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Abstract: In a recent publication, we introduced a computational approach to treat the
simultaneous dynamics of electrons and nuclei. The method is based on a synergy between
quantum wave packet dynamics and ab initio molecular dynamics. Atom-centered density-matrix
propagation or Born-Oppenheimer dynamics can be used to perform ab initio dynamics. In
this paper, wave packet dynamics is conducted using a three-dimensional direct product
implementation of the distributed approximating functional free-propagator. A fundamental
computational difficulty in this approach is that the interaction potential between the two
components of the methodology needs to be calculated frequently. Here, we overcome this
problem through the use of a time-dependent deterministic sampling measure that predicts, at
every step of the dynamics, regions of the potential which are important. The algorithm, when
combined with an on-the-fly interpolation scheme, allows us to determine the quantum dynamical
interaction potential and gradients at every dynamics step in an extremely efficient manner.
Numerical demonstrations of our sampling algorithm are provided through several examples
arranged in a cascading level of complexity. Starting from a simple one-dimensional quantum
dynamical treatment of the shared proton in [Cl-H-Cl]- and [CH3-H-Cl]- along with
simultaneous dynamical treatment of the electrons and classical nuclei, through a complete
three-dimensional treatment of the shared proton in [Cl-H-Cl]- as well as treatment of a
hydrogen atom undergoing donor-acceptor transitions in the biological enzyme, soybean
lipoxygenase-1 (SLO-1), we benchmark the algorithm thoroughly. Apart from computing various
error estimates, we also compare vibrational density of states, inclusive of full quantum effects
from the shared proton, using a novel unified velocity-velocity, flux-flux autocorrelation function.
In all cases, the potential-adapted, time-dependent sampling procedure is seen to improve the
computational scheme tremendously (by orders of magnitude) with minimal loss of accuracy.

Introduction
The time-dependent Schro¨dinger equation is a starting point
for several dynamical methodologies in gas-phase1 and
condensed-phase quantum mechanics.2 The Born-Oppen-
heimer approximation, when invoked, allows for separation
of electronic and nuclear degrees of freedom and the
subsequent propagation of nuclei, quantum-mechanically,1,3-27

classically,28-32 or semiclassically33-48 on fitted electronic
surfaces or “on-the-fly”28-33,40-43,49-51 approximations to the

same. For cases where fitted electronic surfaces are used,
the required number of quantum chemical calculations to
obtain a representation of the surface can be large depending
upon the size of the system. It is in this regard that “on-the-
fly” approaches to dynamics of nuclei and elec-
trons28-33,40-43,49-51 have recently become popular, leading
to the subfield of ab initio molecular dynamics (AIMD).

In AIMD, an approximation to the electronic wave
function is propagated along with the nuclear degrees of
freedom to simulate dynamics on the Born-Oppenheimer
surface. AIMD approaches can be broadly categorized as* Corresponding author e-mail: iyengar@indiana.edu.
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(a) Born-Oppenheimer molecular dynamics approaches,
where the electronic degrees of freedom are represented using
self-consistently converged electronic structure calculations
(at the level of density functional theory, Hartree-Fock, post-
Hartree-Fock or semiempirical methods) or (b) extended
Lagrangian approaches,52,53 where an approximation to the
electronic structure is propagated through an adjustment of
the relative time-scales of electrons and nuclei.30,32,50,54,55The
AIMD approaches, when combined with full quantum or
semiclassical dynamics schemes, have the potential to treat
large problems accurately with the complete machinery of
quantum dynamics. Several steps have been taken in this
direction both for real and imaginary time quantum
propagation.33,42,56-60

We have recently developed an approach59,60that attempts
to overcome some computational bottlenecks in this area.
Our approach is quantum-classical39,61-67 and combines
quantum-wave packet dynamics treatment of the time-
dependent Schro¨dinger equation with ab initio molecular
dynamics (where the nuclei are treated classical). The latter
can be performed using Atom-centered Density-Matrix
Propagation (ADMP)32,55or Born-Oppenheimer molecular
dynamics (BOMD).28,29,31 The wave packet dynamics is
performed through an analytic, banded, Toeplitz representa-
tion to the discretized free propagator known as “distributed
approximating functionals” (DAF).27,68-72 [The (i,j)th element
of a Toeplitz matrix depends only on|i - j|. This property
of the free propagator used in the current contribution yields
an efficient scheme where only the first (banded) row of the
matrix representation of the time-evolution operator needs
to be stored.] Some notable features of our wave packet
AIMD approach are as follows: (a) The quantum dynamical
free-propagation is formally exact and computationally
efficient. It includes important quantum-effects such as zero-
point effects, tunneling, and over-barrier reflections. (b) The
electronic structure is simultaneously treated using hybrid
density functionals (for example, B3LYP)73-75 and derives
its strength from established linear scaling electronic structure
techniques.76-78 (The computational complexity of the quan-
tum dynamics formalism scales linearly with grid basis
size.59)

However, there remains an important computational dif-
ficulty in our approach.59 An approximation to the time-
dependent interaction potential between the quantum dy-
namical system and the AIMD system is required on the
grid representation of the quantum wave packet, at every
instant in time. If ab initio methods are used to represent
the electronic degrees of freedom, this presents a major
computational task and hinders the direct application of this
methodology for higher dimensional quantum dynamical
subsystems. We overcome this hurdle here by introducing a
potential adapted time-dependent, deterministic sampling
measure that allows us to only evaluate the time-dependent
interaction potential in important regions. The sampling
measure at any given step during the dynamics is cast as a
function of the interaction potential, the gradients of the
potential with respect to the quantum dynamical particle and
wave packet amplitude, all of which are determined at the
previous dynamics step.

