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Symmetry-adapted distributed approximating functionals: Theory
and application to the ro-vibrational states of H 3
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Symmetry-adapted Distributed Approximating Functionals~SADAFs! are derived and used to
obtain a coordinate representation for theAdiabatically AdjustingPrincipal Axis Hyperspherical
~APH! coordinates kinetic energy operator. The resulting expressions are tested by computing (J
50) ro-vibrational states for the well-studied H3

1 molecular ion system, by iterative diagonalization
of the Hamiltonian matrix using the Arnoldi procedure. The SADAF representation and APH
coordinate system are found to be computationally robust and accurate. ©1999 American Institute
of Physics.@S0021-9606~99!01920-0#
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I. INTRODUCTION

To obtain a numerical solution to either the tim
dependent or the time-independent Schro¨dinger equation, it
is necessary first to obtain a suitable basis, the projec
onto which yields a representation for the Hamiltonian o
erator. Some of the popular choices for bases include
Fourier1–4 functions, eigenstates for various bound degr
of freedom,5 and the discrete variable representati
~DVR!.6,7 In recent years, a new approach,8–13 based on dis-
tributed approximating functionals~DAF!, has been intro-
duced as a means of representing any derivative ope
accurately. It has been used to obtain suitable coordin
representations for both the kinetic energy operator and
free-propagator. Because a DAF is not a standard basi
expansion, it is not a projector onto an invariant subspac
is an approach in which every grid point plays the role of
origin associated with its own~local and possibly different!
basis.13 In many ways, DAFs bear similarities to the ‘‘wave
let’’ approach for solving problems in digital signa
processing14 and computational fluid mechanics.15 ~Some of
the connections among wavelets, delta sequences and D
are discussed in Ref. 16.!

A DAF approximation to a function~or its derivatives!
can be obtained from a variational minimization procedur13

using a moving-least-squares type of method. The most s
ied DAF, the Hermite-DAF, can be derived in this fashi
~although it was initially derived by other methods as
means to represent the action of the free propagator,8! and
has been used to solve a variety of problems in quan
dynamics10,17–27 and various nonlinear partial differentia
equations28–31 accurately. Several new forms of DAFs ha

a!Electronic mail: kouri@uh.edu
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been derived and used for various quantum mechan
problems.32–35

In this paper we consider the application of a DAF
functions having particular symmetry, to obtain their~appro-
priately symmetric! derivatives. The resulting Symmetry
Adapted DAF~SADAF! can then be used to produce a m
trix representation forany derivative operator to obtain
accurate derivatives of all DAF-class functions having t
prescribed symmetry. Here, we use SADAFs to construc
coordinate representation for the triatomic Adiabatically A
justing Principal Axis Hyperspherical~APH! coordinate sys-
tem Hamiltonian.36,37The accuracy of this SADAF approac
is later tested by obtaining some (J50) ro-vibrational states
for the H3

1 molecular ion by iterative diagonalization of th
SADAF represented APH Hamiltonian matrix using the A
noldi procedure.

One could, of course, propose to treat the ro-vibratio
states problem without using any symmetry. However
careful examination of symmetry considerations leads t
significant computational simplification. For the case of thr
identical atoms, there is permutation symmetry which i
plies that interchanging any two atoms does not alter
potential energy. The six possible permutation operations
long to the permutation groupS3. Further, any two confor-
mations that are mirror images must have the same pote
energy. The potential energy surface for three identical
oms then must have 12-fold symmetry and a full utilizati
of this symmetry requires storage of the wavefunctions
only 1/12-th of the grid points. This reduces the storage
quirements for the associated matrices. In the case of
identical atoms, two permutation operations, belonging to
permutation groupS2, and one reflection exist. Accountin
for these symmetries leads to enormous simplifications
3 © 1999 American Institute of Physics
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significantly more robust computational algorithms. T
computational savings, for heavier systems, could be e
more~than for lighter systems like H3

1) due to the smaller de
Broglie wavelength. For example, for triatomic oxyge
~ozone! the small de Broglie wavelength would require
matrix of size in excess of a million by million to be store
Clearly, this is not practical, and even if one were to be a
to store a matrix of that size, the slowN3 scaling of existing
algorithms employed by the commonly used eigenva
solvers would require an impractically long computati
time. Thus, some consideration of symmetry is a pract
necessity.

This paper is organized as follows. In Sec. II we der
the Symmetry-Adapted Distributed Approximating Fun
tionals ~SADAFs! acting on one-dimensional functions wit
symmetry. The reason for treating one-dimensional functi
will be clear in Sec. III, where we represent the r
vibrational triatomic Hamiltonian in the APH coordinate sy
tem, using the SADAF representation derived in Sec II. T
representation is then tested in Secs. IV and V, first with
considering any potential and then using the well-studied3

1

molecular ion potential energy surface due to Mey
Botschwina and Burton~MBB!.38 In Sec. VI we present ou
conclusions.

II. SYMMETRY-ADAPTED DISTRIBUTED
APPROXIMATING FUNCTIONALS „SADAFS …

The DAF approximation to thek-th derivative of a func-
tion can be expressed as

f DAF
(k) ~x!5E

2`

`

dDAF
(k) ~x2x8! f ~x8!dx8, ~1!

where the accuracy is governed by the Fourier-space cha
teristics of the DAF window.8–13 One may approximate th
integral over x8 by an appropriate sampling to obtain
simple and accurate8–13 way to calculate the value of a func
tion and itsk-th derivative, at any point on or off a grid
chosen for discretization, as a matrix-vector product.
shall employ the Hermite-DAF,8–13

dDAF
(k) ~x2x8![ds,M

(k) ~x2x8!

5
1

sA2p
S 21

A2s
D k

expS 2
~x2x8!2

2s2 D
3 (

n50

M /2 S 2
1

4D n 1

n!
H2n1kS x2x8

A2s
D , ~2!

whereH j is the j-th Hermite polynomial.~Note that due to
the Gaussian, a discretized DAF matrix will be high
banded.! As discussed in Ref. 13, the accuracy of the cal
lation, when this expression for the DAF~along with an ap-
propriate discretization scheme! is used in Eq.~1!, can be
made arbitrarily high for any point on or off the chosen g
of discretization by choosing appropriate values of
Hermite-DAF parametersM and s/D. @Here,D is the grid
spacing when Eq.~1! is approximated by a quadrature on
uniform grid.# When theM and s/D are optimized, the re-
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sulting approximation becomes insensitive to the spec
choice of grid points. This feature is the so-called ‘‘we
tempered’’ nature of the DAF.8,13

If the function, f (x), is a periodic function ofx scaled to
the interval@0,2p#, i.e., f (x62mp)5 f (x) for all integral
values ofm, Eq. ~1! simplifies to

f DAF
(k) ~x!5E

0

2p

DDAF
(k) ~x2x8! f ~x8!dx8, ~3!

where DDAF
(k) (x2x8)5(n52`

` dDAF
(k) (x2x812np). Al-

though, for the sake of formal correctness, we have taken
limits of the preceding sum to be infinite, the banded nat
of dDAF

(k) (x2x8) assures that the DAF is significantly nonze
only in a finite neighborhood ofx. Hence, the upper and
lower limits of the sum can be taken, in fact, to be finite a
small. The actual values chosen, however, depend on
choice ofs/D andM ~for the Hermite-DAF!, and the num-
ber of grid points, N ~to be discussed below!. Hence,
DDAF

(k) (x2x8)5(n52n0

n0 dDAF
(k) (x2x812np) is a numerically

accurate definition. Although one is free to approximate
integral in Eq.~3! by using any quadrature scheme, we d
cuss here the result of using a simple trapezoidal-r
quadrature approximation to the integral using grid poi
$xi%. This leads to

f DAF
(k) ~x!5

1

2
@Dx DDAF

(k) ~x2x0!# f ~x0!

1 (
j 51

N21

@Dx DDAF
(k) ~x2xj !# f ~xj !

1
1

2
@Dx DDAF

(k) ~x2xN!# f ~xN!, ~4!

where xj5 j Dx for a uniform grid spacingDx5 2p/N
and the point x can be either on the grid or off
Since xN5N Dx52p, x050, f (x0)5 f (0)5 f (2p)
5 f (xN) and D(x2xN)5(n52`

` dDAF
(k) (x2xN12np)

5( (n21)52`
` dDAF

(k)
„x2x012(n21)p…5D(x2x0), Eq. ~4!

takes the form

f DAF
(k) ~x!5(

j 51

N

@Dx DDAF
(k) ~x2xj !# f ~xj !. ~5!

When x is on the grid, the quantity in the square bracke
above, is a circulant-Toeplitz~discrete-coordinate! matrix
representation for thek-th derivative operator acting on
periodic function. This derivative operation is a discrete co
volution, and hence a fast-Fourier transform can be used
ficiently to carry out the calculation. In general, for an even
spaced grid, direct calculation of Eq.~5! requires onlyW
3N floating point multiplications and $2W(N22W)
1W(2W11)2 W(W21)/2% floating point additions,
whereW is the number of grid points over which the DAF
numerically significant. Hence, this derivative calculati
haslinear scalingfor largeN.

