a perturbation. In the
equation above, a is the length of the unit cell, and N is the
number of k-points. The solutions to the unperturbed TISE
are plane waves eikx. Utilizing periodic boundary conditions, we
have φ(x) = φ(x þ Na), Thus, the allowed solutions for the
unperturbed problem are

φkðxÞ ¼ 1ffiffiffiffiffiffi
Na

p eikx k ¼ 2nπ
Na

n ¼ 0,(1,(2, ... ðB2Þ
From second-order perturbation theory

Eð1Þk ¼ ÆkjΔV jkæ ðB3Þ

Eð2Þk ¼ ∑
k0 6¼k

jÆk0jΔV jkæj2
Eð0Þk � Eð0Þk0

ðB4Þ

φ
ð1Þ
k ¼ ∑

k0 6¼k

Æk0jΔV jkæ
Eð0Þk � Eð0Þk0

φk0 ðxÞ ðB5Þ

The kets |kæ0 and |kæ are orthogonal. Hence, Æk0|ΔV|kæ = Æk0|V|kæ
and

Æk0jV jkæ ¼ 1
Na

Z Na

0
e�iðk0 � kÞxVðxÞ dx ðB6Þ

Using V(x þ a) = V(x) and the change of variable x = ξ þ na

Æk0jV jkæ ¼ 1
Na

(
∑

N � 1

n¼ 0
e�iðk0 � kÞna

)Z a

0
e�iðk0�kÞξVðξÞ dξ

ðB7Þ

Table 6. Comparison of QWAIMD with Several Existing Methods for a Highly Anharmonic Cl�H�Cl� Systema

level of theory ν1 (cm
�1) ν2 (cm

�1) ν3 (cm
�1) Cl�Cl dist. (Å)b we (cm

�1)c wexe (cm
�1)c

B3LYP/6-31þG(d,p) 328 834d 849e 560d 949e 3.15 827.54 �173.484

B3LYP/aug-cc-PVTZ 324 818d 829e 582d 952e 3.15 833.463 �169.508

MP2/6-31þG(d,p) 353 893d 907e 98d 865e 3.10 698.037 �217.648

MP2/aug-cc-PVTZ 345 847d 863e 637d 974e 3.11 858.043 �181.427

CCSD/aug-cc-PVTZ 181 828d 874e 833d 764e 3.14f 565.65 �228.137

CCSD(T)/aug-cc-PVTZ 340 842d 325d 3.12 730.253 �204.83

NEO-MP2(eeþep)g 334 � �
CC-VSCF-MP2h 327 811 925

QWAIMD:B3LYP/6-31þG**i 300 857 806

QWAIMD:B3LYP/6-31þG**j 254 863 723

experimentk 318 792( 9 723
aData excerpted from ref 4. The first block of data pertains to direct use of electronic structure methods within the harmonic approximation (see text for
detail), which is clearly inadmissible for this anhmaronic system. The second block of data provides a comparison of QWAIMD with other well-known
techniques that involve either simultaneous electron�nuclear treatment119 or quantum nuclear effects treated within perturbation theory.120�122 In the
last block, experimental data are provided. bThe Cl�Cl distance is computed at the optimized geometry obtained at the listed level of electronic
structure theory. c Potential energy surface harmonic and anharmonic constants. dHarmonic frequency corresponding to the optimized geometry.
e From three-dimensional 1 r 0 eigenstate transitions. The potential energy surface for the eigenstates is obtained from a full scan of the quantum
proton, with the chlorides fixed at optimized geometry positions. Hence, the eigenstates here are corrected for anharmonicity but do not include
coupling with the chloridemotions. f For CCSD, the shared proton is not symmetrically placed along the Cl�Cl axis. This is in contrast with respect to all
other optimized geometries here. gReproduced from ref 119. hReproduced from ref 119 based on the implementation of VSCF by Gerber and co-
workers.120�122 iOn-the-fly electronic structure is performed using B3LYP/6-31þG*; temperature = 323.50 K. jOn-the-fly electronic structure is
performed using B3LYP/6-31þG*; temperature = 714.45 K. kReference 123.

Figure 9. Temperature dependence of vibrational properties in
QWAIMD. The system studied is Cl�H�Cl� as in Table 6.
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The summation inside of the curly bracket can be classified under
two cases
1. If k0 � k = m(2π/a), m = integers, then e�i(k0�k)na = 1;

therefore, eq B7 reduces to

Æk0jV jkæ ¼ 1
a

Z a

0
e�imð2π=aÞξVðξÞ dξ ðB8Þ

2. If k0 � k 6¼ m(2π/a), the summation reduces to

∑
N � 1

n¼ 0
e�iðk0 � kÞna ¼ 1� e�iðk0 � kÞNa

1� e�iðk0 � kÞa ðB9Þ

Because k,k0 = l(2π/Na), where l is and integer, k0 � k = (l0 � l)
(2π/Na), and the summation in eq B9 is 0. Hence, Æk0|V(x)|kæ is
non-zero only when k0 � k = m(2π/a), and its value is the
Fourier coefficient of the potential function. If we substitute the
expression for Æk0|V|kæ into eq B5, the expression for the wave
function corrected to the first order becomes

φk ¼ 1ffiffiffiffiffiffi
Na

p eikx þ ∑
¥

m0¼� ¥

1
a

	Z a

0
e�im0x2π=aVðxÞ dx



p2

2m
k2 � kþm02π

a

� �2
" # eiðk þ m02π=aÞx

¼ 1ffiffiffiffiffiffi
Na

p eikx 1þ ∑
¥

m0 ¼ � ¥

1
a

	Z a

0
e�im0x2π=aVðxÞ dx



p2

2m
k2 � kþm02π

a

� �2
" # eim

0ð2π=aÞx

2
666664

3
777775

ðB10Þ
Equation B10 obeys Bloch symmetry because it is a product of a
plane wave and a periodic function.
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