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Symmetry-adapted Distributed Approximating FunctioneBADAFs) are derived and used to
obtain a coordinate representation for thdiabatically AdjustingPrincipal Axis Hyperspherical
(APH) coordinates kinetic energy operator. The resulting expressions are tested by computing (
=0) ro-vibrational states for the well-studied Hnolecular ion system, by iterative diagonalization

of the Hamiltonian matrix using the Arnoldi procedure. The SADAF representation and APH
coordinate system are found to be computationally robust and accurate99®American Institute

of Physics[S0021-96069)01920-0

I. INTRODUCTION been derived and used for various quantum mechanical
problems®2-3%

To obtain a numerical solution to either the time- . . L
In this paper we consider the application of a DAF on

dependent or the time-independent Sclimger equation, it " havi feul try, to obtain the
is necessary first to obtain a suitable basis, the projectio nctions having particular symmetry, 1o obtain theppro-

onto which yields a representation for the Hamiltonian op-Priately symmetrig derivatives. The resulting Symmetry-
erator. Some of the popular choices for bases include th8dapted DAF(SADAF) can then be used to produce a ma-

Fourier functions, eigenstates for various bound degreed/iX representation forany derivative operator to obtain
of freedom® and the discrete variable representationaccurate derivatives of all DAF-class functions having the

(DVR).%7 In recent years, a new approdth? based on dis- prescribed symmetry. Here, we use SADAFs to construct a
tributed approximating functional€DAF), has been intro- coordinate representation for the triatomic Adiabatically Ad-
duced as a means of representing any derivative operat##sting Principal Axis Hyperspheric&hPH) coordinate sys-
accurately. It has been used to obtain suitable coordinat€m Hamiltoniari®*" The accuracy of this SADAF approach
representations for both the kinetic energy operator and this later tested by obtaining somé= 0) ro-vibrational states
free-propagator. Because a DAF is not a standard basis st the H; molecular ion by iterative diagonalization of the
expansion, it is not a projector onto an invariant subspace; IBADAF represented APH Hamiltonian matrix using the Ar-
is an approach in which every grid point plays the role of annoldi procedure.
origin associated with its owflocal and possibly differejpt One could, of course, propose to treat the ro-vibrational
basis'® In many ways, DAFs bear similarities to the “wave- states problem without using any symmetry. However, a
let” approach for solving problems in digital signal careful examination of symmetry considerations leads to a
processiny and computational fluid mechanits(Some of  significant computational simplification. For the case of three
the connections among wavelets, delta sequences and DAlgentical atoms, there is permutation symmetry which im-
are discussed in Ref. 16. plies that interchanging any two atoms does not alter the
A DAF approximation to a functiorfor its derivative}  potential energy. The six possible permutation operations be-
can be obtained from a variational minimization procedtire long to the permutation groug,. Further, any two confor-
using a moving-least-squares type of method. The most stugnations that are mirror images must have the same potential
ied DAF, the Hermite-DAF, can be derived in this fashion energy. The potential energy surface for three identical at-
(although it was initially derived by other methods as aoms then must have 12-fold symmetry and a full utilization
means to represent the action of the free propaﬁatﬂn,d of this symmetry requires storage of the wavefunctions on
has bgeno 11173629 to solve a variety of problems in quanturgnly 1/12-th of the grid points. This reduces the storage re-
dynamics a1 and various nonlinear partial differential gyirements for the associated matrices. In the case of two
equation&’~*' accurately. Several new forms of DAFs have jgentical atoms, two permutation operations, belonging to the
permutation grougs,, and one reflection exist. Accounting
dElectronic mail: kouri@uh.edu for these symmetries leads to enormous simplifications and
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significantly more robust computational algorithms. Thesulting approximation becomes insensitive to the specific
computational savings, for heavier systems, could be eveohoice of grid points. This feature is the so-called “well-
more(than for lighter systems like j due to the smaller de tempered” nature of the DAE!?

Broglie wavelength. For example, for triatomic oxygen If the function,f(x), is a periodic function ok scaled to
(ozong the small de Broglie wavelength would require athe interval[0,27], i.e., f(x=2mm)=1f(x) for all integral
matrix of size in excess of a million by million to be stored. values ofm, Eq. (1) simplifies to

Clearly, this is not practical, and even if one were to be able o

to store a matrix of that size, the sldW? scaling of existing f ()= f DX c(x—x")F(x")dx’, 3)
algorithms employed by the commonly used eigenvalue 0

solvers would require an impractically long computation,nare D(DKAF(X_X/):Ecr)]o:fooa(Dk)AF(X_X’+2n77)- Al-

time. Thus, some consideration of symmetry is & practicaj,,,gh, for the sake of formal correctness, we have taken the

necessity. _ _ _limits of the preceding sum to be infinite, the banded nature
This paper is organlzec_i as follows. In Se_c. II_we derive o) -(x—x") assures that the DAF is significantly nonzero

the Symmetry-Adapted Distributed Approximating Func- . %in 5 finite neighborhood ok. Hence, the upper and

tionals (SADAFs) acting on one-dimensional functions with lower limits of the sum can be taken, in fact, to be finite and

symmetry. The reason for treating one-dimensional functiong a1 The actual values chosen. however depend on the

will be clear in Sec. Ill, where we represent the ro- pgice ofo/A andM (for the Hermite-DAR, and the num-
vibrational triatomic Hamiltonian in the APH coordinate sys- ber of grid points,N (to be discussed below Hence

tem, using the SADAF representation derived in Sec Il. This (k) ) No (k) ) : :
' L ) . ) Xx—x")=2% 1) x—X"+2n) is anumericall
representation is then tested in Secs. IV and V, first without bar( ) =22 o, ODar( ) y

considering any potential and then using the well-studigd H _accurate_ definition. Although one is free to approximate 'Fhe
molecular ion potential energy surface due to Meyer,ntegral in Eq.(3) by using any quadrature scheme, we dis-

Botschwina and BurtofiMBB).38 In Sec. VI we present our CUSS here the result of using a simple trapezoidal-rule
conclusions. quadrature approximation to the integral using grid points

{x;}. This leads to

1
(k) =_ (<) —

Il. SYMMETRY-ADAPTED DISTRIBUTED foAr(X) = STAX Doap(x=Xo)f(Xo)
APPROXIMATING FUNCTIONALS (SADAFS) -

The DAF approximation to thk-th derivative of a func- + E [Ax D(Dk,)\F(x—xj)]f(x,-)
tion can be expressed as =1

o0 1
fg‘z\F(x)zf 889 (x—x") F(x")dX, (1) + 5[A% DEAR(x—xn) IF(xn). @)

where the accuracy is governed by the Fourier-space charagthere x;=j Ax for a uniform grid spacingAx= 2/N
teristics of the DAF window/~*® One may approximate the and the pointx can be either on the grid or off.
integral overx’ by an appropriate sampling to obtain a Since Xy=N Ax=2m, X,=0, f(x)=f(0)=f(2m)
simple and accurate’®way to calculate the value of a func- =f(Xn)  and  D(x—xn)=Z;_ _, 05Ar(X—xy+2n)
tion and itsk-th derivative, at any point on or off a grid ==(n-1)- —=O9Ar(X—Xo+2(n—1)m)=D(X~Xo), Eq. (4)
chosen for discretization, as a matrix-vector product. Welakes the form

shall employ the Hermite-DAE;