The paper is organized as follows: For the convenience
of the reader, the dynamics formalism is briefly reviewed in
section 2. Details can be found in refs 59 and 60. The time-
dependent deterministic sampling algorithm is briefly intro-
duced toward the end of section 2 and discussed in more
detail in sections 3 and 4. Appendices A-C facilitate this
formal discussion. Numerical tests are presented in section
5 and include demonstrations of the computational improve-
ment obtained from the sampling technique for quantum
dynamical treatment of a single particle undergoing dynamics
along with the surrounding electronic degrees of freedom
and classical nuclear degrees of freedom. Examples include
treatment of the single quantum particle in one dimension
and in full three dimensions, and the systems studied involve
hydrogen, hydride or proton-transfer processes in [Cl-H-
Cl]-, [CH3-H-Cl]-, and the biological enzyme, soybean
lipoxygenase-1 (SLO-1). In all cases the computational
improvements seen due to the use of time-dependent
deterministic sampling are excellent. Our conclusions and
outlook toward further improvements are presented in section
6.

II. A Quantum Wave Packet Generalization
for ab Initio Molecular Dynamics
In this section we first summarize the governing equations
of motion and approximations involved in the quantum wave
packet ab initio dynamics formalism. (Further details can
be found in refs 59 and 60.) We then proceed to highlight
the main computational bottlenecks which form the basis
for the rest of this paper.

To efficiently propagate an electron-nuclear system, we
start from the time dependent Schro¨dinger equation (TDSE)
and assume that, in large systems, some nuclei may require
only classical treatment, but other parts of the system may
need to be treated by applying quantum dynamics.59,60 As a
result, we partition the electron-nuclear system into separate,
but interacting subsystems:45-48 Subsystem 1 comprises
particles that are treated quantum dynamically. Subsystem
2 contains the nuclei whose description will be given
classically, and subsystem 3 comprises the electrons in the
system. In the discussion below and the rest of this paper,
we represent the position variables for the particles in
subsystem 1 asRQM. Similarly, the particles in subsystem 2
are represented using the position variablesRC, and those
in subsystem 3 are represented usingre. We then invoke the
time-dependent self-consistent field (TDSCF) mean field
separation45,46,61,79 wherein the full wave function is ap-
proximated as a product: ψ(RQM, RC, re; t) ≡
ψ1(RQM)ψ2(RC)ψ3(re)exp[ιγ], and γ̆ (that is the first time-
derivative ofγ) is proportional to twice the energy of the
system. This leads to three separate time-dependent Schro¨-
dinger equations, one for each subsystem, and the Hamil-
tonian for each separate Schro¨dinger equation is mean-field
and depends on the state of the other two subsystems, for
example,H1 ) 〈ψ2ψ3|H |ψ2ψ3〉. (See ref 59.)

In the next step we recognize that the particles in sub-
system 1 are to be treated using quantum dynamics, and
hence we retain the time-dependent Schro¨dinger equation
for subsystem 1, following dynamics under the Hamiltonian
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H1. But, since subsystem 2 comprises nuclei that are not
required to be treated within a quantum dynamical formalism
(since they are not part of subsystem 1), we enforce the
classical limit (p f 0)68,64,66,67,80-87 for these particles. In
subsystem 3 we choose to enforce the space-time separation
of electrons to obtain a stationary state (Born-Oppenheimer)
description of electrons. In this fashion we recover a form-
alism where a portion of the full system is treated using quan-
tum dynamics, another portion of the system is treated clas-
sically, while a third portion (the electrons) is described with-
in a stationary state approximation. The description of the
electrons can be achieved using Hartree-Fock, DFT, semiem-
pirical, or post-Hartree-Fock formalisms, and if any of the
single particle descriptions are used (Hartree-Fock, DFT,
or semiempirical), then the electronic subsystem obeys a self-
consistent field (SCF) procedure which leads to a converged
single particle electronic density matrix,PC. In this situation,
the equations of motion for subsystems 1 and 2 are

and

where ø(RQM; t) represents the quantum dynamical wave
packet,M denotes the classical nuclear masses, andMQM

denotes the mass of the quantum subsystem particle(s). As
stated above the equation forPC is a self-consistent field
equation arising from the single particle methodology of
choice. If post-Hartree-Fock treatments are used, then the
energy functionals in eqs 1 and 2 are appropriately modified.
Subsystem 2 experiences an “averaged” force88 that depends
on the instantaneous wave packetø.