We now derive SADAF expressions for ak-th derivative
operator acting on one-dimensional functions belonging
some point group,G. Let $R% denote the set of operations i
this point group and leth be the total number of such opera
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tions inG. Let the function,f @of Eq. ~5!#, transform accord-
ing the l8-th column of thej 8-th irreducible representatio

of G, i.e., f [ f l8
[ j 8] is the l8-th basis function for thej 8-th

irreducible representation. Consider now the scalar prod

in the domain@0,2p#, of the k-th derivative of f l8
[ j 8] , i.e.,

f l8
[ j 8] (k) , with a functiongl

[ j ] , which transforms according to
the l-th column of thej-th irreducible representation ofG,

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!

5E
0

2p

dxE
0

2p

dx8 gl
[ j ]~x!DDAF

(k) ~x2x8! f l8
[ j 8]

~x8!. ~6!

The integrals in Eq.~6! are divided intoh parts to obtain

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!

5 (
l 50

(h21) E
2p/h l

2p/h~ l 11!

dx (
l 850

(h21)E
2p/h l8

2p/h( l 811)
dx8

3gl
[ j ]~x! DDAF

(k) ~x2x8! f l8
[ j 8]

~x8!. ~7!

ConsiderR[R( l )PG, such that for allx that belong to the
interval @(2p/h) l , (2p/h) ( l 11)#, y[Rx belongs to the
interval @0,2p/h#. The previous equation can then be rewr
ten as

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!

5 (
RPG

E
R21(0)

R21(2p/h)
CR21 dx (

R8PG
E

R821
(0)

R821
~2p/h!CR821dx8

3gl
@ j #~x! DDAF

(k) ~x2x8! f l8
[ j 8]

~x8!, ~8!

whereCR is 11 if R is a rotation and21 if R is a reflection.
~Note that for a one-dimensional function inversion, refle
tion operations are identical; hence there are only two p
sible operations in the group: rotation and reflection.! If we
now usey5Rx, which impliesR21y5x andCR21 dy5dx,
and similar definitions for the primed variables, then

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!

5 (
RPG

E
0

2p/h

dy (
R8PG

E
0

2p/h

dy8gl
[ j ]~R21y!

3DDAF
(k) ~R21y2R821

y8! f l8
[ j 8]

~R821
y8!, ~9!

since @CR21#251, by definition. Following Wigner’s nota
tion convention,39 we note that

f l8
[ j 8]

~R21x!5PRf l8
[ j 8]

~x!, ~10!

where the set$PR% is isomorphic to the set$R%, but acts on
functions rather than coordinates. Using this result in Eq.~9!,
we obtain
ct,

-
s-

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!5E

0

2p/h

dyE
0

2p/h

dy8gl
[ j ]~y!

3F (
RPG

(
R8PG

PR
† DDAF

(k) ~R21y2R821
y8! PR8G f l8

[ j 8]
~y!,

~11!

for a real function,gl
[ j ] . From the well-known relations,39

PRgl
[ j ]~x!5 (

k51

l j

gk
[ j ]~x!Gkl

( j )~R! ~12!

and

PRf l8
[ j 8]

~x!5 (
k851

l j 8

f k8
[ j 8]

~x!Gk8l8
( j 8)

~R!, ~13!

where l j is the dimension of thej-th irreducible repre-
sentation~and( j l j

25h, the total number of operations in th
group! andGkl

( j )(R) is the (k,l)-th element in the represen
tation matrix ofR in the j-th irreducible representation, Eq
~11! can be rewritten as

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!

5E
0

2p/h

dyE
0

2p/h

dy8 (
k51

l j

(
k851

l j 8

gk
[ j ]~y!

3F (
RPG

(
R8PG

Gkl
( j )* ~R! DDAF

(k) ~R21y2R821
y8!

3Gk8l8
( j 8)

~R8!G f k8
[ j 8]

~y8!. ~14!

Now, if the functionsf k8
[ j 8] andgk

[ j ] are normalized in the
interval @0,2p#, then using Eqs.~12!, ~13! and the ‘‘Great

Orthogonality Theorem,’’40 we may define functionsf̃ k8
[ j 8]

[Ah/ l j 8 f k8
[ j 8] andg̃k

[ j ][Ah/ l jgk
[ j ] that are normalized accord

ing to

(
k851

l j 8 E
0

2p/h

dyu f̃ k8
[ j 8]

~y!u251, ~15!

and

(
k51

l j E
0

2p/h

dyug̃k
[ j ]~y!u251. ~16!
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Using these in Eq.~14!, one obtains

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!

5E
0

2p/h

dyE
0

2p/h

dy8 (
k51

l j

(
k851

l j 8

g̃k
[ j ]~y!

3HAl j

h (
RPG

(
R8PG

Gkl
( j )* ~R!

3DDAF
(k) ~R21y2R821

y8! Gk8l8
( j 8)

~R8!Al j 8
h J f̃ k8

[ j 8]
~y8!.

~17!

The quantities inside the curly brackets above represent
SADAF operator acting on~appropriately normalized! func-
tions with the relevant symmetry. Although, in principle, a
quadrature scheme~e.g., Monte Carlo,41 quadrature on any
uneven grid, etc.! can be used to approximate the integrals
Eq. ~17!, the results from a discrete representation of
integrals using an extended trapezoidal rule41 are presented
here. This leads to a matrix~coordinate! representation for
the SADAFk-th derivative operator,

E
0

2p

dx gl
[ j ]~x! f l8

[ j 8] (k)
~x!5Dy(

i 50

L

(
l 50

L

(
k51

l j

(
k851

l j 8

g̃k
[ j ]~yi !

3FDyAl j

h

1

2~ 22dyi ,0
2dyi , 2p/h!

3 (
RPG

(
R8PG

Gkl
( j )* ~R!DDAF

(k) ~R21yi2R821
yl ! Gk8l8

( j 8)
~R8!

3
1

2~ 22dyl ,0
2dyl ,

2p
h !Al j 8

h G f̃ k8
[ j 8]

~yl !

5Dy(
i 50

L

(
l 50

L

(
k51

l j

(
k851

l j 8

g̈k
[ j ]~yi !

3H DyAl j~ 22dyi ,0
2dyi ,

2p
h !

2h

3 (
RPG

(
R8PG

Gkl
( j )* ~R!DDAF

(k) ~R21yi2R821
yl ! Gk8l8

( j 8)
~R8!

3Al j 8~ 22dyl ,0
2dyl ,

2p
h !

2h J f̈ k8
[ j 8]

~yl !, ~18!

whereL5 2p/(h Dy) and yi5 i Dy, and we have defined
new discrete functions,
he

e

f̈ k8
[ j 8]

~yj ![
1

A2
A22dyj ,0

2dyj ,
2p
h

f̃ k8
[ j 8]

~yj ! ~19!

and

g̈k
[ j ]~yi ![

1

A2
A22dyi ,0

2dyi ,2p/h g̃k
[ j ]~yi !, ~20!

that obey the normalization condition from the Trapezoid
rule approximation to Eqs.~15! and ~16!.

Since terms inside the curly brackets ($ %) in Eq. ~18!
constitute the matrix~coordinate! representation for the
SADAF k-th derivative operator acting on functions with th
aforementioned symmetry, it is clear that the representa
matrix G ( j )(R) is used as a similarity transformation on th
DAF, which results in the projection of thek-th derivative of
functions that transform according to thel8-th column of the
j 8-th irreducible representation.

Further, ‘‘even’’ derivative operators preserve the sy
metry of the functions they act on. Hence, for a nonze

result it is required that the functionsf l8
[ j 8] andgl

[ j ] have the
same symmetry and thusl5l8 and j 5 j 8 for even deriva-
tive operations. Odd derivative operators change the sym
try, under reflection, of the functions to which they are a
plied. Hence, in this case, (l, j ) and (l8, j 8) are different and

f l8
[ j 8] and gl

[ j ] belong to different irreducible representatio
~or different columns of the same irreducible representatio!,
with the symmetry of one being related to the other by
change in reflection parity.

Alternate ways to arrive at the SADAF representati
for the k-th derivative operator include the construction
the projection operators,39

P kk
( j )5

l j

h (
R

Gkk
( j )~R!* PR , ~21!

or

P ( j )5
l j

h (
R

x ( j )~R!* PR , ~22!

followed by their use in the similarity transformation of th
periodic symmetry discrete DAF expression in Eq.~5!. The
x ( j )(R) ~the ‘‘characters’’! are the sums~the traces! of the
diagonal elements,Gkk

( j )(R), for the j-th irreducible represen
tation.

As usual, if the eigenfunctions of such derivative mat
ces are calculated, one obtains eigenfunctions that trans
according to thel8-th column of thej 8-th irreducible repre-

sentation, namely,cl8
[ j 8] (x). ~Of course, in quantum mechan

cal applications, the choice of the point group is determin
by the symmetry of the potential, since the kinetic ener
operator is invariant to all symmetry operations belonging
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the rotation group.! To obtain the other functions in thej 8-th
irreducible representation, we make use of the tran
operator,39

P ll8
( j 8)

5
l j 8
h (

R
Gll8

( j 8)
~R!* PR , ~23!

so that

P ll9
( j 8)cl8

[ j 8]
~x!5cl

[ j 8]~x!dl8l9 . ~24!