N
3 _ K
S8 (x—x") = 69, (x—x") f(DA,:(x)—]Z1 [AX DEAe(x—x))1f(X)). (5
1 —1\" (x—x")? When x is on the grid, the quantity in the square brackets
- o\27 \/% exp — 242 above, is a circulant-Toeplit¢discrete-coordinaje matrix

representation for thé&-th derivative operator acting on a

M/2 1\" 1 x—X' periodic function. This derivative operation is a discrete con-
X Z ( - Z) n_|H2n+k( T) , (2)  volution, and hence a fast-Fourier transform can be used ef-

n-0 ' 20 ficiently to carry out the calculation. In general, for an evenly
whereH; is thej-th Hermite polynomial(Note that due to spaced grid, direct calculation of E¢) requires onlyW
the Gaussian, a discretized DAF matrix will be highly XN floating point multiplications and{2W(N-2W)
banded. As discussed in Ref. 13, the accuracy of the calcu-+W((2W+1)— W(W-1)/2} floating point additions,
lation, when this expression for the DARlong with an ap- whereW is the number of grid points over which the DAF is
propriate discretization scheme used in Eq.(1), can be numerically significant. Hence, this derivative calculation
made arbitrarily high for any point on or off the chosen grid haslinear scalingfor large N.
of discretization by choosing appropriate values of the We now derive SADAF expressions foikeh derivative
Hermite-DAF parameter®! and o/A. [Here, A is the grid  operator acting on one-dimensional functions belonging to
spacing when Eq(1) is approximated by a quadrature on a some point groupG. Let {R} denote the set of operations in
uniform grid] When theM and o/A are optimized, the re- this point group and lett be the total number of such opera-
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tions inG. Let the functionf [of Eq. (5)], transform accord-
ing the \'-th column of thej’-th irreducible representation

of G, i.e, fzf[xj,’] is the \’-th basis function for thg’-th

irreducible representation. Consider now the scalar product,

in the domain[0,27], of the k-th derivative offE\j,’], ie.,

fE\j,’] ) with a functiong!! , which transforms according to
the N-th column of the-th irreducible representation &3,

2 ) "
f dx g0t
0

27 o
J de’ dx’ gl )D8x—x) 1 (x").  (8)

The integrals in Eq(6) are divided intoh parts to obtain

2m . sy
f dx g0t
0

(=D commarny (2D 2a/h(l’ +1)
= > dx >, dx’
=0 J2mi =0 J2mm1’

X100 DEA-x) 1,10 ™

ConsiderR=R(l) € G, such that for allk that belong to the
interval [(2#/h) I, (27/h) (I+1)], y=Rx belongs to the
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2 K 2mlh 2mlh X
J dx gil(x)fl1¢ )(X)—f dyf dy'gll(y)
0 0

x| > E PL DURIy-Ry) Pg |l (y),

ReG R/ ¢

1y

for a real functiongl!! . From the well-known relation®,

lj

21 gl )T O(R)

K=

rg(x) = (12)

and

Ij/
Pefl1o0= 2 f10rl) (R,

k'=1

(13

where |; is the dimension of thg-th irreducible repre-

sentationand>; Ij2 h, the total number of operations in the
group and F(‘Q(R) is the (x,\)-th element in the represen-
tation matrix ofR in the j-th irreducible representation, Eq.

interval[ 0,27/h]. The previous equation can then be rewrit- (11) can be rewritten as

ten as

2 . Ly
fo dx 10,100

>

x g0 DEL(x—x") £l 1x),

2w/h)CR,71dX,
R "{0)

2mlh
( i ) R 1 dX z
o) R'cG

8

whereCg is +1 if Ris a rotation and- 1 if Ris a reflection.

(Note that for a one-dimensional function inversion, reflec-
tion operations are identical; hence there are only two pos-

sible operations in the group: rotation and reflectidhwe
now usey=Rx, which impliesR™ly=x andCg-1 dy=dXx,
and similar definitions for the primed variables, then

2w i L,
f dx g0t O
0

2m/h

dy >

R' eG

=2

dy’g[x”(R‘ly)
ReG

XD‘DKAAR*y—R"i/') IRy, (9)
since[Cgr-1]2=1, by definition. Following Wigner's nota-
tion conventiort® we note that

U IR 1) = PRl (x), (10)

where the sefPg} is isomorphic to the s€tR}, but acts on
functions rather than coordinates. Using this result in(8yg.
we obtain

F dx g0l )
0

2mlh 2xlh I
=f dyf dy’ E E gll(y)
0 0

k=1 ,r=1

x| &, Z TR (R) DR(RIY-RY)

ReG R’ ¢

XU (RN |16y, (14)

Now, if the functionsf!,] andgll! are normalized in the
interval [ 0,277], then using Eqs(12), (13) and the “Great

Orthogonality Theorem® we may define functiong!,’

= JhrT;£U7 andglil= \/h/1,g!)? that are normalized accord-
ing to
E " Ay =1 (19
k'=1
and
lj
> [yt (16)
k=1
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Using these in Eq(14), one obtains ik ! U
Vo L ETE W) o

2 ) Ly
f dx g0t ©x)
0

and
2m/h 2m/h U
=J dyf dy' > > glly)
0 0 k=1 K’=l

- 1 _
g&”(yoEE\/Z—&yi,o— 8y 2mm DY), (20
| )
AVRE 3 e

REGR'<c that obey the normalization condition from the Trapezoidal
rule approximation to Eq€15) and (16).
-1 ” i | i Since terms inside the curly brackets f) in Eq. (18)
XDEA(R™YY =R y") FS'Q'(R') \Fﬁ] fE' lyn. constitute the matrix(coordinate repre:ir%tation for the
SADAF k-th derivative operator acting on functions with the
aforementioned symmetry, it is clear that the representation
A7 matrix I'0(R) is used as a similarity transformation on the
The quantities inside the curly brackets above represent tHeAF, which results in the projection of theth derivative of
SADAF operator acting oappropriately normalizedunc- functions that transform according to thé-th column of the
tions with the relevant symmetry. Although, in principle, any j’-th irreducible representation.
quadrature schemg.g., Monte Carl4! quadrature on any Further, “even” derivative operators preserve the sym-
uneven grid, et¢.can be used to approximate the integrals inmetry of the functions they act on. Hence, for a nonzero
Eqg. (17), the results from a discrete representation of theresult it is required that the functiorf#',’] andgl! have the
integrals using an extended trapezoidal thlere presented same symmetry and thus=\' andj=j’ for even deriva-
here. This leads to a matriicoordinate representation for tive operations. Odd derivative operators change the symme-
the SADAFk-th derivative operator, try, under reflection, of the functions to which they are ap-
o ' Lo pl@gd. Henqe, in this case)(j) and (\',j’) are different and
f dx gl M=ay> > > ally) £ and g’ belong to different irreducible representations
0 1=01=0 k=1 =1 (or different columns of the same irreducible representation
with the symmetry of one being related to the other by a
\/ﬂ 1 change in reflection parity.
Ay ﬁ§(2_5yi,0_ Sy, Zﬂ/h) Alternate ways to arrive at the SADAF representation
for the k-th derivative operator include the construction of
the projection operators,

!
K

X

: _ r=1 i’ '
x 2 3 TR RIDEER Y =R y) TR
€EG R G

o :
Pl=p 2 TAR)*Pg, (21)
1 (T
><5(2_5)’|v0_§y|vghz) Jﬁlfg’](yl)
or
L L Ij |jr
—A glil(y. Ny .
y2 2 2 El altyn PO—L S (R P, (22)
Ij(z—éy_,—éy_,“ . . L .
X4 Ay : Ph followed by their use in the similarity transformation of the
2h periodic symmetry discrete DAF expression in Eg). The

xY(R) (the “characters’) are the sumsgthe traces of the
_ - » diagonal elementsljfj,)((R), for thej-th irreducible represen-
x> > TO*RDRR Yy —R y) TU)(R)  tation.
ReGR'eG As usual, if the eigenfunctions of such derivative matri-
ces are calculated, one obtains eigenfunctions that transform
\/'j'(Z— by, 0~ by, Z-h—”) s according to the\’—t_h/ column of thej’-th irreducible repre-
X 2h Fier (Y1), (18) sentation, namely//&‘, ](x). (Of course, in quantum mechani-
cal applications, the choice of the point group is determined
whereL= 27/(h Ay) andy;=i Ay, and we have defined by the symmetry of the potential, since the kinetic energy
new discrete functions, operator is invariant to all symmetry operations belonging to
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the rotation group.To obtain the other functions in thé-th 52 g P 22