An alternative description is obtained by employing the
recently developed Atom-centered Density Matrix Propaga-
tion (ADMP) formalism32,55,87,89-92 for subsystems 2 and 3.
To arrive at this step, we first note that classical dynamics
of subsystem 2 and the simultaneous self-consistent treatment
of electrons together comprise the now well-known ab initio
molecular dynamics (AIMD) paradigm.28-33,40,49-51,93 It has
been noted that under conditions of “adiabatic con-
trol”,50,89,90,94extended-Lagrangian formalisms52,53 such as
ADMP can provide dynamical results in good agreement
with Born Oppenheimer dynamics and experiment.89,95When
ADMP is used to describe the dynamics of the electrons,
the equation of motion for subsystem 3 is

Here, µ is a fictitious inertia tensor32,55,89,90describing the
motion ofPC, andΛ is a Lagrangian multiplier matrix used
to impose N-representability ofPC. The energy functional,
E({RC,PC}, RQM), in eqs 3 and 2, is obtained from a density

functional treatment (or any other single particle treatment)
of the electrons. The equations of motion for subsystem 2
remain the same as in eq 2 apart from the fact that the forces
used in ADMP are different from that in Born-Oppenhei-
mer32,90 through the inclusion of an additional term that
depends on the commutator of the single-particle electronic
Hamiltonian (or Fock matrix) andPC. The ADMP subsystem
also experiences an “averaged” force similar to subsystem
2. This averaged force and the N-representability constraints
propagate{RC, PC} which in turn affects the energyE({RC,
PC}, RQM) and determines the dynamics ofø. The system of
eqs 1-3 are thus coupled and are solved simultaneously as
a single initial value problem.

If Born-Oppenheimer (BO) dynamics is used to represent
subsystems 2 and 3, eq 3 is substituted by SCF convergence
of PC. As a result, there arises an important and subtle
difference between the ADMP and BO wave packet imple-
mentations. In BO, the density matrix,PC, becomes a
function of bothRC and RQM, but in ADMP, PC does not
depend onRQM; PC only depends on the distribution of the
wave packet,ø(RQM;t). Thus in ADMP, the dynamics ofPC

is Ehrenfest-like, while this is not the case when BO is used
for the dynamics ofRC, PC in conjunction with quantum
dynamics. As a result, in ADMP the calculation ofE({RC,
PC}, RQM) for each additional grid point is simplified, since
the terms that depend only onPC (the two-electron integrals
in the Fock matrix) do not need to be recomputed. This
important and subtle difference will be benchmarked in future
publications.

The time-evolution ofø, in the coordinate-representation,
is approximated using the symmetric split operator5,96-98

and the free-propagator,K̃(RQM
i , RQM

j ), is represented using
distributed approximating functionals (DAF):59,60,68,70

In eq 5, H2n are even order Hermite polynomials.99 The
structureK̃(RQM

i , RQM
j ) ≡ K̃(|RQM

i - RQM
j |), renders a great

deal of efficiency to our quantum propagation as discussed
in refs 27, 59, 60, and 70. The evolution of{RC, PC} is
based on the velocity Verlet integrator100 as discussed in ref
59.

An important advantage of this dynamical procedure for
{ø(RQM;t);RC,PC} is that there is no need to prepare the
potential energy surface a priori, since the potential in eq 1
is obtained on-the-fly. However, the need to obtain an
approximation to the energy and gradients,〈ø|∂E({RC,PC},

ø(RQM
i ;t + ∆t) ) ∑

j

exp{-
ιV(RQM

i )
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RQM)/∂RC|PC|ø〉 and〈ø|∂E({RC,PC},RQM)/∂PC|RC|ø〉, at every
time-step, also constitutes a computational bottleneck in the
current procedure, and the complexity grows with the number
of grid points defined as part of the quadrature scheme in
eq 4. Hence, the number of grid points where the electronic
structure energy and gradients are evaluated needs to be
optimized. This should bring the overall scaling of the
algorithm down from a dependence on the total number of
quantum dynamical grid points to a small fraction where the
electronic structure calculations are performed. In section
III, we introduce a time-dependent deterministic sampling
measure which helps us to predetermine the relevant regions
of the potential where the energy and gradients are to be
obtained; the values of these parameters in the other regions
are obtained through an efficient interpolation scheme. This
procedure greatly reduces the computational cost associated
with the algorithm, as will be seen in section V.

III. Time-Dependent Deterministic Sampling
of the Quantum Potential Surface
To maintain accuracy of the quantum propagation, it is
desirable to have the discretized coordinate representation
(or grid) cover a large area and assume that the wave packet
vanishes outside the grid boundaries. [The boundary condi-
tions used here are the standard Dirichlet type boundary
conditions. One could also use Neumann boundary conditions
to solve this problem, and this generalization to the meth-
odology is currently in progress.137] The density of grid points
is then required to be high enough in “important” regions
so as to facilitate accurate evaluation of the wave packet.
This, however, leads us to a computational bottleneck for
an on-the-fly calculation of the electronic energy and
gradients. Here, we aim to dynamically determine an optimal
and adequate set of grid point locations where the electronic
energy and gradients are to be evaluated such that the error
in the quantum dynamics is minimal and controllable. We
introduce a potential adapted, time-dependent, deterministic
sampling measure for this purpose. The formal discussion
on the sampling measure in section III and subsequent
discussion of the algorithm in section IV are couched in one
dimension. The numerical implementation of this methodol-
ogy in higher dimensions for Cartesian-like grids is discussed
in section IV B. Multidimensional benchmarks are provided
in sections V B and V C.

Consider a uniformly spaced set ofNQ grid points in the
closed interval [a, b]. The numberNQ could in principle be
large and constitutes the set of points where quantum
dynamical propagation is to be performed. LetNE represent
a subset of theseNQ grid points (NE , NQ) where the
electronic structure energies and gradients are to be obtained.
The location of theseNE points needs to be optimal and
determined dynamically, so that the propagation error

is small for both ADMP and BO wave packet implementa-
tions. The quantity|A|2 is the L2 norm101,102 of vector A,
andøref denotes the reference wave packet propagated on a
potential energy surface determined by electronic structure

evaluations on allNQ uniformly spaced grid points. The
functionøNE denotes the propagated wave packet on a surface
obtained using potential and gradient evaluations only on
theNE, in general nonuniformly distributed, grid points. The
potential values at the remaining (NQ - NE) grid points are
to be obtained from a suitable interpolation scheme and used
in the quantum propagation oføNE. The quantityT in eq 6 is
the total time of propagation.