Clearly, the eigenvalues for all$cl
[ j 8] (x)% ~for l

51, . . . ,l j 8) are the same.

III. THE ADIABATICALLY ADJUSTING PRINCIPAL
AXIS HYPERSPHERICAL COORDINATES
„APH… – SADAF REPRESENTATION

The body-fixed, mass-scaled Jacobi coordinates42,43 are
inappropriate for treating the strong-interaction region in
atomic systems havingD3h point group symmetry~i.e., tri-
atomic molecules where all three atoms are the same! be-
cause the application of an element of this point group t
single Jacobi coordinate results in mixing of the oth
coordinates.44 Hyperspherical coordinates resolve this pro
lem. The APH coordinate system,36,37 in particular, results in
a very simple expression for the action of the elements in
point group, since only one of the variables~the azimuthal
angle! is affected by this action. Furthermore, the azimut
angle in the APH system is half the azimuthal angle in
hyperspherical coordinates introduced by Smith a
Whitten,45 Johnson,46,47 Mead48 and Zickendraht,49 which
helps avoid half-integer angular momenta, which are cha
teristic of these other hyperspherical coordinates46,47,45,49and
whose occurrence is a manifestation of the ‘‘Berry’’ phase50

As a result of this, a system of three similar atoms has aC6v
point group symmetry in APH coordinates~which is isomor-
phic to D3h), as discussed in Ref. 37. The only variab
affected by the symmetry is the azimuthal angle,x, about the
C6-axis. In this Section we first rewrite the APH kinet
energy operator in a form that is convenient for our purpo
following this, a SADAF representation is constructed.

Consider the kinetic energy part of the triatom Ham
tonian in APH coordinates,36,37,46,47
er

-

a
r
-

e

l
e
d

c-

;

T52
\2

2mr5

]

]r
r5

]

]r
2

\2

2mr2 F 4

sin2u

]

]u
sin2u

]

]u

1
1

sin2u

]2

]x2G1
Ĵx

2

mr2~11sinu!
1

Ĵy
2

2mr2sin2u

1
Ĵz

2

mr2~12sinu!
2

ı\cosu

mr2sin2u
Ĵy

]

]x
. ~25!

The eigenfunctions of this kinetic energy operator are p
portional to r25/2,37 and hence are not well behaved atr
50. To obtain well-behaved solutions, Pack and Parke37

introduced an operator,T̃5r5/2Tr25/2, a transform ofT, by

T̃5r5/2Tr25/2

52
\2

2m

]2

]r2
1

15\2

8mr2
2

\2

2mr2 F 4

sin2u

]

]u
sin2u

]

]u

1
1

sin2u

]2

]x2G1
Au1Bu

2mr2
Ĵ21

1

mr2 FCu2
Au1Bu

2 G Ĵz
2

1S Au2Bu

2mr2 D 1

2
@ Ĵ1

21 Ĵ2
2#2

\

2mr2

3S cosu

sin2u

]

]x D @ Ĵ22 Ĵ1#. ~26!

Here Au51/(11sinu) , Bu51/2sin2u and Cu51/(12sinu)
are related to the moments of inertia of the triatom in t

body-fixed coordinates,Ĵx, Ĵy and Ĵz are components ofĴ,

the total angular momentum of the three-atom system,Ĵ6

5 Ĵx7 i Ĵy and Ĵ25 Ĵx
21 Ĵy

21 Ĵz
2. We form the matrix ele-

ment
^DLM
Jp uT̃uDL8M

Jp &5dL,L8H 2
\

2m H ]2

]r2
1

1

r2 F 4

sin2u

]

]u
sin2u

]

]u
1

1

sin2u

]2

]x2G J J
1dL,L8H Au1Bu

2mr2
\2J~J11!1

15\2

8mr2
1

1

mr2 FCu2
Au1Bu

2 G\2L2J
1dL11,L8H 2

\

2mr2
f ~L,J,p!S cosu

sin2u

]

]x D J 1dL12,L8H g~L,J,p!
Au2Bu

4mr2 J
1dL21,L8H 2

\

2mr2
f ~L,J,p!S cosu

sin2u

]

]x D J 1dL22,L8H g~L,J,p!
Au2Bu

4mr2 J , ~27!
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TABLE I. Irreducible representations ofE1 in the point groupC6v . Basis@x,y#.

E C6 C6
21 C3 C3

21 C2

x8 x 1
2

x2
A3
2

y
1
2

x1
A3
2

y 2
1
2

x2
A3
2

y 2
1
2

x1
A3
2

y 2x

y8 y
A3
2

x1
1
2

y 2
A3
2

x1
1
2

y
A3
2

x2
1
2

y 2
A3
2

x2
1
2

y 2y

F1 0

0 1
G F 1

2
2

A3

2

A3

2

1

2
G F 1

2

A3

2

2
A3

2

1

2
G F2

1

2
2

A3

2

A3

2
2

1

2
G F 2

1

2

A3

2

2
A3

2
2

1

2
G F21 0

0 21
G

sv1
sv2

sv3
sd1

sd2
sd3

x8 x 2
1
2

x1
A3
2

y 2
1
2

x2
A3
2

y
1
2

x1
A3
2

y 2x 1
2

x2
A3
2

y

y8 2y
A3
2

x1
1
2

y 2
A3
2

x1
1
2

y
A3
2

x2
1
2

y y 2
A3
2

x2
1
2

y

F1 0

0 21
G F2

1

2

A3

2

A3

2

1

2
G F 2

1

2
2

A3

2

2
A3

2

1

2
G F 1

2

A3

2

A3

2

1

2
G F21 0

0 1
G F 1

2
2

A3

2

2
A3

2
2

1

2
G

re

-

q

tor

F-

se,

rgy
d

whereDLM
Jp are the normalized WignerD functions51 with

definite parity,p, defined in37

DLM
Jp 5A 2J11

16p2~11dL0!

3@DLM
J 1~21!J1L1p D2LM

J #. ~28!

The f (L,J,p) are the Coriolis coupling coefficients and a
defined by37

f ~L,J,p!5^DLM
Jp u~ Ĵ22 Ĵ1!uDL8M

Jp &, ~29!

and theg(L,J,p) are the asymmetric top coupling coeffi
cients defined by37

g~L,J,p!5^DLM
Jp u~ Ĵ1

21 Ĵ2
2!uDL8M

Jp &. ~30!

In the coordinate representation, the Hamiltonian in E
~27! can be written in terms of the tensor products,

T̃L,L5FTr1
15\2

8mr2
I rG ^ I u ^ I x1F 2\2

2mr2
I rG ^ Tu ^ I x

1F 2\2

2mr2
I rG ^ 2Bu ^ Tx1FJ~J11!

\2

2mr2
I rG

^ @Au1Bu# ^ I x1FL2
\2

2mr2
I rG

^ @2Cu2Au2Bu# ^ I x , ~31!
.

T̃L,L615F 2\2

2mr2
f ~L,J,p!I rG ^ Du ^ Tx

1 ~32!

and

T̃L,L625F 2\2

2mr2
g~L,J,p!I rG ^

1

2
@Au2Bu# ^ I x , ~33!

where the symbol ^ implies a direct product,Du

5cosu/sin2u is a diagonal matrix inu, I r , I u andI x are unit
matrices inr, u andx respectively,Tr is the matrix coordi-
nate representation of the operator„2 (\/2m) (]2/]r2)…, Tu

is the matrix coordinate representation of the opera
„2 (4/sin2u) (]/]u)sin2u (]/]u)…, Tx is the matrix coordinate
representation of the operator (2 ]2/]x2), Tx

1 is the matrix
representation of the operator]/]x andAu , Bu andCu are
diagonal matrices inu as defined above.

In the next subsections we obtain the SADA
representation for the operatorsTr , Tu , Tx and Tx

1 , which
then can be used to form the total Hamiltonian matrix.

A. Azimuthal angle matrices Tx and Tx
1

We consider all the possibilities for the three atom ca
namely,~i! all atoms are dissimilar—theABC case,~ii ! two
atoms are similar—theA2B case; and~iii ! all three atoms are
similar—theA3 case.

In the case of three dissimilar atoms, the potential ene
surface has aC1 point group symmetry along the body-fixe
y-axis in the APH coordinate system. Hence,x, the azi-
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TABLE II. Irreducible representations ofE2 in the point groupC6v . Basis@(x22y2),2xy#.