J
irreducible representation, we make use of the transfer T=- —p°—— ——| — —sin20—
5 2
operato;39 2up®dp dp  2up?|Sin20 30 a6
; 12 3,2 3,2
Pg&? Ergg (R)*Pg , (23) |t —
Sirfé gy wp?(1+sind)  2up?sire
so that -
. J,2 1.cosd 3 9 29
G") i gy — 10 . Yo"
P ()= g (%) 8y 10 (24 ,upz(l—sma) up?sirtg Yix
Clearly, the eigenvalues for alfyl'l(x)} (for \
=1,... ;) are the same.
The eigenfunctions of this kinetic energy operator are pro-
I1l. THE ADIABATICALLY ADJUSTING PRINCIPAL portional to p‘5/2,37 and hence are not well behaved @t
AXIS HYPERSPHERICAL COORDINATES =0. To obtain well-behaved solutions, Pack and P&fker

(APH) — SADAF REPRESENTATION

The body-fixed, mass-scaled Jacobi coordifat®sare
inappropriate for treating the strong-interaction region in tri-
atomic systems havinB, point group symmetryi.e., tri-
atomic molecules where all three atoms are the $ame T=p>2Tp~>?
cause the application of an element of this point group to a

introduced an operatof,= p®2Tp~>2 a transform ofT, by

. . . . o h? 82 1542 h? d
single Jacobi coordinate results in mixing of the other _ _ —sin20—
coordinate* Hyperspherical coordinates resolve this prob- 21 9p?  Bup? 2up?|sin2g a6 a0
lem. The APH coordinate systetr>’in particular, results in ,
a very simple expression for the action of the elements in the 1 9 2y

Ay+By . 1 A,+B
Al 0J2+—2[C9— 97 Po

point group, since only one of the variablébe azimuthal * S0 dx2

) y one : 2up? mp
angle is affected by this action. Furthermore, the azimuthal

angle in the APH system is half the azimuthal angle in the Ap—By|l ~ ,

hyperspherical coordinates introduced by Smith and > §[J+ +J3-7]- 2 102

Whitten?®> Johnsorf®*” Mead® and Zickendraht? which me il

helps avoid half-integer angular momenta, which are charac- o 9\ . .

teristic of these other hyperspherical coordin®t85*>#%and <79 9x [J_-J.]. (26)
whose occurrence is a manifestation of the “Berry” phae. sIn"6 ox

As a result of this, a system of three similar atoms h&sa
point group symmetry in APH coordinatéghich is isomor-
phic to D3p), as discussed in Ref. 37. The only variable Here A,=1/(1+sing), B,=1/2sirfé and C,=1/(1—sind)

affected by the symmetry is the azimuthal angleaboutthe  gre related to the moments of inertia of the triatom in the
Ces-axis. In this Section we first rewrite the APH kinetic

body-fixed coordmates]x, J andJ are components of,
energy operator in a form that is convenient for our purpose;

following this, a SADAF representation is constructed. the total angular momentum of the three-atom systém,
Consider the kinetic energy part of the triatom Hamil- =J,%iJ, and J2=J,2+J,2+J,2. We form the matrix ele-
tonian in APH coordinate¥3746.47 ment

4 9 d 1 &

ho|o® 1 .
sin26 36 30 " sirtg x>

< |T|DA’M> 5A'A,[_m (9_’)2+p2

A,+B 1542 1 A,+B
Clh23(3+1)+ { -
mp Bup® up

A,—B
9(A,d.p) 49 ,f]. 27
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TABLE I. Irreducible representations &, in the point groupCg, . Basis[x,y].
E Ce Cst Cs c3t C,
) 1 3 1 3 1 3 1 B _
X X Ty Y©Y . = oy _ e X
> 2V XtV "2V Xt
) V3 1 V3 1 V3 1 V3 1 B
y y ?X‘i‘zy — 7X+§y ?X—Ey —?X—Ey y
1 0 1 NE) 1 V3 1 V3 1 3 -1 0
0 1 2 2 2 2 2 2 2 2 0o -1
Bl V31 31 B2
2 2 T2 2 2 2 T2 2
U'Ul (Tv2 (TU3 (le (Td2 (Td3
) 1 3 1 3 1 3 _ 1 3
X X _ y Ty_ Y- . A X Ty Y
Xt "2y Xty >~y
: _ V3.1 NI V3.1 31
y y 7X+§y —?X+§y TX—Ey y _TX_EV
I I S I O SR
[1 o} 2 2 2 2 2 2 [—1 o}
0 -1 NI V31 V31 0 1 _E ,%
2 2 "2 2 2 2 2
where DR, are the normalized WigneP functions® with B 32
definite parity,p, defined ifi’ Tar+1= . SH(AJp)l,|@DyeT, (32
L p
) [ 23+1 and
D P — -
AM 2 2
16m2(1+ 8,0) - - Adp) 1[ | 3
TApA«2= g(Ad,p)l,|® z[A;— Byl 33
J J AT 2 1V p X’
X[DIy+(—=1) A DY . (28) | 21p 2

The f(A,J,p) are the Coriolis coupling coefficients and are
defined by’
F(AL,p)=(DMl(I-=3)[DV), (29

and theg(A,J,p) are the asymmetric top coupling coeffi-
cients defined b/

9(A,3,p)=(D [ (3:2+3-3)|DV,)- (30)

In the coordinate representation, the Hamiltonian in Eqrepresentation for the operatdFg, Ty,

(27) can be written in terms of the tensor products,

2 _ 32
TA,A: Tp‘f‘%lp ®I0®IX+ 2Mp2|p ®T‘9®|X
_ %2 ﬁ2
+|——I1,[®2B,T,+|J(J+1)——I
2up?” o 2up?”
2
®[AptBgl® Il +| AP——1,
2up
®[2C0_A3_Bg]®lx, (31)

where the symbol® implies a direct product,D,
=coglsin’d is a diagonal matrix ird, l,, loandl, are unit
matrices inp, ¢ and y respectively,T, is the matrix coordi-
nate representation of the operater (7/2u) (9%/9p?)), T,
is the matrix coordinate representation of the operator
(— (4/sin20) (al9h)sin26(dl96)), T, is the matrix coordinate
representation of the operator-(5%/dx?), T} is the matrix
representation of the operatéftdy andA,, B, andC, are
diagonal matrices ir# as defined above.

In the next subsections we obtain the SADAF-
T, and T}, which
then can be used to form the total Hamiltonian matrix.

A. Azimuthal angle matrices T, and T)l(

We consider all the possibilities for the three atom case,
namely, (i) all atoms are dissimilar—th&BC case(ii) two
atoms are similar—th&,B case; andiii) all three atoms are
similar—theA5 case.

In the case of three dissimilar atoms, the potential energy
surface has &, point group symmetry along the body-fixed
y-axis in the APH coordinate system. Hencg, the azi-
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TABLE 1. Irreducible representations d, in the point groupCg, . Basis[ (x?—y?),2xy].