To determine the position of theNE grid points, we
introduce a sampling function,ω0(RQM), which represents
the density of points where the ab initio potential is to be
evaluated. While constructingω0(RQM), we assume that it
depends on the density of the wave packet,F(RQM) ≡
|ø(RQM)|2, the potential energyE({RC,PC}, RQM), and the
magnitude of the potential gradient [∇RQME]. We define our
sampling functionω0(RQM) to be inversely proportional to
the values of potential energy since, generally, wave packets
favor spatial regions with lower potential energy. Similarly,
requiringω0(RQM) to be directly proportional to the gradients
of the potential energy helps to maintain accuracy of
integration in areas of the grid where the potential energy
changes rapidly.103We further assume thatω0(RQM) is directly
proportional to wave packet amplitudeF(RQM). Accordingly
our proposed sampling function has the form

where the parametersIV, IV′, andIø can take on any numerical
value, and the functionsfF, fE′, andfE are accordingly defined
as

Here Y(RQM) denotes the wave packet densityF(RQM),
potential energy, or gradients. The quantitiesYmax andYmin

denote the maximum and minimum values ofY on the grid.
When the index,i, is zero, thenfY becomes a uniform
function independent ofY, and all grid points are considered
equally important. When the index is less than zero, then
the functionY(x) is used as is in eq 7, and if the index is
greater than zero, thenY(x) is shifted as per eq 8. We further
assume thatω0 is L1 normalized101 according to

where{RQM
i } are a set of quantum grid points in the closed

interval [a,b],∆RQM ) (b - a)/NQ and|‚‚‚|1 defines the L1-
norm. This normalization, in conjunction with the last option
in eq 8, is used to regulate the contributions of wave packet
density, potential energy, and gradients to the sampling
function. This aspect is clear from the fact that fori > 0

where Ỹ(RQM) ) (Y(RQM) - Ymin)/(Ymax - Ymin) and hence

σNE
) 1

T∫0

T
{|øref(t) - øNE

(t)|2}
2dt (6)

ω0(RQM) ≡ ω0(RQM;IV, IV′, Iø) )
fF(RQM;Iø)fE′(RQM;IV′)

fE(RQM;IV)
(7)

fY(RQM; i) ) {Y(RQM) for i < 0
1 for i ) 0

Y(RQM) - Ymin +
(Ymax- Ymin)

i
for i > 0

(8)

|ω0|1 ) ∑
i)1

NQ

ω0(RQM
i )∆RQM ) ∫a

b|ω0(x)| dx ) 1 (9)

fY(RQM; i) ) (Ymax- Ymin)[Ỹ(RQM) + 1
i ] (10)
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0 e Ỹ e 1. Thus, for the case ofi > 0, the normalization
condition essentially reduces the sampling function to

whereF̃, Ẽ′, andẼ are each bounded by 1. The contributions
from the wave packet, gradients, and energy are thus
controlled to allow a flexible scheme to enhance accuracy
and efficiency. The performance of eq 7 for various values
of IV, IV′, andIø and different potentials is presented in section
5. Using the implementations of this approach described in
section 4, we choose a set ofNE grid points [NE ) RNQ and
R e 1] where the potential and gradients are evaluated. These
data are used in conjunction with an interpolation procedure
(discussed in Appendix B) to perform quantum wave packet
dynamics on a uniform grid comprisingNQ points.

The interpretation ofω0(RQM) is such that large values of
this quantity indicate regions on the grid where energy and
gradient evaluationsshouldbe conducted accurately using
electronic structure methods. Whenω0(RQM) is small, the
accuracy of energy and gradients is not critical, and the value
of the potential in such regions is obtained though interpola-
tion. Additional interpretations that connect the sampling
function in eq 7 to the Wentzel-Kramers-Brillouin (WKB)80

semiclassical theory and also to Bohmian mechanics80-87,104-108

are discussed in Appendix A.

IV. Algorithms and Prescriptions for
Time-Dependent Deterministic Sampling
A. Conditions on ω0(x): The Requirements for a Smooth
Transformation. Two important challenges arise while
deriving a stable, general, numerical algorithm to carry out
grid sampling as per eq 7. Both challenges only arise when
the fraction of grid points where electronic structure calcula-
tions are to be performed becomes large (i.e., whenR ≡
NE/NQ is close to 1). While this is not the practically
interesting limit, since it is desired that most dynamical
calculations are performed for smallR, the demand for a
stable numerical algorithm requires that we analyze all
regions ofR, and this analysis is carried out in the current
section (section IV A). The computational algorithm of wave
packet ab initio dynamics inclusive of sampling is described
in section IV B.

For suitably largeR the following problems arise. (i) On
account of a uniform grid implementation of eq 4 in the
current work, the functionω0(RQM) should tend to a uniform
function asR f 1. That is the set ofNE grid points must
coincide with the set ofNQ underlying grid points asR f 1.
(ii) In general, for any specific grid discretization given by
grid spacing∆RQM and for any normalized function in eq 9,
values of [NEω0(RQM)∆RQM] could be greater than 1 ifR is
large. [Note thatNE∆RQM ≡ (b - a)R.] This would imply
that there is a need for more than one potential evaluation
in the vicinity of the pointRQM, which is clearly impossible.
The solutions to both of these challenges are discussed for
the remaining portion of this section.