E C6 C6
21 C3 C3

21 C2

x822y82 x22y2
2

1
2

(x22y2) 2
1
2

(x22y2) 2
1
2

(x22y2) 2
1
2

(x22y2) x22y2

2
A3
2

2xy 1
A3
2

2xy 1
A3
2

2xy 2
A3
2

2xy

2x8y8 2xy A3
2

(x22y2) 2
A3
2

(x22y2) 2
A3
2

(x22y2)
A3
2

(x22y2) 2xy

2
1
2

2xy 2
1
2

2xy 2
1
2

2xy 2
1
2

2xy

F1 0

0 1
G F2

1

2
2

A3

2

A3

2
2

1

2
G F 2

1

2

A3

2

2
A3

2
2

1

2
G F 2

1

2

A3

2

2
A3

2
2

1

2
G F2

1

2
2

A3

2

A3

2
2

1

2
G F1 0

0 1
G

sv1
sv2

sv3
sd1

sd2
sd3

x822y82 x22y2
2

1
2

(x22y2) 2
1
2

(x22y2) 2
1
2

(x22y2) x22y2
2

1
2

(x22y2)

2
A3
2

2xy 1
A3
2

2xy 1
A3
2

2xy 2
A3
2

2xy

2x8y8 22xy 2
A3
2

(x22y2)
A3
2

(x22y2)
A3
2

(x22y2) 22xy 2
A3
2

(x22y2)

1
2

2xy
1
2

2xy
1
2

2xy
1
2

2xy

F1 0

0 21
G F 2

1

2
2

A3

2

2
A3

2

1

2
G F2

1

2

A3

2

A3

2

1

2
G F2

1

2

A3

2

A3

2

1

2
G F1 0

0 21
G F 2

1

2
2

A3

2

2
A3

2

1

2
G

c

re

y

on

.
muthal angle, ranges from 0 to 2p, and the only symmetry
here is the periodicity of functions ofx ~with period 2p).
From Eq.~5!,

Tx~x i ,x j !52Dx DDAF
(2) ~x i2x j ! ~34!

and

Tx
1~x i ,x j !5Dx DDAF

(1) ~x i2x j !, ~35!

both expressions leading to circulant-Toeplitz matrices.
In the case of two similar atoms, the potential surfa

has aC2v point group symmetry along the body fixedy-axis,
leading to four different one-dimensional irreducible rep
sentations, namely,A1 , A2 , B1 and B2. The characters for
these irreducible representations are$1,(21)p,(21)q,
(21)(p1q)%, wherep andq represent the rotation symmetr
~underC2) and reflection symmetry@undersv(yz)#, respec-
tively, and (p1q) represents the symmetry under reflecti
e

-

through the planesv8(xy). Using these characters in Eq
~18!, we obtain

Tx~x i ,x j !

5Dx
A22dx i ,0

2dx i , p/2

A2
@DDAF

(2) ~x i2x j !1~21!p

3DDAF
(2) ~x i2x j2p!1~21!q DDAF

(2) ~x i1x j !

1~21!(p1q) DDAF
(2) ~x i1x j2p!#

A22dx j ,0
2dx j , p/2

A2

~36!

and

Tx
1~x i ,x j !

5Dx
A22dx i ,0

2dx i , p/2

A2
@DDAF

(1) ~x i2x j !1~21!p

3DDAF
(1) ~x i2x j2p!1~21!qDDAF

(1) ~x i1x j !

1~21!(p1q) DDAF
(1) ~x i1x j

2p!#
A22dx j ,0

2dx j , p/2

A2
, ~37!



s

in

er

c-

in
-

10290 J. Chem. Phys., Vol. 110, No. 21, 1 June 1999 Iyengar et al.
where we have used the fact thatj 5 j 8 for the even deriva-
tives, while for odd derivatives they are related by (21)p

5(21)p8 and (21)q52(21)q8.
For three similar atoms, i.e.,A3, the potential surface ha

a C6v point group symmetry along the body fixedy-axis. The
one-dimensional irreducible representations in this po
group areA1 , A2 , B1 , B2 @having characters$1,(21)a,1,
(21)b,(21)(a1b)% wherea represents the symmetry und
the rotation operationsC6 , C6

21 and C2 ; b represents the
in

e

r
ich

re
h

t

symmetry under reflections through vertical planessv1
, sv2

andsv3
; and (a1b) represents the symmetry under refle

tions through dihedral planessd1
, sd2

andsd3
# and the two-

dimensional irreducible representations areE1 and E2 ~the
irreducible representation matrices for which can be found
Tables I and II!. Using the characters for the one
dimensional irreducible representations in Eq.~18!, the de-
rivative matrices are obtained as
Tx~x i ,x j !5Dx
A22dx i ,0

2dx i , p/6

A2
FDDAF

(2) ~x i2x j !1~21!a DDAF
(2) S x i2x j2

p

3 D1~21!a DDAF
(2) S x i2x j1

p

3 D
1DDAF

(2) S x i2x j2
2p

3 D1DDAF
(2) S x i2x j1

2p

3 D1~21!a DDAF
(2) ~x i2x j2p!1~21!b DDAF

(2) ~x i1x j !

1~21!b DDAF
(2) S x i1x j2

2p

3 D1~21!b DDAF
(2) S x i1x j1

2p

3 D1~21!(a1b) DDAF
(2) S x i1x j2

p

3 D
1~21!(a1b) DDAF

(2) ~x i1x j2p!1~21!(a1b) DDAF
(2) S x i1x j1

p

3 D GA22dx j ,0
2dx j , p/2

A2
~38!

and

Tx
1~x i ,x j !5Dx

A22dx i ,0
2dx i , p/6

A2
FDDAF

(1) ~x i2x j !1~21!a DDAF
(1) S x i2x j2

p

3 D1~21!a DDAF
(1) S x i2x j1

p

3 D
1DDAF

(1) S x i2x j2
2p

3 D1DDAF
(1) S x i2x j1

2p

3 D1~21!a DDAF
(1) ~x i2x j2p!1~21!b DDAF

(1) ~x i1x j !

1~21!b DDAF
(1) S x i1x j2

2p

3 D1~21!b DDAF
(1) S x i1x j1

2p

3 D1~21!(a1b) DDAF
(1) S x i1x j2

p

3 D
1~21!(a1b) DDAF

(1) ~x i1x j2p!1~21!(a1b) DDAF
(1) S x i1x j1

p

3 D GA22dx j ,0
2dx j , p/2

A2
, ~39!
ix,
y of

, but
-
ite
where, again, we usej 5 j 8 for the even derivatives, and
(21)a5(21)a8, (21)b52(21)b8 for odd derivatives.

In the case of theE-sets, the derivative matrices conta
four blocks~each labeled by different values fork andk8),
with the form of the (k,k8) block being as in the term in th
curly brackets in Eq.~18!. ~In this case,k andk8 can assume
the values 1 or 2.! We present below the form of the fou
blocks for the derivative matrices acting on a function wh
transforms according to thel-th column of one of the
E-irreducible representations. Further, to keep the exp
sions simple, we assume here a discretization scheme w
omits the two end points, 0 and 2p/h. We then have

@Tx# (x i ,x j ,k,k8)5
1

6 (
RPC6v

(
R8PC6v

Gkl
( j )* ~R!

3DDAF
(2) ~R21x i2R821

x j ! Gk8l
( j )

~R8! ~40!
s-
ich

and

@Tx
1# (x i ,x j ,k,k8)5

1

6 (
RPC6v

(
R8PC6v

Gkl
( j )* ~R!

3DDAF
(1) ~R21x i2R821

x j ! Gk8l8
( j )

~R8!.

~41!

In these expressions, the superscript~j! can correspond to
eitherE1 or E2. For the case of the second derivative matr
l can take the values 1 or 2 depending on the symmetr
the function acted upon. For the first derivative, again,l can
take any of the two values for the same reason as above
l8 must be different froml. This is because the two col
umns of anyE-set correspond to functions that have oppos
symmetry under reflection.
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B. The polar angle matrix Tu

To obtain the SADAF representation for th
Tu52 (4/sin2u) (]/]u) sin2u (]/]u) operator, we note that th
polar angleu is defined on the domain@0,p/2# and the
eigenfunctions of theTu operator, the Legendre polynomial
satisfy Neumann boundary conditions~i.e., the first deriva-
tive being zero at the boundary pointsu50 and u5p/2).
Since the Legendre polynomials form a complete set, thu
dependence of any solution to the Schro¨dinger equation
@whose kinetic energy part is described in Eq.~27!# can be
expanded in terms of them, and hence also must satisfy
same boundary conditions. Furthermore, the Legendre p
nomials of orderl, Pl(cos2u), belong to theA1 irreducible
representation ofC2v ~which is a result of the Neuman
boundary conditions and periodicity! and hence all theu
dependence of the solutions must have this symmetry. T
the use ofC2v adapted derivative operators in the formati
of Tu must result in a matrix representation that correc
acts on the Legendre polynomials. Using Eq.~37! along with
the fact thatp5q50 for theA1 irreducible representation,

F ]

]uG
u i ,u j

[Du
A22du i ,0

2du i , p/2

A2
@DDAF

(1) ~u i2u j !

1DDAF
(1) ~u i2u j2p!1DDAF

(1) ~u i1u j !

1DDAF
(1) ~u i1u j2p!#

A22du j ,0
2du j , p/2

A2
.