E Cs Cgt Cs c;t C,
12_ 12 22 1 1 1 1 22
Xy Xy —5(=y?) —50=y?) —50¢=y?) ~50¢-y?) x2—y
3 3 3 3
— \/7_2xy + £2xy + £2xy - £2xy
! \/§ \/§ \/§
2X y 2Xy _(XZ_yZ) _ ?(XZ_yZ) _ ?(XZ_yZ) 7()(2_y2) 2Xy
l2 12 12 12
5eXy T5eXy T5eXy T5eXy
1 J3 1 J3 1 J3 1 J3
10 2 2 2 2 2 2 2 2 10
0 1 31 B B1 B 0 1
2 2 2 2 2 2 2 2
O'U1 O'Uz 0'03 O'dl O'd2 O'd3
X'Z_yl2 Xz_V2 71 2_\2 ,l 2_\2 ,l 2_\2 Xz—y2 ,E 2,2
5(X*=Y%) 5(X°=y?) 5(X°=Y?) 5(X*=Y%)
3 3 3 3
- \/2——2xy + £2xy + g2xy - §2xy
Iyt _ 3 NK] _
2x'y 2xy _ 7(XZ_yZ) _(X2_y2) 7(X2_y2) 2xy _ 7(X2_y2)
12 12 12 12
2%y 2%y 2%y 2%y
1
R 1 1 5 -2
1 0 2 2 2 2 2 2 1 0
I I 5o G o 0 -1 &
2 2 2 2 2 2

muthal angle, ranges from 0 tor2 and the only symmetry through the planer,,(xy). Using these characters in Eg.
here is the periodicity of functions of (with period 27).  (18), we obtain

From Eq.(5), T,(xi X))
\J2—86, g— 6
X;,0 X ™2
o =Ax G P X))
T (xi X)) =—Ax Dpar(xi—xj) (34
XDERe(xi—x;=m+(=1)% DRe(xi+x))
2—68,0—96
and +9) K@) X0 xj. w2
+(=1)®PTD D@ (yi+ xi— )]
( DAFXi T Xj 1 \/5
36
T x) = Ax D&~ xy), (35 (36
and
TYxix))
both expressions leading to circulant-Toeplitz matrices. [2— 8.0~ Sy . mi2
In the case of two similar atoms, the potential surface =Ay '\/_ —— [DSRA(xi— X))+ (—1)P
has aC,, point group symmetry along the body fixgehxis, 2
leading to four different one-dimensional irreducible repre- XDRe(xi—x;— ™) +(—1DIDG(xi+ X))
sentations, nameli;, A,, B; andB,. The characters for "
these irreducible representations afd,(—1)P,(—1)9, +(=1)P* ) DEXE(xi+ x;
(—1)(P*D wherep andq represent the rotation symmetry \/W
(underC,) and reflection symmetrjundero,(yz)], respec- — )] X0 xj, w2 37)

tively, and (p+q) represents the symmetry under reflection

% ,
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where we have used the fact that j’ for the even deriva- symmetry under reflections through vertical plamg§, oy,
tives, wr}ile for odd derivative:s they are related by )’  gng o,,; and (a+ f) represents the symmetry under reflec-
=(=1)” and (-1)%=—(-1)%. tions through dihedral planesy , o4, ando,] and the two-

For three similar atoms, i.eA3, the potential surface has . . . . :
aCs, point group symmetry along the body fixgexis. The Fj|men§|onal wredumblg represgntatlons ﬁp andE, (the .
jrreducible representation matrices for which can be found in

one-dimensional irreducible representations in this poin .
group areA,, A,, By, B, [having character§1,(—1)*1, 1ables I and Il Using the characters for the one-
(—1)8,(—1)“A)} wherea represents the symmetry under dimensional irreducible representations in Etg), the de-
the rotation operation€g, C5* andC,; B represents the frivative matrices are obtained as

\/2_ 5Xi,0_ 5Xi , 6

T(xixj))=Ax 2

77
+(=1)“ D(DZAF(Xi_Xj"'g

r
DE(xi—x)) +(— 1) D(DZA)\F<Xi—Xj— 3

2

+DE,2&F(xi—xj—? +(=1* DA —x;— ™ +(—1)? DR(xi+xy)

D@ [ eyt 2T
DAF| Xi ™ X 3

2 2 T
+(=1# DR xi+x;— 5|+ (=P DR xitxi+ 5|+ (-1 DEL xi+xj—§)
T \/2_ 5)(-,0_ 5)(- ,7l2
(=1 A DR+ x— ™)+ (=1 A DR xi+x,»+§) ‘ % ‘ (38)
and
\J2—68, 0= 6,
X0 X; » 76 o o o v
TH(xix) =Ax 2 DOAe(xi—xj)+(—1)* D§Ae Xi=Xi~3 +(-1) Dl(Z)lA)F<Xi_Xj+§
@) 27| 5 2m a p) B pA)
+Dpar Xi=Xi~ 3~ +Dpar Xi—Xit 3" +(=1)* Dpar(xi—xj—m) +(=1)” Dpar(xit xj)
s p 2m g pl) 2m (a+8) p@) ™
+(=1)" Dpar Xi+Xj_? +(—=1)" Dpar Xi"’Xj"'? +(=1) Doar Xi+Xj_§
o \/2_ 5)(~,0_ 5)(~ 2
+ (=)@ DER(xi+x— M+ (=1 DR xi+xi+ §) 5 (39
|
where, again, we usg=j’ for the even derivatives, and and
(—1)*=(—1)*", (=1)#=—(—1)# for odd derivatives.
In the case of th&-sets, the derivative matrices contain
four blocks(each labeled by different values ferand «'), 1
with the form of the «,«") block being as in the term in the [T)l(](x_ X k)G > FQQ*(R)
curly brackets in Eq(18). (In this casex andx’ can assume v ReCe, R’ eCg,
the values 1 or 2.We present below the form of the four ) . i1 0) .
blocks for the derivative matrices acting on a function which XDpar(R™xi—R xj) TGy (RY).
transforms according to tha-th column of one of the (41)

E-irreducible representations. Further, to keep the expres-
sions simple, we assume here a discretization scheme which

omits the two end points, 0 andrzh. We then have In these expressions, the supersciiptcan correspond to
eitherE or E,. For the case of the second derivative matrix,
\ can take the values 1 or 2 depending on the symmetry of
1 the function acted upon. For the first derivative, agaircan
[Tx](xi X k)= G Z E FQ{*(R) take any of thg two values for the same reason as above, but
ReCey R’ eCg, N’ must be different from\. This is because the two col-
) _ -1 i) or umns of anyE-set corres_pond to functions that have opposite
XDEA(R '\ —R xj) T\ (RY) (40 symmetry under reflection.
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B. The polar angle matrix T, 52 9
To obtain the SADAF representation for the Tolo=mp=+2 ﬁsm%ﬁ
T,= — (4/sin29) (dl96) sin26(d/96) operator, we note that the o= ml2

polar angled is defined on the domaif0,7/2] and the The discrete representations for these two operators can be
eigenfunctions of tha@ , operator, the Legendre polynomials, obtained by using the SADAF representation for the deriva-
satisfy Neumann boundary conditiofise., the first deriva- tive operators acting on functions belonging to tgirre-

tive being zero at the boundary poinfs=0 and §=/2).  ducible representation &, ;

(46)

Since the Legendre polynomials form a complete set,&the Ny 5
dependence of any solution to the Safinger equation +92 Z sin26, _} , (47)
[whose kinetic energy part is described in E27)] can be k=1]06°], . a6 6.,

expanded in terms of them, and hence also must satisfy the
same boundary conditions. Furthermore, the Legendre poly¥here the matrix elemenfsi®/96%] 5 , and[d/36] 6.0, Ar€
nomials of ordei, P,(cos?), belong to theA, irreducible  similar in form to the expressions, Eq86) and (37).
representation ofc,, (which is a result of the Neumann

boundary conditions and periodicjtyand hence all they C. The nonantihermiticity of the /86 and the
dependence of the solutions must have this symmetry. Thuspnhermiticity of T, matrices

the use ofC,, adapted derivative operators in the formation
of T, must result in a matrix representation that correctly
acts on the Legendre polynomials. Using E2¥) along with
the fact thatp=q=0 for the A, irreducible representation,

The DAF matrix representation for th#96 operator in
Eqg. (42) is not anti-Hermitian. This makes thg, matrix
nonHermitian. In this subsection, we will discuss the specif-
ics of this in some detalil.