As we see below, the first problem above is trivially
solved. The second problem, however, necessitates a modi-

fication of the sampling function. Consider a smooth
transformation,ω0(RQM) f ω(RQM), that maintains the
original functional form ofω(RQM) ≡ ω0(RQM) for small
values ofR (the practically interesting case ofNE , NQ)
but allowsω(RQM) to smoothly approach a uniform distribu-
tion asR f 1:

(a) ω(RQM) tends to a uniform distribution asNE/NQ f 1
and

(b) ω(RQM) f ω0(RQM) for NQ . NE.
If ω(RQM) is normalized and bounded according to

it follows from eq 13 that

where we have used∆RQM ) (b - a)/NQ. Using eq 12 we
have

and thus

Using eqs 14 and 16 we obtain upper and lower bounds to
the L∞ norm of ω(RQM) as

and hence

Thus ω(RQM
i ) tends to a uniform distribution in the limit

R f 1, and condition (a) above is automatically satisfied
from the requirements of eqs 12 and 13.

The second requirement, condition (b), is satisfied by
introducing a smooth transformation that uses an additive
correction functionU(RQM) to suitably compensate high-
density regions (i.e., regions ofω0(RQM) that are in violation
of eq 13) ofω0(RQM). Since this scheme has the physical
effect of equalizing the sampling weights, it is referred to
as the “spreading technique” and is the subject of the section
below.

1. Smooth Transformation Spreading Technique.We now
construct a spreading transformation to satisfy the condition
(b) above, i.e.,ω(RQM) f ω0(RQM) for NQ . NE. Let us start
with a modification ofω0(RQM) that satisfies eq 13. Toward
this we construct two projection operatorsΩ0 andΩ0

c, such
that

wheref is an arbitrary function defined in the closed interval

ω0(RQM) ∝
[F̃ + 1/Iø] × [Ẽ′ + 1/IV′]

Ẽ + 1/IV

(11)

|ω(RQM)|1 ) ∑
i)1

NQ

ω(RQM
i )∆RQM ) ∫a

b
ω(x)dx ) 1 (12)

|NEω(RQM)∆RQM|∞ ) NE max
i

|ω(RQM
i )∆RQM| e 1 (13)

|ω(RQM)|∞ ≡ max
i

|ω(RQM
i )| e

1
R(b - a)

≡ R* (14)

1 ) ∫a

b
ω(x)dx e (b - a)|ω(RQM)||∞ (15)

|ω(RQM)|∞ g
1

b - a
(16)

1
(b - a)

e |ω(RQM)|∞ e
1

R(b - a)
(17)

lim
Rf1

ω(RQM
i ) ) (b - a)-1 (18)

Ω0 f(x) ) f(x)‚θ[ω0(x) - R*] (19)
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[a, b], the quantityθ[ω0(x) - R*] is a Heaviside function
that is equal to 1 when the argument in parentheses is greater
than or equal to zero, andR* is defined in eq 14. The operator
Ω0

c is the orthogonal complement ofΩ0 and is defined as

The projection operatorsΩ0 and Ω0
c by definition exhaust

the closed interval [a, b], i.e.

and I is the identity matrix.
If we assume a grid discretization comprisingNQ evenly

spaced grid points in [a, b], it is then our aim to obtainNE

optimally placed points as per the sampling function defined
earlier. However, as a consequence of eqs 13 and 14 it
follows that the operatorΩ0 represents a projection onto the
region in space where|NEω0(x)dx| ≡ ω0(x)/R* g 1. This is
precisely the region where potential evaluations need to be
performed. However, there is excess sampling density in this
region which violates eq 13. This excess sampling density
is exactly equal to|Ω0ω̃0|1, whereω̃0 ≡ {ω0(x) - R*}, and
needs to be “spread” uniformly in the region represented by
the projection operatorΩ0

c. To achieve this, we subtract this
excess density from the regions belonging toΩ0 and add
this excess densityuniformly to the region belonging toΩ0

c.
Consequently an additive correction toω0 is introduced

where the additive spreading functionU(ω0) is defined as

Again, the first term of the above equation subtracts the
excess density from the regions belonging toΩ0. The second
term adds this excess densityuniformly to the region
belonging toΩ0

c. In the second term, the quantity{Ω0
c1}

represents the projection of a constant vector (1(x) ≡ 1 for
x ∈[a, b]) onto the region belonging toΩ0

c.
Equations 22 and 23 summarize the spreading technique.

After applying the spreading transformation toω0(RQM), the
excess sampling density described above is removed. How-
ever, in this process a similar excess density may be created
in the region belonging toΩ0

c. Thus, the sampling function
ω1 obtained from eq 22 may suffer the same way asω0 in
the sense that there probably exists a finite region,Ω1 f(x),
on the grid:

This implies thatω1 does not satisfy eq 14 either. However,
the excess density in the region represented by eq 24 is
always smaller in magnitude than|Ωω̃0|1 (see Appendix C
for details on the convergence properties of the spreading
technique) but stillneeds to be spread again. Consequently,
the procedure described in eqs 22 and 23 is to be iterated
according to

whereU(ωi), as usual, corrects the excess density inωi:

Hence, the generalized spreading transformation can be
summarized using eqs 25 and 26 as

The convergence of this iterative technique is analyzed in
Appendix C, and the scheme is shown to converge uncon-
ditionally.