~42!

The SADAF representation matrix for theTu operator can
then be written as the simple matrix product,

~Tu!u i ,u j
5

24

sin2u i
(
k51

Nu F ]

]uG
u i ,uk

sin2ukF ]

]uG
uk ,u j

, ~43!

whereu i , u j anduk are grid points,Nu in number.
However, the quantity 1/sin2u, is singular atu50 and

u5p/2. One way to overcome this problem is to choose
grid that avoids the two singular points. To this end, the fi
point on the grid is chosen atDu/2 and the last point a
(p/22 Du/2), whereDu is the grid spacing. This metho
should work well in most cases, except when dealing w
functions that exhibit rapid oscillatory behavior near the t
end points 0 andp/2. In such cases, though, an alterna
method could be used in view of the fact that

]

]u
sin2u

]

]u
Pl~cos2u! ~44!

tends linearly to zero atu50 andu5p/2. Hence, the singu
larity must cancel out in the limit asu→0 and u→p/2.
Therefore, the l’Hoˆpital rule can be used to obtain the lim
of the quotient asu→0 andu→p/2. This is done by differ-
entiating both the numerator and denominator to obtain

Tuuu50522F ]2

]u2
sin2u

]

]uGU
u50

~45!

and
he
y-

s,

a
t

h

Tuuu5p/2512F ]2

]u2
sin2u

]

]uGU
u5 p/2

. ~46!

The discrete representations for these two operators ca
obtained by using the SADAF representation for the deri
tive operators acting on functions belonging to theA1 irre-
ducible representation ofC2v ;

62(
k51

Nu F ]2

]u2G
u i ,uk

sin2ukF ]

]uG
uk ,u j

, ~47!

where the matrix elements@]2/]u2#u i ,uk
and @]/]u#uk ,u j

are
similar in form to the expressions, Eqs.~36! and ~37!.

C. The nonantihermiticity of the /u and the
nonhermiticity of Tu matrices

The DAF matrix representation for the]/]u operator in
Eq. ~42! is not anti-Hermitian. This makes theTu matrix
nonHermitian. In this subsection, we will discuss the spe
ics of this in some detail.

From the matrix representation of]/]u in Eq. ~42!, it is
clear that the (u i ,u j )-th element of this matrix is not the
negative of its adjoint element, (u j ,u i), if the last two ele-
ments of the sum are nonzero, i.e., if (i 1 j )<W or if @( i
1 j )22(Nu21)#<W, whereNu5p/(2 Du) is the number
of u-grid points, andW is the band width of the DAF, i.e.
the number of grid points over which the DAF is numerica
nonzero. In other words the DAF representation for]/]u
above is non-anti-Hermitian in two regions:~i! the top left
triangular corner of the matrix and~ii ! the bottom right tri-
angular corner of the matrix. This makes theTu matrix non-
Hermitian in those two regions as well. Furthermore, the s
of the regions is proportional toW Du.

Now, one of the properties of the DAF is that its ban
width is independent of the grid sizeDu as long as the value
of s andM are kept constant. Hence, asDu is made smaller,
the total number of grid points,Nu , increases and the rati
W/Nu (52W Du/p) gets smaller. Hence, as the grid spa
ing is reduced, so also is the region of nonhermiticity and
the continuous limit, i.e., asDu becomes infinitesimally
small, this region,W/Nu}W Du, becomes infinitesimally
small. Hence, in the continuous limit, theTu matrix becomes
hermitian ~and the]/]u matrix is anti-Hermitian! and we
conclude thatthe nonhermiticity problem is created by
the finite discretization. Furthermore, as we will see in th
next section, we find that the eigenvalues of theTu matrix
are all real, in spite of its non-Hermitian structure. Anoth
important feature is that theTu matrix possesses a certa
additional symmetry @Tu(I ,J)5Tu(Nu112I ,Nu112J)#
which makes it necessary to store only one half of the ma
~the upper or lower triangle!, just as is the case for Hermitia
matrices.

D. Radial part

In order to obtain a faithful representation for theTr

operator, we first examine the asymptotic behavior of
wavefunction as a function ofr. Small r values~in APH
coordinates! represent the situation where the three atoms
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close to each other and eventually coalesce~at r50), while
the large values ofr represent the impending dissociatio
limits. Since we are interested in obtaining only rotation
and vibrational states, we will concentrate on an ene
range substantially lower than both of these limits. Hen
our wavefunction must decay to zero for small and la
values ofr. Where the wavefunctions become numerica
insignificant will, of course, depend on the system un
consideration.

We construct a domain inr ~say @rmin ,rmax#), and re-
quire that the wavefunction numerically tend to zero outs
this region. In this case, we can discretize the reg
@rmin ,rmax#, such thatr i5rmin1( i 21)3(Dr). Then the
Tr operator in this domain can be written as

Tr5Dr ds,M
(2) ~r i2r j !, ~48!

whereds,M
(2) (r i2r j ) is the continuous DAF representation

the second derivative operator and has the form given in
~2!.

IV. COMPUTATIONAL TESTS WITH NO POTENTIAL

Testing the accuracy and the computational efficiency
the symmetry-adapted DAF expressions has been don
two stages. To begin, the potential was set to zero and
submatricesTx and Tu ~for all point groups for the three
atom case! were independently diagonalized52 to obtain so-
lutions to simple~analytically solvable! eigenvalue prob-
lems. The submatrixTx

1 is tested by examining its action o
the eigenfunctions ofTx . The results from these tests a
discussed in this Section. In the next section, the H3

1 molecu-
lar ion potential due to Meyer, Botschwina and Burton38 is
considered and ro-vibrational eigenstates calculated~using
the APH-SADAF kinetic energy operator! by the Arnoldi
iterative diagonalization scheme.53–55 The resulting eigen-
states are compared with those obtained in previ
studies.56–63We use the Hermite-DAF given in Eq.~2!, with
s/D 52.5 andM560 for all the calculations in this paper

A. Zero-potential tests: x-dependent operators

To test the accuracy of the SADAF representation forTx

and Tx
1 , consider the one-dimensional particle-in-a-ring

genvalue problem,

]2

]x2
f ~x!5l f ~x!, ~49!

with periodic boundary conditions. The eigenvalues arel
52n2 for integral values ofn, and the periodic eigenfunc
tions are the corresponding Fourier functions,$exp(ınx)%. Di-
rect diagonalization of theC1 matrix representation of the
second derivative operator in Eq.~34! should yield the eigen-
valuesl and the eigenfunctionsf (x), the respective accu
racy thus providing a measure of the efficiency of t
SADAF representation. Furthermore, theC2v or theC6v rep-
resentations for the second derivative operator can also
used; however, direct diagonalization of these matrices
yield only eigenvalues and eigenfunctions that transform
cording to the respective chosen irreducible representa
In Table III we outline the symmetries~i.e., the irreducible
l
y
,

e

r

e
n

q.

f
in

he

s

-

be
ill
c-
n.

representation to which each function belongs! for the first
few eigenfunctions of Eq.~49!. For example, by choosing
the A1 irreducible representation ofC2v to represent the de
rivative operations, only the cosine functions with even
genvalues are obtained.

We perform calculations for each symmetry group us
various grid spacings. This is done to test the accuracy
the robustness of the SADAF representation. To evaluate
quality of these calculations we define

e52 log10S ulcalc2lexactu
ulexactu

D , ~50!

which measures the number of significant figures in the c
culated value,lcalc , with respect to the true value,lexact.

In Table IV we present the results for theC1 point group
for 10 different grid sizes. For each grid we present the nu
ber of eigenvalues for whiche.10, 8 and 6~i.e., the num-

TABLE III. Eigenvalues of theTx matrix and the symmetry of each eigen
function in a specific point group.

Eigenvalue Eigenfunction C1 C2v C6v

0 cos0x A A1 A1

1 cos1x A B1 E1

1 sin1x A B2 E1

2 cos2x A A1 E2

2 sin2x A A2 E2

3 cos3x A B1 B1

3 sin3x A B2 B2

4 cos4x A A1 E2

4 sin4x A A2 E2

5 cos5x A B1 E1

5 sin5x A B2 E1

6 cos6x A A1 A1

6 sin6x A A2 A2

7 cos7x A B1 E1

7 sin7x A B2 E1

8 cos8x A A1 E2

8 sin8x A A2 E2

9 cos9x A B1 B1

9 sin9x A B2 B2

10 cos10x A A1 E2

10 sin10x A A2 E2

TABLE IV. Tx accuracy test for point groupC1.