9 [2— 8, 0= 84 12 From the matrix representation 6fd6 in Eq. (42), it is
[ﬁ} =A0 ' ——[D§A(6:— 6)) clear that the ¢;,6;)-th element of this matrix is not the
0.9, V2 negative of its adjoint elementg(, ¢;), if the last two ele-

ments of the sum are nonzero, i.e., ifj)<W or if [(i

Q) p—p — @ (p. .
+Dpar(6i— 0= )+ Dpap(0i+ 0)) +j)—2(Ny—1)]=<W, whereN,=m/(2 A#) is the number

=6, o— 54 of 6-grid points, andW is the band width of the DAF, i.e.,
+DEAR( 6+ 6;— )] s Mg the number of grid points over which the DAF is numerically
V2 nonzero. In other words the DAF representation #0666

(42) above is non-anti-Hermitian in two region8) the top left
] ) triangular corner of the matrix an@) the bottom right tri-
The SADAF representation matrix for tg, operator can  angular corner of the matrix. This makes ffig matrix non-

then be written as the simple matrix product, Hermitian in those two regions as well. Furthermore, the size
—a No P of the regions is proportional té/ A 6.
(Too 0= === {— sin26,| — , (43 Now, one of the properties of the DAF is that its band
Y sin2g; =1 196], d6 .0, width is independent of the grid sized as long as the values

: . . of o andM are kept constant. Hence, A9 is made smaller,
where 6;, ¢; and ¢, are grid pointsN, in number. . : . ;
However, the quantity 1/sin is singular atf—0 and the total number of grid pointd\,, increases and th.e ratio
' WIN, (=2W A 6/7) gets smaller. Hence, as the grid spac-

6=ml2. One way to overcome this problem is to choose a|ng is reduced, so also is the region of nonhermiticity and in

grid that avoids the two singular points. To this end, the first,[he continuous limit, i.e., as\@ becomes infinitesimally

oint on the grid is chosen & 6/2 and the last point at : : e
?77/2— A6/2) gwhereAa is the grid spacing Thispmethod small, this region,W/N,<W A6, becomes infinitesimally
’ | mall. Hence, in the continuous limit, tAe, matrix becomes

: . .S
shou!d work well n mos_t cases, except wh_en dealing Wlthhermitian (and thed/ 90 matrix is anti-Hermitian and we
functions that exhibit rapid oscillatory behavior near the two e :

conclude thatthe nonhermiticity problem is created by

end points 0 andw/2. In such cases, though, an alternatethe finite discretization. Furthermore, as we will see in the

method could be used in view of the fact that next section, we find that the eigenvalues of Thematrix
) d are all real, in spite of its non-Hermitian structure. Another
5 Sin20—- Pi(cos2) (44 important feature is that th&, matrix possesses a certain
. ] additional symmetry[T,(1,J)=T4(Ny+1—1,N,+1-7J)]
tends linearly to zero a#=0 andf= /2. Hence, the singu-  \hich makes it necessary to store only one half of the matrix

larity must cancel out in the limit a9—0 and 6— /2. (the upper or lower triang)ejust as is the case for Hermitian
Therefore, the I'Hpital rule can be used to obtain the limit matrices.

of the quotient a®¥— 0 and#— =/2. This is done by differ-
entiating both the numerator and denominator to obtain

D. Radial part
T __5 P 20 J 45 In order to obtain a faithful representation for tfig
olo-0=~ ﬁsm 0 (45 operator, we first examine the asymptotic behavior of the

6=0 wavefunction as a function gf. Small p values(in APH
and coordinatesrepresent the situation where the three atoms are
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close to each other and eventually coale@te =0), while TABITE II_I. Eigeml_qlues _of theT, matrix and the symmetry of each eigen-
the large values op represent the impending dissociation function in a specific point group.
limits. Since we are interested in obtaining only rotational

. ’ ) Eigenvalue Eigenfunction C, C,, Cey

and vibrational states, we will concentrate on an energy
range substantially lower than both of these limits. Hence, 0 cosi A Ay A
. 1 cosk A B, Eq
our wavefunction must decay to zero for small and large 1 . A B E,
values ofp. Where the wavefunctions become numerically > COSX A Ai E,
insignificant will, of course, depend on the system under 2 sin A A, E,
consideration. 3 cosX A B, B,
We construct a domain ip (say[ pmin:Pmaxl). and re- 3 sinX A B, B,
quire that the wavefunction numerically tend to zero outside 4 cos«k A Ay E.
. . . . . . 4 sind A A, E,

this region. In this case, we can discretize the region
. 5 cosX A B, Eq
[PminsPmaxl, such thatp;=ppmin+(i—1)X(Ap). Then the 5 sin& A B, E,
T, operator in this domain can be written as 6 cos& A A A
_ (2) _ 6 siné A A, A,
Tp_Ap 50-,M(pi PJ): (48) 7 cosk A B, E;
where s} (pi—p;) is the continuous DAF representation of ; sinix 2 B> El
the second derivative operator and has the form given in Eq. cos& A1 2
2) 8 sin& A A, E,
2. 9 cosX A B1 B,
9 sinX A B, B,
IV. COMPUTATIONAL TESTS WITH NO POTENTIAL 10 cosi® A Ar B2
10 sinl& A A, E,

Testing the accuracy and the computational efficiency of
the symmetry-adapted DAF expressions has been done in
two stages. To begin, the potential was set to zero and th
submatricesT, and T, (for all point groups for the three
atom caspwere independently diagonalizZ&do obtain so-
lutions to simple (analytically solvablg eigenvalue prob-
lems. The submatri%)l( is tested by examining its action on
the eigenfunctions off, . The results from these tests are
discussed in this Section. In the next section, t§erkblecu-
lar ion potential due to Meyer, Botschwina and Burfbis
considered and ro-vibrational eigenstates calculdtesing
the APH-SADAF kinetic energy operatoby the Arnoldi
iterative diagonalization schem&:.®® The resulting eigen-
states are compared with those obtained in previous €~ ~logug
studies’®~%*We use the Hermite-DAF given in E(), with
ol/A =2.5 andM =60 for all the calculations in this paper.

Fepresentation to which each function belonfig the first
few eigenfunctions of Eq(49). For example, by choosing
the A; irreducible representation @,, to represent the de-
rivative operations, only the cosine functions with even ei-
genvalues are obtained.

We perform calculations for each symmetry group using
various grid spacings. This is done to test the accuracy and
the robustness of the SADAF representation. To evaluate the
quality of these calculations we define

|)\calc_ )\exacll )
|)\exacll ’

which measures the number of significant figures in the cal-
culated valuej ., ., with respect to the true valu&., ;¢

A. Zero-potential tests:  y-dependent operators In Table IV we present the results for tg point group

for 10 different grid sizes. For each grid we present the num-
ber of eigenvalues for whickk>10, 8 and 6(i.e., the num-

(50)

To test the accuracy of the SADAF representationiTipr
and T)l(, consider the one-dimensional particle-in-a-ring ei-
genvalue problem,

52 TABLE IV. T, accuracy test for point grou@;.

a_)(zf(X)Z)\f(X), (49) AXa Nt; e>10° e>8¢ €>6°
with periodic boundary conditions. The eigenvalues mre 10 360 123 151 185
S : e 2.0 180 61 77 93
= —n* for integral values oh, and the periodic eigenfunc- 30 120 a1 51 65
tions are the corresponding Fourier functiofexp(ny)}. Di- 5.0 72 25 33 a1
rect diagonalization of th&€,; matrix representation of the 10.0 36 13 15 21
second derivative operator in E@4) should yield the eigen-  15.0 24 9 1 13
values\ and the eigenfunction$(y), the respective accu- ggg 12 g ; 3
racy thus providing a measure of the efficiency of the 45.0 8 3 3 5
SADAF representation. Furthermore, t@g, or theCg, rep- 60.0 6 3 3 3

resentations for the second derivative operator can also be

used; however, direct diagonalization of these matrices wili‘sfiiggf‘g{‘gr?g‘ ﬂﬁ%ﬁes'
. . . . u i ints.
yield only eigenvalues and eigenfunctions that transform aCerhe numbers in these columns represent the number of eigenvalues ob-

cording to the respective chosen irreducible representationained that have values efgreater than 10, 8 and 6, respectivéyee Eq.
In Table lll we outline the symmetrie@.e., the irreducible  (50).)
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TABLE V. T, accuracy test for the point group,,