It is further interesting to note that the procedure high-
lighted above, wherein the family of operators{Ωi} and
{Ωi

c} modify the sampling functionω0, has properties
reminiscent of multiresolution analysis.92,109-113 Our scheme,
however, differs in that themultiresolution is based on
spreading the “excess density”|Ω0ω̃0|1 as opposed to a
translation-dilation process used in standard wavelet theory.

We now comment on the behavior ofω asR f 0. In this
case the upper bound to|ω(RQM)|∞ in eq 14 goes to infinity,
and spreading is not required. Consequently,ω(RQM) f
ω0(RQM) for NQ . NE (condition (b) in section IV A).
However, for values ofR greater than zero, the spreading
transformation enforces the condition in eq 14 as highlighted
above.

B. Computational Implementation of Potential Adapted
Time-Dependent Deterministic Sampling for Wave Packet
ab Initio Molecular Dynamics. The algorithm to perform
mixed quantum wave packet and ab initio dynamics (ADMP
or BO) of the {RC, PC,ø(RQM)} system, based on the
sampling scheme, is outlined in this section.

As a preliminary step, a set ofNQ grid points,{RQM
i }, is

created to represent the discretization of the quantum wave
packet. The initial wave packet is defined on this grid. In
our studies we have used (a) a real Gaussian function with
width chosen such that the wave packet vanishes at the edges
of the grid, (b) a thermally sampled linear combination of
the eigenstates of the quantum Hamiltonian in eq 1 att ) 0,
and (c) eigenstates of the quantum Hamiltonian in eq 1 att
) 0, as initial wave packets.

During each propagation cycle, the first step is to prepare
a potential energy surface and corresponding gradients. The
potential is used for quantum propagation, and the gradients
are used to construct the AIMD forces (ADMP or BO) for
propagation of the classical nuclei and electronic structure.
The grid points where the potential and gradients are
calculated is controlled by the sampling technique discussed
earlier. Toward this, the sampling function is calculated based
on the wave packet density, potential energy, and gradients
of potential energy obtained from the previous step. [For
the first wave packet AIMD step, the potential energy,
gradients, and wave packet density are not available. Thus,

Ω0
c f (x) ) f (x)‚{1 - θ[ω0(x) - R*] } (20)

I ) Ω0 + Ω0
c (21)

ω1 ) ω0 + U(ω0) (22)

U(ω0) ) -Ω0ω̃0 +
|Ω0ω̃0|1

|{Ω0
c1}|1

{Ω0
c1} (23)

Ω1 f (x) ) f (x)‚θ[ω1(x) - R*] (24)

ωi+1 ) ωi + U(ωi) (25)

U(ωi) ) -Ωiω̃i +
|Ωiω̃i|1

|{Ωi
c1}|1

{Ωi
c1} (26)

ωi+1 ) (ΩiR* +
|Ωiω̃i|1

|{Ωi
c1}|1

{Ω0
c1}) + Ωi

cωi

) ΩiR* + Ωi
c( |Ωiω̃i|1

|{Ωi
c1}|1

+ ωi) (27)
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the initial sampling function is chosen to be uniform.] The
condition of eq 13 is then verified, and the iterative spreading
scheme described in section IV A1 is applied toω0 if
required. For small values ofR (≡NE/NQ), spreading is
generally not needed. Once the sampling function is deter-
mined based on the discussion in sections IV A, the grid
points where the potential and gradients evaluations are to
be conducted are determined based on the dimensionality
of the grid as follows.

1. One-dimensional quantum propagation: The potential
is sampled at grid points where the ceiling function
NE∫x0

x dx′ω(x′) becomes discontinuous and is demonstrated
in Figure 1. Here,y represents the least integer greater than
or equal to y and is called the ceiling of y. Accordingly, a
grid map is created that describes the location of theNE grid
points where the potential energy and gradients are to be
evaluated. This one-dimensional algorithm is used to obtain
acceptable values ofIV, IV′, and Iø, to perform preliminary
tests and also in the higher dimensional algorithm described
below. The approach here has close connections to the theory
of Haar wavelet transforms popular in digital signal proces-
sing.76,92,109-115

2. Quantum propagation in higher dimensions: There are
in turn two options that we consider here. In one case, we
construct reduced (or marginal) one-dimensional sampling
functions according to

and similarly forωy(y) andωz(z). The sampling along each
direction is then performed using the one-dimensional
algorithm discussed above, and the overall grid is constructed
as a direct sum. This algorithm is called marginal sampling
in further discussion. The simplicity of this approach is
appealing, and we find that the results obtained this way are
sufficiently good as seen in sections V B and V C. A second
algorithm that is more nonisotropic is as follows. The
complete set ofNQ grid points are first partitioned into regular
rectangular parallelepipeds (or cuboids) such that the integral
of ω inside each parallelepiped is roughly a constant. This
implies that each parallelepiped must contain the same

number of sampling grid points, although their respective
sizes may be different. If the number of sampling grid points
inside each cuboid is chosen to be a small fraction ofNE,
we may perform marginal sampling (eq 28) inside each
parallelepiped. Both of these approaches constitute general
schemes that we implement in arbitrary dimensions. The
second scheme above, again, has strong connections to
wavelet theory, and this aspect will be investigated as part
of future publications.