Dxa Nx
b e.10c e.8c e.6c

1.0 360 123 151 185
2.0 180 61 77 93
3.0 120 41 51 65
5.0 72 25 33 41

10.0 36 13 15 21
15.0 24 9 11 13
24.0 15 5 7 9
30.0 12 5 5 7
45.0 8 3 3 5
60.0 6 3 3 3

aGrid spacing in degrees.
bNumber of grid points.
cThe numbers in these columns represent the number of eigenvalue
tained that have values ofe greater than 10, 8 and 6, respectively.~See Eq.
~50!.!
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TABLE V. Tx accuracy test for the point groupC2v

A1
a A2

a

Dxb Nx
c e.10 e.8 e.6 Nx

c e.10d e.8d e.6d

1.0 91 32e 32d 40e 37d 48e 45d 89 31e 30d 39e 36d 47e 43d

2.0 46 17 16 21 19 23 23 44 16 15 20 18 24 2
3.0 31 12 11 14 13 17 16 29 11 10 13 12 16 1
5.0 19 7 8 9 10 11 11 17 6 6 8 7 10 9

10.0 10 4 4 4 4 6 5 8 3 3 3 3 5 4
15.0 7 3 3 3 3 4 4 5 2 2 2 2 3 3
22.5 5 2 2 2 2 3 3 3 1 1 1 1 2 2

B1
a B2

a

Dxb Nx
c e.10d e.8d e.6d Nx

c e.10d e.8d e.6d

1.0 90 32e 30d 39e 37d 47e 44d 90 32e 30d 39e 37d 47e 44d

2.0 45 16 15 20 19 24 22 45 16 15 20 19 24 2
3.0 30 11 10 14 12 16 15 30 11 10 14 12 16 1
5.0 18 7 6 8 8 10 9 18 7 6 8 8 10 9

10.0 9 3 3 4 4 5 5 9 3 3 4 4 5 5
15.0 6 2 2 3 3 3 3 6 2 2 3 3 3 3
22.5 4 1 1 2 2 2 2 4 1 1 2 2 2 2

aThe irreducible representation.
bGrid spacing in degrees.
cNumber of grid points.
dThe number of functions that have first derivatives accurate to the indicated level.~See the text for details.!
eThe number of eigenvalues within the indicated accuracy level.
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ber of eigenvalues that match the exact eigenvalue up to
digits, 8 digits and 6 digits, respectively!. Even for a grid
spacing as large as 60 degrees~i.e., 6 points on the grid
between 0 and 2p), we get 3 eigenvalues~half the total
number of eigenvalues in this representation! accurate up to
10210 or more. This is a clear indication of the robustness
the SADAF representation. For all the grids studied at le
one-third of the eigenvalues were found to be accurate u
or beyond 10210.

In Table V we present results for theC2v point group for
irreducible representationsA1 , A2 , B1 andB2 for 7 different
grid sizes. The number of grid points in theA1 irreducible
representation is greater~by 2 additional points! than the
number of grid points in theA2 irreducible representation
~for the same grid size! because unlikeA1-irreducible repre-
sentation functions,A2 irreducible representation function
are zero at the end points of the grid, and consequently n
not be sampled there. Similarly, the functions that transfo
according to theB1 andB2 irreducible reducible representa
tions are zero at one of the end points of the grid and ha
local extrema at the other. This is clear from the charac
table forC2v .64 Again, for the calculations for theC2v point
group, at least one-third of the eigenvalues are accurate u
or beyond 10210.

In Table VI we provide the results for theC6v point
group. Calculations are reported for 5 different grid sizes
the singly degenerate irreducible representations and 7
ferent grid sizes for the doubly degenerate irreducible rep
sentation. Here again a third of the eigenvalues are foun
be accurate up to or beyond 10210.
10

f
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B. Zero-potential tests: u-dependence

To test the accuracy of the SADAF representation
the Tu operator, consider Legendre’s equation,

F24
]

]u
sin2u

]

]uGPl~cos2u!516l ~ l 11!Pl~cos2u!, ~51!

wherePl(cos2u) are the Legendre polynomials of orderl and
the operator on the left hand side of this equation is theTu

operator, which is represented using the SADAF.
In Table VII we present results from direct diagonaliz

tion of theTu-SADAF representation matrix for 8 differen
grid sizes. Again, more than a third of the eigenvalues
accurate up to or beyond 10210.

V. COMPUTATIONAL TESTS FOR H 3
1 MOLECULAR

ION—ROVIBRATIONAL STATES CALCULATIONS

The first observation of the infrared spectrum of H3
1 was

carried out in 1980.65 Subsequent to this, accurate grou
electronic potential energy surfaces of H3

1 have been
calculated38,66 which has stimulated a great amount
experimental67,68 and theoretical work~both quantum57,60–62

and semi-classical58,59,63! to determine the rotational–
vibrational eigenvalues of this molecule. This has made H3

1 a
benchmark system for new methods. However, even
cently, questions have been raised regarding the spectru
H3

1 .69

We use the analytical potential surface due to Mey
Botschwina and Burton~MBB!.38 They performedab initio
calculations for 69 configurations of the H3

1 molecular ion.
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TABLE VI. Tx accuracy test for the point group C6v.

A1
a A2

a

Dxb Nx
c e.10 e.8 e.6 Nx

c e.10d e.8d e.6d

1.0 31 11e 11d 14e 13d 16e 15d 29 10e 10d 13e 12d 15e 14d

2.0 16 6 5 7 7 9 8 14 5 5 6 5 8 7
3.0 11 4 4 5 5 6 5 9 3 3 4 4 5 4
5.0 7 3 3 3 3 4 3 5 2 2 2 2 3 2
6.0 6 2 2 3 3 3 3 4 1 1 2 2 2 2

B1
a B2

a

Dxb Nx
c e.10d e.8d e.6d Nx

c e.10d e.8d e.6d

1.0 30 11e 10d 13e 12d 16e 14d 30 11e 10d 13e 12d 16e 12d

2.0 15 5 5 7 6 8 7 15 5 5 7 6 8 7
3.0 10 4 3 5 4 5 5 10 4 3 5 4 5 5
5.0 6 2 2 3 2 3 2 6 2 2 3 2 3 3
6.0 5 2 2 2 2 3 2 5 2 2 2 2 3 2

E1
a E2

a

Dxb Nx
c e.10d e.8d e.6d Nx

c e.10d e.8d e.6d

1.0 30 21
e

20d 26e 25d 31e 29d 60 21e 20d 26e 24d 32e 29d

2.0 30 11 10 13 12 16 15 30 11 10 14 12 16 1
3.0 20 7 7 9 8 11 10 20 8 7 9 8 11 10
5.0 12 5 4 5 5 7 6 12 4 4 6 5 7 6
6.0 10 4 3 5 4 5 5 10 4 4 4 4 6 5

10.0 6 2 2 3 3 3 3 6 2 2 2 2 4 3
15.0 4 1 1 2 2 2 2 4 2 2 2 2 2 2

aThe irreducible representation.
bGrid spacing in degrees.
cNumber of grid points.
dThe number of functions that have first derivatives accurate to the indicated level.~See the text for details.!
eThe number of eigenvalues within the indicated accuracy level.
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The highest energy configuration was; 23000 cm21 above
the bottom of the well. The global minimum in the groun
electronic potential energy surface of H3

1 corresponds to an
equilateral triangle configuration. The surface has aD3h

point group symmetry. The zero-point energy on the MB
surface38 is 4363.5 cm21. The ground electronic surface ha
a deep, narrow well~of magnitude; 12000 cm21, measured
from the bottom of the well! which supports a small numbe
of widely spaced bound states. Above the well, the surf
flattens considerably leading to an increase in the densit
states and making the collinear configuration accessi

TABLE VII. Tu accuracy test.

Dxa Nx
b e.10c e.8c e.6c

1.0 90 35 42 49
2.0 45 17 20 24
3.0 30 12 14 17
5.0 18 7 8 11
9.0 10 4 5 6

10.0 9 4 5 6
15.0 6 3 3 4
22.5 4 2 2 3

aGrid spacing in degrees.
bNumber of grid points.
cThe numbers in these columns represent the number of eigenvalue
tained that have values ofe greater than 10, 8 and 6, respectively.~See Eq.
~50!.!
e
of
e.

Hence, large amplitude, floppy motions can be seen at e
gies greater than 12000 cm21 from the bottom of the well.

The most detailed quantum-mechanical treatments of
rotational–vibrational eigenvalue problem of H3

1 have been
carried out by Whitnell and Light,60,61Tennyson56,57and Ba-
cic and Zhang.62 Whitnell and Light used the full symmetry
of the H3

1 system to obtain a 3D-DVR-based representat
of the APH Hamiltonian. The eigenvalues of the Ham
tonian matrix were obtained by using a success
truncation–diagonalization method. They constructed
full 3D Hamiltonian matrix using a basis that was genera
from a series of reduced dimensionality 1D and 2D calcu
tions. In many ways this is akin to neglecting off-diagon
elements to obtain blocks of the original 3D Hamiltonia
matrix. That is, each block is diagonalized independen
and the eigenvectors are then used again to represent th
3D Hamiltonian matrix. This new matrix is expected to b
more sparse than the original full matrix, if the off-diagon
block-elements are small. Whitnell and Light used this id
to obtain a large number of states for total angular mom
tum J50.