Al A

Ax® NC e>10 e>8 €>6 NS e>10° e>8d e>6

10 91 32 3¢ 40 37/ 48 45 89 3r 3¢¢ 3¢ 367 47 43

20 46 17 16 21 19 23 23 44 16 15 20 18 24 22
30 31 12 11 14 13 17 16 29 11 10 13 12 16 14
50 19 7 8 9 10 11 11 17 6 6 8 7 10 9
100 10 4 4 4 4 6 5 8 3 3 3 3 5 4
150 7 3 3 3 3 4 4 5 2 2 2 2 3 3
225 5 2 2 2 2 3 3 3 1 1 1 1 2 2
B2 B3
AxP Ny e>10° e>8 e>6 NS e> 101 e>8¢ e>6¢
10 9 32 30 3¢ 37 47 44 90 37 3¢ 3¢ 371 47 44
20 45 16 15 20 19 24 22 45 16 15 20 19 24 22
30 3 11 10 14 12 16 15 30 11 10 14 12 16 15
50 18 7 6 8 8 10 9 18 7 6 8 8 10 9
100 9 3 3 4 4 5 5 9 3 3 4 4 5 5
150 6 2 2 3 3 3 3 6 2 2 3 3 3 3
225 4 1 1 2 2 2 2 4 1 1 2 2 2 2

&The irreducible representation.

bGrid spacing in degrees.

°Number of grid points.

%The number of functions that have first derivatives accurate to the indicated (§eelthe text for details.
€The number of eigenvalues within the indicated accuracy level.

ber of eigenvalues that match the exact eigenvalue up to 1B. Zero-potential tests: #-dependence

digits, 8 digits and 6 digits, respectivelyEven for a grid

spacing as large as 60 degrege., 6 points on the grid

between 0 and 2), we get 3 eigenvaluegalf the total
i i i i 17 J

number of eigenvalues in this representatiaocurate up to 7{_4_ sin20—|P,(cos20) = 161 (I + 1) Py(cos29), (51)

To test the accuracy of the SADAF representation for
the T, operator, consider Legendre’s equation,

10 % or more. This is a clear indication of the robustness o a0 a0
the SADAF representation. For all the grids studied at Ieas\'}vhereP
one-third of thle eigenvalues were found to be accurate up 0 operator on the left hand side of this equation isThe
or beyond 10°™°. . operator, which is represented using the SADAF.

~ InTable V we present results for ti&, point group for In Table VII we present results from direct diagonaliza-
irreducible representations,, Az, By andB; for 7 different o of the T,-SADAF representation matrix for 8 different

grid sizes. The number of grid points in thq irreducible  4yig sizes. Again, more than a third of the eigenvalues are
representation is greatéby 2 additional pointsthan the  accyrate up to or beyond 18.

number of grid points in thé\, irreducible representation

(for the same grid sizebecause unliké\;-irreducible repre- .
sentation functionsA, irreducible representation functions V- COMPUTATIONAL TESTS FOR H; MOLECULAR

are zero at the end points of the grid, and consequently ned@N—ROVIBRATIONAL STATES CALCULATIONS

not be sampled there. Similarly, the functions that transform  The first observation of the infrared spectrum of Was
according to theB; andB; irreducible reducible representa- carried out in 1986° Subsequent to this, accurate ground
tions are zero at one of the end points of the grid and have glectronic potential energy surfaces of; Hhave been
local extrema at the other. This is clear from the charactegalculated®®® which has stimulated a great amount of
table forC,, .** Again, for the calculations for th€,, point  experiment&"% and theoretical workboth quanturfy-6°-62
group, at least one-third of the eigenvalues are accurate up thd semi-classic¥®>%j to determine the rotational—
or beyond 10%. vibrational eigenvalues of this molecule. This has mageaH

In Table VI we provide the results for th€g, point  benchmark system for new methods. However, even re-
group. Calculations are reported for 5 different grid sizes forcently, questions have been raised regarding the spectrum of
the singly degenerate irreducible representations and 7 dit; .°
ferent grid sizes for the doubly degenerate irreducible repre- We use the analytical potential surface due to Meyer,
sentation. Here again a third of the eigenvalues are found tBotschwina and BurtoiMBB).3 They performedab initio
be accurate up to or beyond 1¥. calculations for 69 configurations of the;Hnolecular ion.

1(cos2) are the Legendre polynomials of ordeand
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TABLE VI. T x accuracy test for the point group C6v.

Al A
Ax>  NE €>10 €8 €6 NS e>10° e>8¢ €>6¢
10 31 1 119 14 13 1 15 29 1¢ 108 13 1¢ 1587 14
20 16 6 5 7 7 9 8 14 5 5 6 5 8 7
30 11 4 4 5 5 6 5 9 3 3 4 4 5 4
5.0 7 3 3 3 3 4 3 5 2 2 2 2 3 2
6.0 6 2 2 3 3 3 3 4 1 1 2 2 2 2
Bf BS
Ax" NS e>10° e>8d e>6" NS e>100 e>8d e>61
1.0 30 1t 100 1@ 122 168 144 30 1 10 13 124 1 1A
20 15 5 5 7 6 8 7 15 5 5 7 6 8 7
3.0 10 4 3 5 4 5 5 10 4 3 5 4 5 5
5.0 6 2 2 3 2 3 2 6 2 2 3 2 3 3
6.0 5 2 2 2 2 3 2 5 2 2 2 2 3 2
E2 E3
A)(b N; e> 100 e>gd e>6d Nf( e>10¢ e>gd 68
10 30 2f 200 260 258 31° 2o 60 2F 200 266 240 3 2
20 30 11 10 13 12 16 15 30 11 10 14 12 16 14
3.0 20 7 7 9 8 11 10 20 8 7 9 8 11 10
50 12 5 4 5 5 7 6 12 4 4 6 5 7 6
6.0 10 4 3 5 4 5 5 10 4 4 4 4 6 5
10.0 6 2 2 3 3 3 3 6 2 2 2 2 4 3
15.0 4 1 1 2 2 2 2 4 2 2 2 2 2 2

#The irreducible representation.

bGrid spacing in degrees.

“Number of grid points.

%The number of functions that have first derivatives accurate to the indicated (§eelthe text for details.
°The number of eigenvalues within the indicated accuracy level.

The highest energy configuration was23000 cm* above  Hence, large amplitude, floppy motions can be seen at ener-
the bottom of the well. The global minimum in the ground gies greater than 12000 crhfrom the bottom of the well.
electronic potential energy surface of Horresponds to an The most detailed quantum-mechanical treatments of the
equilateral triangle configuration. The surface haDg rotational-vibrational eigenvalue problem of Have been
point group symmetry. The zero-point energy on the MBBcarried out by Whitnell and Ligtt)®* Tennysor®*"and Ba-
surfacé® is 4363.5 cm®. The ground electronic surface has cic and Zhang? Whitnell and Light used the full symmetry

a deep, narrow wellof magnitude~ 12000 cm !, measured of the H; system to obtain a 3D-DVR-based representation
from the bottom of the wellwhich supports a small number of the APH Hamiltonian. The eigenvalues of the Hamil-
of widely spaced bound states. Above the well, the surfacéonian matrix were obtained by using a successive
flattens considerably leading to an increase in the density dfuncation—diagonalization method. They constructed the

states and making the collinear configuration accessibldull 3D Hamiltonian matrix using a basis that was generated
from a series of reduced dimensionality 1D and 2D calcula-

tions. In many ways this is akin to neglecting off-diagonal
TABLE VII. T, accuracy test. elements to obtain blocks of the original 3D Hamiltonian
matrix. That is, each block is diagonalized independently,