Once the grid points are determined as above, the potential
and gradients are computed, and the averaged AIMD forces
in eqs 2 and 3 are updated. Since the wave packet is defined
on the entire grid, while the potential and gradients are
evaluated only onNE grid points, estimation of the gradients
on [NQ - NE] grid points is required to calculate AIMD
forces as per eqs 2 and 3. In this paper we have used a linear
interpolation scheme to interpolate all gradients. The evalu-
ated potential on theNE grid points is used to obtain
approximations to the potential energy at the remaining grid
points using the Hermite curve interpolation scheme116,117

described in Appendix B. For thisE({RC,PC}, RQM) and
∂E({RC,PC}, RQM)/∂RQM at all NE grid points are used.

Next, the potential energy on the grid along with the DAF
free propagator given by eq 5 are used for causal propagation
of wave packet,ø(t), according to eq 4. The averaged
energy gradients 〈ø(t)|∂E({RC,PC},RQM)/∂RC|ø(t)〉 and
〈ø(t)|∂E({RC,PC},RQM)/∂PC|ø(t)〉 are used to propagateRC

andPC. (The density matrix,PC, is obtained through SCF
convergence for Born-Oppenheimer dynamics.) The next
propagation cycle starts by calculating the sampling function
and determining the grid positions for potential evaluation.

The propagation scheme has one additional feature that
allows for further reduction in computational cost. As a
preliminary step, the distance between all nuclei for allNE

grid points is calculated, and if any of these is found to be
smaller than a fixed threshold, then the point is skipped
during the potential and gradient evaluation and interpolated
later. This aspect is similar to that used in the partial
multidimensional grid method of Iordanov et al.,118 where

Figure 1. An illustration of the sampling function, ω(RQM), for NE ) 21 and NQ ) 101. Part (a) shows the sampling function
(dotted line), its integral (dashed line), and ceiling function ∫x0

x dx′ω(x′). The 21 grid points are set at discontinuities of the
ceiling function, and these points are represented in the figure using black dots on the discontinuous ceiling function and “X” at
corresponding spots along the abscissa. Part (b) shows the corresponding potential surface and density of wave packet from
which the sampling function is calculated.

ωx(x) ) ∫ dydz ω(x, y, z) (28)
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the authors use a fixed energy cutoff based on short-range
interaction between particles.

V. Numerical Results
In this section, we first obtain optimal values for sampling
parametersIV, IV′, andIø described by eq 8. Our general idea
toward this issue is to perform a multidimensional search in
functional space to determine values of these parameters that
would be optimal in an average sense. To simplify the
problem, we first consider a series of one-dimensional
potential energy functions and use these with the sampling
measure to determineIV and IV′. (Iø is set to zero for this
portion of the parametrization.) These are then used to
perform a series of quantum wave packet simulations in one
dimension, and the accuracy of the dynamics is studied as a
function of Iø values. This helps to determine the value of
all three parameters, and these calculations are described in
section V A. A physical basis for the choice ofIV, IV′, andIø

is also provided at the end of section V A.
In sections V B and V C we use theparameters thus

determined to (a) analyze the error in three-dimensional
quantum dynamics for the [Cl-H-Cl]- system and a
biological enzyme, soybean lipoxygenase-1 (SLO-1), and (b)
to obtain a vibrational density of states inclusive of nuclear
quantum effects. The density of states are obtained from a
unified velocity-velocity, flux-flux autocorrelation function.
We show that our sampling measure is very efficient in
determining these spectra since small values ofNE are
sufficient to determine the spectral data accurately.

A. Optimal Choice of IV, IV′, and I ø. To find optimal
values for IV and IV′, 10 different model potentials were
considered. The choice of these functions was based on their
propensity to appear during molecular dynamics simulations.
The potentials used in our tests are as follows:

1. Lennard-Jones 6-12 potential with coefficientsC6 )
C12 ) 100. The range of independent variable is [1, 3].

2. Morse potential, with minimum depthDe )10, located
at xe ) 2. The exponent was chosen to beâ ) 0.9. The
range ofx is [1, 8].

3. Harmonic potential1/2 k(x - x0)2, with x0 ) 4, k )
0.002. The range ofx is [0, 8].

4. A realistic one-dimensional potential obtained from the
[Cl-H-Cl]- system. The distance between chloride
ions were fixed at 4.2 Å, and the position of the
hydrogen atom was scanned along the chloride-chloride
axis to obtain a total of 101 potential energy points at
the B3LYP/6-31G level of theory.

5. A symmetric double-well potentialfDW(x) ) (x - 1)2(x
- 3)2 for x ∈ [0.4, 3.6].

6. An asymmetric double-wellfASD(x) ) (x - 2)2[1 + 3(x
- 5)2]/10 for x ∈ [1, 6].

7. A damped double-well potentialfDDW(x) ) [(x - 1)2(x
- 3)2 - 0.4]exp(- 1.5x). The range ofx is [0.6, 8].
The well farther from the origin is relatively weak and
may be interpreted as supporting a resonance state from
dissociation.

8. A plane wave functionfS(x) ) sin(x) for x ∈[0, 5/2 π].
9. A simple Gaussian functionfG(x) ) -6 exp[-(x - 4)2]

for x ∈[0, 8].
10. A real coherent statefGM(x) ) exp(-x2/32)cos(0.7x).

The last three functions are not standard potentials. These,
however, have characteristics that a wave packet might
possess.