Tennyson and Henderson express the Hamiltonian u
a single set of Jacobi coordinates. As discussed earlie
Sec. III, this coordinate system is not convenient for t
treatment of the strong-interaction region in triatomic sy
tems havingD3h point group symmetry. The reason for th
is that the application of an element of this point group to

ob-
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single Jacobi coordinate results in the mixing of the ot
coordinates.44 Tennyson and Henderson circumvent th
problem bynot using the full symmetry of the potential.~The
symmetry they used wasC2v , whereas a surface for thre
identical atoms has aD3h point group symmetry.! As a re-
sult, their matrices are larger than necessary. In their Jac
coordinate Hamiltonian, the angular part was represented
ing the DVR, whereas the two distance coordinates w
represented using Finite Basis Representation~FBR!. These
investigators used their procedure to obtain a great num
of states all the way up to dissociation~even though the
Meyer, Botschwina and Burton potential is expected to
accurate only up to; 23000 cm21 above the bottom of the
well52,61 and the true dissociation is estimated at; 35000
cm21 56,70!.

Bacic and Zhang used all three sets of Jacobi coordin
to express the Hamiltonian as shown in Refs. 71–73. T
enabled them to use the complete symmetry of the pote
surface, but their basis set was correspondingly ov
complete and hence nonorthogonal. They have used
method to obtain rotational–vibrational states of H3

1 for total
angular momentaJ50 andJ51.

A. Comparison of SADAF to earlier results

In this section, we obtain some of the bound eigensta
of H3

1 ~for J50) to check the accuracy and computation
effectiveness of the APH-SADAF Hamiltonian matrix. Th
MBB potential38 is used because of the availability of prev
ous results for comparison.56,57,60–62Further, in this work we
use a regular coordinate grid on which the APH-SADA
Hamiltonian matrix is obtained. Other methods, such as
ing surface functions to form the full 3D-Hamiltonian, a
discussed elsewhere.74 ~It may be noted here that surfac
functions, while providing a solution to the two-dimension
u-x problem for fixedr, also provide a suitable ‘‘potential
adapted’’ basis to expand the full 3D-Hamiltonian. Hen
matrices obtained from using this technique may be expe
to be smaller in size as compared to those obtained here
using a regular grid.!

Since the dimensionality of the problem is high~3D!, the
Hamiltonian matrix will also be large, and hence employi
a direct diagonalization scheme to solve the correspond
eigenvalue problem is not viable. Instead, an iterative dia
nalization technique can be used, a variety of which
available in the literature.54,55,75,22,23,76–79,18All these tech-
niques are based on the propagation of an initial vector
the application of a dynamical operator, which, in general
a polynomial function of the Hamiltonian matrix, to obtain
Krylov-like basis. This basis representation of the Ham
tonian is then diagonalized to obtain an invariant subspac
eigenvectors. Some of these methods require the Ha
tonian matrix to be normalized, that is, to have eigenval
only in the range@21,11#, which can be easily achieve
using a method based on theL2-norm.80

We use the Arnoldi iterative procedure53–55 which in-
volves the repetitive application of the Hamiltonian matrix
an initial vector to form a basis set; the representation of
Hamiltonian in this new basis set leads to a Hessenb
form53 for the Hamiltonian, which is relatively easy to diag
r
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onalize. The action of the Hamiltonian matrix on any vec
is calculated easily, taking advantage of the sparse struc
of the APH-SADAF Hamiltonian matrix, which also obvi
ates the need to store the full Hamiltonian matrix for th
purpose. We do our calculations on a parallel computer~an
IBM-SP2!, so that many elements of the resultant vector
calculated simultaneously.

TABLE VIII. Equivalence of irreducible representations ofC6v andD3h

C6v D3h

A1 A18
A2 A28
B1 A19
B2 A29
E1 E9
E2 E8

TABLE IX. Convergence of vibrational band origins ofH3
1 . The irreduc-

ible representation isA1 in C6v andA18 in D3h.

I II III IV V VI HT a

rmin
b 1.20 1.20 1.20 1.20 1.20 1.20

rmax
b 5.20 5.20 5.20 5.20 5.20 5.50
Nr

b 16 16 24 32 48 64
Nu

c 45 90 90 90 90 90
Nx

d 7 13 13 13 13 13
Ne 5040 18720 28080 37440 56160 74880

1 0.0f 0.0f 0.0f 0.0f 0.0f 0.0f @4363.5#g

2 9.6 9.4 0.0 0.0 0.0 0.0 3178.4
3 0.9 1.0 0.0 0.0 0.0 0.0 4777.0
4 30.1 30.1 0.0 0.0 0.0 0.0 6262.0
5 0.5 0.3 0.0 0.0 0.0 0.0 7282.5
6 3.5 3.5 0.0 0.0 0.0 0.0 7769.1
7 0.9 1.1 0.2 0.2 0.2 0.2 8996.6
8 4.8 0.7 0.0 0.0 0.0 0.0 9251.5
9 3.8 0.3 0.1 0.1 0.1 0.1 9964.0

10 18.7 0.2 0.1 0.1 0.1 0.1 10592.1
11 2.7 0.7 0.7 0.7 0.7 0.7 10913.1
12 6.8 0.4 0.4 0.4 0.4 0.6 11809.2
13 13.7 3.3 0.1 0.1 0.1 0.1 12145.8
14 3.5 0.8 1.0 1.0 0.1 0.9 12584.4
15 5.2 4.2 4.2 4.2 4.3 13284.7
16 40.0 40.0 40.0 40.1 39.9 13391.7
17 9.3 9.3 9.2 9.2 9.3 13705.4
18 4.5 4.6 4.6 4.6 4.6 14185.5
19 0.5 0.4 0.3 0.4 14662.6
20 4.4 4.7 4.5 14885.8
21 5.9 0.5 0.5 14938.6
22 29.1 29.4 15061.1
23 5.1 5.7 15158.3
24 2.4 15868.5
25 35.9 15909.3

aReference 57. Authors used Jacobi coordinates with successive trunca
diagonalization scheme.~See the text.!

bGrid points in r. Nr equally spaced points are chosen in the ran
@rmin ,rmax#.

cNumber of grid points inu, chosen in the range@0,p/2#.
dNumber of grid points inx, chosen in the range@0,p/6#.
eTotal number of grid points,N5NrNuNx .
fResults in these columns representuthis result2HTu ~in cm21).
gZero-point energy~in cm21). All other values in this column are relative t
this state.
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Using this method we obtain the eigenstates of
Hamiltonian, one irreducible representation at a time. Si
the point group used isC6v the wavefunctions belong to th
irreducible representations of this group. To obtain the c
responding representations in theD3h point group, we first
note thatD3h[C3v ^ Cs , whereas,C6v[C3v ^ C2.64 Hence,
thesh operation inD3h is isomorphic to theC2 operation in
C6v , which is associated with the parity of th
wavefunction.37 Based on this, a correspondence rule t
maps the irreducible representations ofD3h onto the irreduc-
ible representations ofC6v can be derived. This rule is pre
sented in Table VIII. Furthermore, since the parity of t
wavefunction forJ50 is always even,37 the only accessible
states~for J50) must belong to irreducible representatio
A1 , A2 or E2 in theC6v point group andA18 , A28 or E8 in the
D3h point group.

In Tables IX, X and XI we provide results for differen

TABLE X. Convergence of vibrational band origins ofH3
1 . Irreducible

representation isA2 in C6v andA28 in D3h.

I II III IV V VI VII HT a

rmin
b 1.20 1.20 1.20 1.2375 1.20 1.20 1.20

rmax
b 5.20 5.20 5.20 4.2375 5.20 5.20 5.20

Nr
b 16 16 16 48 24 24 32

Nu
c 45 90 90 60 80 90 90

Nx
d 5 5 9 5 11 11 11

Ne 3600 7200 12960 14400 21120 23760 31680

1 0.2f 0.2f 0.2f 0.0f 0.0f 0.0f 0.0f 7492.6g

2 3.5 3.5 3.5 0.1 0.1 0.0 0.0 10208.4
3 0.3 0.3 0.2 0.1 0.1 0.1 0.1 11525.4
4 5.4 5.4 5.4 0.0 0.1 0.1 0.0 12828.2
5 2.9 2.7 2.9 0.0 0.2 0.2 0.2 13746.7
6 3.1 2.8 3.1 0.1 0.1 0.1 0.1 14563.5
7 0.2 0.5 0.5 0.6 0.2 0.2 0.2 15178.1
8 15.6 15.6 15.7 0.0 0.1 0.0 0.0 15367.6
9 6.9 0.1 0.8 2.4 1.6 1.3 1.3 15950.8