Ax? NE( e>10° e>8° e>6° ] )
and the eigenvectors are then used again to represent the full
10 90 35 42 49 3D Hamiltonian matrix. This new matrix is expected to be
2.0 45 17 20 24 o U )
30 30 12 14 17 more sparse than the original full matrix, if the off-diagonal
50 18 7 8 11 block-elements are small. Whitnell and Light used this idea
9.0 10 4 5 6 to obtain a large number of states for total angular momen-
10.0 9 4 5 6 tum J=0.
15.0 6 s s 4 Tennyson and Henderson express the Hamiltonian using
22,5 4 2 2 3 . . : . o
a single set of Jacobi coordinates. As discussed earlier in
3Grid spacing in degrees. Sec. lll, this coordinate system is not convenient for the
Number of grid points. treatment of the strong-interaction region in triatomic sys-

“The numbers in these columns represent the number of eigenvalues op- . . .
tained that have values efgreater than 10, 8 and 6, respectivéfgee Eq. Pems havingD 3, point group symmetry. The reason for this

(50).) is that the application of an element of this point group to a
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single Jacobi coordinate results in the mixing of the otherTABLE VIIl. Equivalence of irreducible representations ©f, and D,
coordinate* Tennyson and Henderson circumvent this

problem bynotusing the full symmetry of the potentidlThe Cer Dan
symmetry they used waS,,, whereas a surface for three A1 Aé
identical atoms has B3y, point group symmetry.As a re- gz 25
sult, their matrices are larger than necessary. In their Jacobi- Bi Ai
coordinate Hamiltonian, the angular part was represented us- E, E”
ing the DVR, whereas the two distance coordinates were E, E'

represented using Finite Basis Representati€BR). These

investigators used their procedure to obtain a great number

of states all the way up to dissociatigeven though the

Meyer, Botschwina and Burton potential is expected to beonalize. The action of the Hamiltonian matrix on any vector

accurate only up te- 23000 cm ! above the bottom of the is calculated easily, taking advantage of the sparse structure

well’%5! and the true dissociation is estimated-at35000 of the APH-SADAF Hamiltonian matrix, which also obvi-

cm 15679, ates the need to store the full Hamiltonian matrix for this
Bacic and Zhang used all three sets of Jacobi coordinatgdurpose. We do our calculations on a parallel comp(aer

to express the Hamiltonian as shown in Refs. 71-73. Thi$BM-SP2), so that many elements of the resultant vector are

enabled them to use the complete symmetry of the potentiglalculated simultaneously.

surface, but their basis set was correspondingly over-

complete and hence nonorthogonal. They have used their

method to obtain rotational—vibrational states @T fér total  TABLE IX. Convergence of vibrational band origins bffj . The irreduc-

angular momentd=0 andJ=1. ible representation i#; in Cg, andAj in Dgp,.

A. Comparison of SADAF to earlier results I ] i v \Y VI HT 2

In this section, we obtain some of the bound eigenstatesngﬂn 120 120 120 120 120 120
of HJ (for J=0) to check the accuracy and computational P Si? 51-20 52-50 2-220 ?1.820 gfo
effectiveness of the APH-SADAF Hamiltonian matrix. The Ne 45 90 90 90 90 90
MBB potentiaP® is used because of the availability of previ- \d 13 13 13 13 13
ous results for comparisdfi®"¢°-%%Further, in this work we ~ N° 5040 18720 28080 37440 56160 74880
use a regular co_ordmate _grld on which the APH-SADAF 0d 00 00 00 00 00 [43635°
Hamiltonian matrix is obtained. Other methods, such as us- 06 94 0.0 0.0 0.0 00 31784
ing surface functions to form the full 3D-Hamiltonian, are 0.9 1.0 0.0 0.0 0.0 0.0 4777.0
discussed elsewhefé.(It may be noted here that surface 30.1 301 0.0 0.0 0.0 0.0 6262.0
functions, while providing a solution to the two-dimensional 05 03 00 00 00 00 7285

: ; - “ ; 35 35 0.0 0.0 0.0 00  7769.1

0-x problem for fixedp, also provide a suitable “potential- 0.9 11 0.2 0.2 0.2 0.2 8996.6
adapted” basis to expand the full 3D-Hamiltonian. Hence, g 48 07 00 00 00 00 92515
matrices obtained from using this technique may be expected 9 3.8 0.3 0.1 0.1 0.1 0.1 9964.0

to be smaller in size as compared to those obtained here from 10 18.7 0.2 01 01 01 0.1  10592.1
using a regular grid. 1 27 07 0.7 0.7 0.7 0.7 109131

12 6.8 0.4 0.4 0.4 0.4 0.6 11809.2

~N~No b~ wWN PR

S_lncg the d|m.en3|_onallty of the problem is hi@D), the _ 13 137 33 01 01 01 01 121458
Hamiltonian matrix will also be large, and hence employing 14 35 08 1.0 1.0 0.1 09 12584.4
a direct diagonalization scheme to solve the corresponding 15 5.2 4.2 4.2 4.2 43  13284.7
eigenvalue problem is not viable. Instead, an iterative diago- 16 400 400 400 401 399 133917
nalization technique can be used, a variety of which are 1’ 9.3 9.3 9.2 9.2 9.3 137054
available in the literaturg®>752223.76=719.1|| these tech- 12 g'g g'i 3'2 40 gf 11;1;325 'é’
nigues are based on the propagation of an initial vector by »g 44 47 ' 45 148858
the application of a dynamical operator, which, in general, is 21 5.9 0.5 05 149386
a polynomial function of the Hamiltonian matrix, to obtain a 22 291 29.4 150611
Krylov-like basis. This basis representation of the Hamil- 22 51 51 1155§:88'§
tonian is then diagonalized to obtain an invariant subspace of ,g 350 159093

eigenvectors. Some of these methods require the Hamit
tonian matrix to be normalized. that is. to have eigenvamegReference 57. Authors used Jacobi coordinates with successive truncation-
only in the rangg —1,+1] whi’ch can ’be easily achieved Jiagenalization scheméSee the tex).
.y 9 ! ’ 80 y bGrid points in p. N, equally spaced points are chosen in the range

using a method based on thé-norm! [Pmins P

We use the Arnoldi iterative proceddfe® which in-  “Number of grid points irg, chosen in the ranged, /2].
volves the repetitive application of the Hamiltonian matrix to “Number of grid points iny, chosen in the rangied,/6].
an initial vector to form a basis set; the representation of th%:tsaljlguir:?ﬁ;g ggﬁjﬁq‘?;gtf'e’\‘p:e’:f&ﬁfs'\'rxeg = HT] (in e
Hamiltonian in this new basis set leads to a Hessenber@ero-point energyin cm™1). All other values in this column are relative to

form® for the Hamiltonian, which is relatively easy to diag- this state.
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TABLE X. Convergence of vibrational band origins &f; . Irreducible TABLE XI. Convergence of vibrational band origins &f; . Irreducible

representation ig, in Cg, andAj in Dy,. representatiort, in Cg, andE’in D3y
I I 1] v v vl VI HT 2 | I I v \Y VI HT 2

pli, 120 120 120 1.2375 120 120 1.20 pln 120 120 120 120 120 1.20

plax 520 520 520 4.2375 520 520 520 plax 520 520 520 520 520 5.20
Ny 16 16 16 48 24 24 32 NP 6 32 16 16 24 24

NS 45 90 90 60 80 90 90 NS 45 45 90 90 80 90
I\ 5 5 9 5 1 11 11 Ny 12 12 12 20 24 24

N® 3600 7200 12960 14400 21120 23760 31680 N® 8640 17280 17280 28800 46080 51840

1 0Z 02 02 o0d 00 00 o0 749286 1 00 00 o0 00 od 00 25213

2 35 35 35 01 01 00 00 102084 2 04 01 0.4 04 01 0.1  4997.4
3 03 03 02 01 01 01 01 115254 3 26 00 2.6 26 00 0.0  5553.7
4 54 54 54 00 01 01 00 128282 4 04 00 0.5 05 01 0.1  7003.4
5 29 27 29 00 02 02 02 137467 5 01 00 0.0 00 00 0.0 78687
6 31 28 31 01 01 01 01 145635 6 415 00 415 415 01 0.1  8487.0
7 02 05 05 06 02 02 02 151781 7 52 46 0.5 05 07 11 9107.6
8 156 15.6 15.7 00 01 00 00 15367.6 8 41 02 4.3 43 01 0.0  9650.6
9 69 01 08 24 16 13 1.3 15950.8 9 57 01 5.8 58 0.0 0.0  9996.5
10 504 56 04 177 111 84 115 16577.9 10 60 02 6.1 61 00 0.0 10642.6
11 485 6.6 54 302 104 7.3 126 17076.8 11 12 07 0.3 03 09 0.8 10853.3
12 46 173 137 01 24 17 17 176704 12 302 00 302 302 04 04 113215
13 880 09 62 397 222 169 17.0 17805.3 13 176 159 2.0 20 39 3.2 11651.1

14 1022 1029 46.1 5.0 47 40 43 178452 14 6.0 1.3 4.0 4.0 1.0 0.9 12073.2
15 328 503 47.2 8.9 6.1 4.8 5.0 18316.0 15 6.2 3.3 0.7 0.7 4.5 3.8 12294.2
16 1505 17.2 133 60.7 252 184 185 18865.6 16 7.6 0.6 8.2 8.1 35 2.9 124675
17 99.3 433 338 943 469 353 357 19173.8 17 17.3 2.9 22.6 22.6 1.9 1.6 12694.0

18 11.7 81 324 187 141 142 19257.2 18 43.3 11 45.1 45.1 0.4 0.3 133134
19 26.7 232 17.4 93 6.8 7.0 19720.6 19 51 149 15.0 15.0 2.3 1.7 13385.1
20 11 6.7 0.5 41 32 3.4 20044.4 20 27.0 14 21.8 21.7 247 25.2 135534
21 288 211 356 200 152 159 20268.9 21 704 65.1 12.8 125 112 8.4  13680.9
22 53 09 199 140 108 114 20356.7 22 0.1 2441 11 1.1 14052.2
23 39.1 126.8 59.5 441 441 20806.9 23 7.8 26.2 15 1.2 14210.9
24 33.1 68.0 38.0 294 29.6 20924.8 24 2.7 7.6 13.2  14464.7
25 82.3 86.5 452 33.0 332 211747 25 29.5 17.0 13.7  14878.0
26 13.0 122 10.5 21321.0 26 2.4 1.0 0.8 14885.6
27 177.8 112.6 89.7 21574.6

“Reference 56. Authors used Jacobi coordinates with a successive
®Reference 56. Authors used Jacobi coordinates with a successivéruncation-diagonalization schem&ee the text for details.

truncation-diagonalization schem&ee the text for details. bGrid points in p. N, equally spaced points are chosen in the range
Grid points in p. N, equally spaced points are chosen in the range [pmin:Pmax-

[PminsPmax]- ‘Number of grid points irg, chosen in the range,m/2].

°Number of grid points irg, chosen in the range [8/2]. INumber of grid points iny, chosen in the ranged,=/6].

YNumber of grid points iny, chosen in the range [8/6]. “Total number of grid pointsN=N,NN, .

“Total number of grid pointsN=N,N,N, . ‘Results in these columns represtthis result—HT| (in cm™?).

'Results in these columns represtthts result—HT| (in cm™%). 9YRelative to zero-point energy in Table ¥ cm™1).

YRelative to zero-point energy in Table Ifh cm™1).

Using this method we obtain the eigenstates of thegrid sizes for theA;, A, andE, irreducible representations
Hamiltonian, one irreducible representation at a time. Sincéin the Cg, point group, respectively. The stress in this
the point group used i€¢, the wavefunctions belong to the study is not on obtaining many states, but instead to under-
irreducible representations of this group. To obtain the corstand how the accuracy of the states obtained is affected by a
responding representations in tBgy, point group, we first change in the number of grid points. In Tables IX, X and XI
note thatD4,=C,,® Cs, WhereasCgq,=C3,®C,.5* Hence, we present results, respectively, for a&l|-states up to~
the oy, operation inDg;, is isomorphic to theC, operation in 16000 cm ™1, all A,-states up to~ 22000 cm! and all
Ce,» Which is associated with the parity of the E,-states up to~ 15000 cm ! above the absolute energy
wavefunction®’ Based on this, a correspondence rule thaminimum of the MBB surfacéwhich is approximately half-
maps the irreducible representationdgj, onto the irreduc- way to dissociation These states extend above the triangle
ible representations dfg, can be derived. This rule is pre- to linear conformational change barrigwhich occurs
sented in Table VIII. Furthermore, since the parity of theroughly at~ 12000 cm!), and hence describe a number of
wavefunction forJ=0 is always everi’ the only accessible states associated with large-amplitude floppy motions.
states(for J=0) must belong to irreducible representations  For our calculations, the absolute minimum of the poten-
A, A, or E, in theCg, point group andd;, A orE’ inthe  tial was at~ —0.1857 atomic units, where the zero of the
D3y, point group. potential was set at 0.02 atomic units above the estimaféd

In Tables IX, X and XI we provide results for different dissociation limit. Hence, we did not sample in regions
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where the potential was very much above dissociation since We have used SADAFs to represent the Pack—Parker
the MBB potential is considered to be accurate only up tariatomic APH coordinate kinetic energy operator. Although,
23000 cm® above the bottom of the wé#®! (which is  we have used a regular coordinate grid to obtain the coordi-
roughly three-quarters of the way to dissociajiofhis re- nate representation for the APH Hamiltonian, this does not
Stricts pmin @aNd pmax (the range in the-coordinate, values  necessarily have to be the case. We demonstrate elséivhere
for which can be found in the tables. Diagonalizing the full that surface functions could be obtained and used for a
Hamiltonian did produce some complex eigenval(thse to  “potential-adapted” (coordinate¢ representation of the
the nonhermiticity of the Hamiltonian matjixBut since  Hamiltonian. Alternatively, as stated in Sec. Il, one could
these were due to the discretization schéama hence non- obtain an approximation to the action of the SADAF opera-
physica), their absolute values were always found to betor on a function either on an irregular grid or by using
higher than the physically significatrea) eigenvalues. Fur- Monte Carlo sampling.
thermore, they were not stable. Increasing the number of grid The eigenvalue problems that result from constructing
points in the#-coordinate makes these physically insignifi- the SADAF representation of the Hamiltonian are solved us-
cant complex eigenvalues occur at even higher absolute vairg an Arnoldi iterative scheme. We find this method to con-
ues. Thus, we considered a relatively large number of gridverge slowly for large matrix size, as has been documented
points in #, as seen in Tables I1X, X and XI. elsewheré? The number of Arnoldi vectors necessary to ob-

The number of grid points required in tireandy coor-  tain the eigenstates increases rapidly with the size of the
dinates, for convergence, was found to be relatively small. Iproblem. In the future, we hope to circumvent this problem
was found that 24 grid points in the-coordinate produced by using a polynomial preconditioning of the starting
adequately accurate eigenvalues in most cases. Similarly, thvector®?
x-coordinate also required fewer grid points. We conclude that the SADAF representation, making

From the tables, it is clear that the calculated eigenstategse of theCg, potential symmetry of three like aton(is the
are, generally, more accurate with increased sampling, as BPH coordinate systencan be used to obtain an efficient
to be expected. However, a couple of exceptions exist, whereomputational algorithm to calculate ro-vibrational bound
eigenvalues were not as accurate as the others. For examp#tates. Consequently, the SADAF representation should be
the 16th eigenvalue in Table IX, which although is within very useful in performing bound-state/scattering calculations
0.5% of Tennyson’s value, is not as accurate as the otherand in solving various other partial differential equati6h&
An exhaustive study in this regard has not been conducted.
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