10 50.4 5.6 0.4 17.7 11.1 8.4 11.5 16577.9
11 48.5 6.6 5.4 30.2 10.4 7.3 12.6 17076.8
12 4.6 17.3 13.7 0.1 2.4 1.7 1.7 17670.4
13 88.0 0.9 6.2 39.7 22.2 16.9 17.0 17805.3
14 102.2 102.9 46.1 5.0 4.7 4.0 4.3 17845.2
15 32.8 50.3 47.2 8.9 6.1 4.8 5.0 18316.0
16 150.5 17.2 13.3 60.7 25.2 18.4 18.5 18865.
17 99.3 43.3 33.8 94.3 46.9 35.3 35.7 19173.
18 11.7 8.1 32.4 18.7 14.1 14.2 19257.2
19 26.7 23.2 17.4 9.3 6.8 7.0 19720.6
20 1.1 6.7 0.5 4.1 3.2 3.4 20044.4
21 28.8 21.1 35.6 20.0 15.2 15.9 20268.9
22 5.3 0.9 19.9 14.0 10.8 11.4 20356.7
23 39.1 126.8 59.5 44.1 44.1 20806.9
24 33.1 68.0 38.0 29.4 29.6 20924.8
25 82.3 86.5 45.2 33.0 33.2 21174.7
26 13.0 12.2 10.5 21321.0
27 177.8 112.6 89.7 21574.6

aReference 56. Authors used Jacobi coordinates with a succe
truncation-diagonalization scheme.~See the text for details.!

bGrid points in r. Nr equally spaced points are chosen in the ran
@rmin ,rmax#.

cNumber of grid points inu, chosen in the range [0,p/2].
dNumber of grid points inx, chosen in the range [0,p/6].
eTotal number of grid points,N5NrNuNx .
fResults in these columns representuthis result2HTu ~in cm21).
gRelative to zero-point energy in Table IX~in cm21).
e
e

r-

t

grid sizes for theA1 , A2 andE2 irreducible representation
~in the C6v point group!, respectively. The stress in thi
study is not on obtaining many states, but instead to und
stand how the accuracy of the states obtained is affected
change in the number of grid points. In Tables IX, X and
we present results, respectively, for allA1-states up to;
16000 cm21, all A2-states up to; 22000 cm21 and all
E2-states up to; 15000 cm21 above the absolute energ
minimum of the MBB surface~which is approximately half-
way to dissociation!. These states extend above the trian
to linear conformational change barrier~which occurs
roughly at; 12000 cm21), and hence describe a number
states associated with large-amplitude floppy motions.

For our calculations, the absolute minimum of the pote
tial was at; 20.1857 atomic units, where the zero of th
potential was set at 0.02 atomic units above the estimated56,71

dissociation limit. Hence, we did not sample in regio

ive

TABLE XI. Convergence of vibrational band origins ofH3
1 . Irreducible

representationE2 in C6v andE8in D3h

I II III IV V VI HT a

rmin
b 1.20 1.20 1.20 1.20 1.20 1.20

rmax
b 5.20 5.20 5.20 5.20 5.20 5.20

Nr
b 16 32 16 16 24 24

Nu
c 45 45 90 90 80 90

Nx
d 12 12 12 20 24 24

Ne 8640 17280 17280 28800 46080 51840

1 0.0f 0.0f 0.0f 0.0f 0.0f 0.0f 2521.3g

2 0.4 0.1 0.4 0.4 0.1 0.1 4997.4
3 2.6 0.0 2.6 2.6 0.0 0.0 5553.7
4 0.4 0.0 0.5 0.5 0.1 0.1 7003.4
5 0.1 0.0 0.0 0.0 0.0 0.0 7868.7
6 41.5 0.0 41.5 41.5 0.1 0.1 8487.0
7 5.2 4.6 0.5 0.5 0.7 1.1 9107.6
8 4.1 0.2 4.3 4.3 0.1 0.0 9650.6
9 5.7 0.1 5.8 5.8 0.0 0.0 9996.5

10 6.0 0.2 6.1 6.1 0.0 0.0 10642.6
11 1.2 0.7 0.3 0.3 0.9 0.8 10853.3
12 30.2 0.0 30.2 30.2 0.4 0.4 11321.5
13 17.6 15.9 2.0 2.0 3.9 3.2 11651.1
14 6.0 1.3 4.0 4.0 1.0 0.9 12073.2
15 6.2 3.3 0.7 0.7 4.5 3.8 12294.2
16 7.6 0.6 8.2 8.1 3.5 2.9 12467.5
17 17.3 2.9 22.6 22.6 1.9 1.6 12694.0
18 43.3 1.1 45.1 45.1 0.4 0.3 13313.4
19 5.1 14.9 15.0 15.0 2.3 1.7 13385.1
20 27.0 1.4 21.8 21.7 24.7 25.2 13553.4
21 70.4 65.1 12.8 12.5 11.2 8.4 13680.9
22 0.1 244.1 1.1 1.1 14052.2
23 7.8 26.2 1.5 1.2 14210.9
24 2.7 7.6 13.2 14464.7
25 29.5 17.0 13.7 14878.0
26 2.4 1.0 0.8 14885.6

aReference 56. Authors used Jacobi coordinates with a succes
truncation-diagonalization scheme.~See the text for details.!

bGrid points in r. Nr equally spaced points are chosen in the ran
@rmin ,rmax#.

cNumber of grid points inu, chosen in the range@0,p/2#.
dNumber of grid points inx, chosen in the range@0,p/6#.
eTotal number of grid points,N5NrNuNx .
fResults in these columns representuthis result2HTu ~in cm21).
gRelative to zero-point energy in Table IX~in cm21).
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where the potential was very much above dissociation s
the MBB potential is considered to be accurate only up
23000 cm21 above the bottom of the well38,61 ~which is
roughly three-quarters of the way to dissociation!. This re-
strictsrmin andrmax ~the range in ther-coordinate!, values
for which can be found in the tables. Diagonalizing the f
Hamiltonian did produce some complex eigenvalues~due to
the nonhermiticity of the Hamiltonian matrix!. But since
these were due to the discretization scheme~and hence non-
physical!, their absolute values were always found to
higher than the physically significant~real! eigenvalues. Fur-
thermore, they were not stable. Increasing the number of
points in theu-coordinate makes these physically insigni
cant complex eigenvalues occur at even higher absolute
ues. Thus, we considered a relatively large number of g
points inu, as seen in Tables IX, X and XI.

The number of grid points required in ther andx coor-
dinates, for convergence, was found to be relatively smal
was found that 24 grid points in ther-coordinate produced
adequately accurate eigenvalues in most cases. Similarly
x-coordinate also required fewer grid points.

From the tables, it is clear that the calculated eigenst
are, generally, more accurate with increased sampling, a
to be expected. However, a couple of exceptions exist, wh
eigenvalues were not as accurate as the others. For exa
the 16th eigenvalue in Table IX, which although is with
0.5% of Tennyson’s value, is not as accurate as the oth
An exhaustive study in this regard has not been conduct

We found that for the Arnoldi iterative diagonalizatio
technique the convergence rate decreased as the size o
matrix increased. Such behavior has been obser
previously,53 and typically results when the initial vector ha
too small an overlap with the desired eigenstates; in s
cases a random initial vector was chosen, but this does
completely resolve the problem as the size of the ma
increases. A more robust approach is to use a polynom
pre-conditioning method83 to obtain a good starting vecto
and we will use this method in future studies.

B. Computational scaling of the SADAF Hamiltonian
matrix-Arnoldi vector operation

From Eqs. ~31!–~33! it is clear that theJ50 APH
Hamiltonian may be written as the direct product of matric
in r, u andx. Hence, the operation of the full Hamiltonia
matrix on a vector scales asN@min@Nr ,Wr#1min@Nu ,Wu#
1min@Nx ,Wx##, where Nr , Nu and Nx are the number of
grid points inr, u andx respectively,Wr , Wu andWx are
the related to the band-width of the DAF inr, u andx and
N5NrNuNx . If we assume thatNr'Nu'Nx , then the
Hamiltonian matrix-Arnoldi vector operationscales as N4/3

for small Nand scales linearly for largeN.

VI. CONCLUSIONS

In this paper we have shown how Symmetry-Adap
Distributed Approximating Functionals can be forme
These can be used to obtain accurate derivatives of appr
ately symmetric functions. The symmetry of the function
fully utilized in constructing the derivative operator.
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We have used SADAFs to represent the Pack–Pa
triatomic APH coordinate kinetic energy operator. Althoug
we have used a regular coordinate grid to obtain the coo
nate representation for the APH Hamiltonian, this does
necessarily have to be the case. We demonstrate elsewh74

that surface functions could be obtained and used fo
‘‘potential-adapted’’ ~coordinate! representation of the
Hamiltonian. Alternatively, as stated in Sec. II, one cou
obtain an approximation to the action of the SADAF ope
tor on a function either on an irregular grid or by usin
Monte Carlo sampling.

The eigenvalue problems that result from construct
the SADAF representation of the Hamiltonian are solved
ing an Arnoldi iterative scheme. We find this method to co
verge slowly for large matrix size, as has been documen
elsewhere.53 The number of Arnoldi vectors necessary to o
tain the eigenstates increases rapidly with the size of
problem. In the future, we hope to circumvent this proble
by using a polynomial preconditioning of the startin
vector.81

We conclude that the SADAF representation, maki
use of theC6v potential symmetry of three like atoms~in the
APH coordinate system!, can be used to obtain an efficien
computational algorithm to calculate ro-vibrational bou
states. Consequently, the SADAF representation should
very useful in performing bound-state/scattering calculatio
and in solving various other partial differential equations.82,83
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