For each of the above potentials the sampling function
was calculated for a set ofNE values. In each case the values
of IV and IV′ were scanned, and the normalized error was
calculated according to

where f0 ) (b - a)-1 ∫a
b f(x)dx, and fapp(x) is the ap-

proximation tof(x) obtained from sampling and interpolation.
For all calculationsNQ ) 101 andNE were scanned in the
range 6-51 which corresponds to compression factorR in
the range 1/17 through 1/2. To cover even smaller values of
R a second set of tests were carried out withNQ ) 1001 and
the same valuesNE as above. This resulted in compression
ratios ranging from 1/170 through 1/20.

The behavior of the error is shown in Figure 2(a). In
addition, deviations from the average error, due to the
individual potentials, are indicated through the use of the

Figure 2. Part (a) shows the average error represented by eq 29 for NQ ) 101. Maximum deviations from the average error for
individual potentials is displayed using the vertical error bars. As can be seen the error is negligible for all potentials beyond NE

) 15. Part (b) shows the behavior of σav in eq 30 as a function of IV and IV′. This part indicates that on average IV ) 1 and IV′
) 3 are a good choice.

σ )
| f - fapp|2

| f - f0|2
(29)
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vertical bars in the figure. To understand these error values,
consider the following interpretation of eq 29. The numerator
of eq 29 is the L2 norm of a difference vector when the
potential is normalized as per the denominator. Using simple
trigonometry one can see that the hyperangle between the
ket-Vectors fandfapp in aNQ-dimensional linear vector space
is approximately cos-1[(2 - σ2)/2] for smallσ. Hence forσ
) 0.01 (which is approximately the case forNE ) 10 in
Figure 2(a)), the hyperangle betweenf and fapp is 0.57
degrees! Clearly, the error due to deterministic sampling and
interpolation is negligible forNE > 15 (NQ ) 101) and
acceptable forNE ) 11. We will see in the next section that
even smaller values ofNE can be used with acceptable error
in vibrational spectroscopic properties,and as the dimen-
sionality of the problem increases, the method gets more
efficient, exponentially. This provides the opportunity for a
large reduction in computational overhead within the current
scheme.

To obtain a single set of values forIV and IV′ that work
well on average, we first note that for complex systems the
interaction potential is rarely a pure model potential such as
those used here. In fact, these could in general possess a
mixture of the complexities present in each individual
function studied here. Consequently, for an optimal choice
of IV andIV′ for realistic potentials we consider the average
error

where the sum runs over all the model potentials. Figure
2(b) shows the normalized average potential error calculated
according to eq 30 as a function of natural log(IV + 1) and
natural log(IV′ + 1) for NQ ) 101 and NE ) 10. The
parameters,IV andIV′, are each scanned in the range 0-256.
The minimum in the plot is at approximatelyIV ) 1 andIV′

) 3. Based on this analysis, we find thatIV ) 1 andIV′ ) 3
are suitable values that work well for the average case
complexity, and, hence, these are the values chosen for the
rest of the study in this publication.

To find an optimalIø we have conducted a series of one-
dimensional wave packet dynamics simulations for the [Cl-
H-Cl]- and [CH3-H-Cl]- systems. Each simulation was
100 fs long, and there were a total of 70 simulations which
helped us determine an optimal value forIø. For the case of
the [Cl-H-Cl]-, the shared proton is treated quantum
dynamically, and two different sets of simulations have been
conducted. In one case, the dynamics of the chloride ions
and the electrons are treated using ADMP. In the other case,
these are treated using Born-Oppenheimer dynamics. The
choice of these systems was based on the following criteria.
We needed to test the time-dependent deterministic sampling
approach in conjunction with both ADMP and Born-
Oppenheimer dynamics approximation. The [Cl-H-Cl]-

system presents a simple test, since it is possible to constrain
the Cl atoms at various distances and perform the dynamics;
if the Born-Oppenheimer dynamics option were chosen for
the chloride ions, the potential energy surface experienced
by the wave packet would remain roughly the same. Hence

this constitutes the simplest test case. However, if the ADMP
dynamics option were chosen for the chloride ions, the
potential energy surface would change as the wave packet
moves, since the potential is determined in ADMP using the
electronic density matrix at the wave packet centroid
configuration. Hence the ADMP implementation presents a
slightly more challenging test case. For the case of [CH3-
H-Cl]-, again the shared proton is treated using quantum
dynamics, while all other atoms are treated using ADMP.
We constrain the carbon and chloride atoms to remain at a
fixed distance; however, the three remaining hydrogen atoms
are completely free to move according to the ADMP forces.
Furthermore, since ADMP is used, the potential energy
surface experienced by the wave packet changes with time.
For all cases, a variety of basis sets was studied, and many
values of NE and Iø were considered. Our results are
summarized in Tables 1-3. In Table 1, the data obtained
from Born-Oppenheimer subdynamics of the chloride ion
(along with quantum wave packet dynamics of the shared
proton) are summarized for two different basis sets, Cl-Cl
distances, differentNE, and sampling parameter values. The
σNE values reported in these tables is described in eq 6, which
again has the same physical interpretation as the error in eq
29. Hence, these errors are very small for many different
values ofIø. In Tables 2 and 3, the data obtained from ADMP
subdynamics (along with quantum wave packet dynamics
of the shared proton) are summarized for [Cl-H-Cl]- and
[CH3-H-Cl]-, respectively. The reference wave packet for
all cases is obtained from a full calculation (without
sampling) overNQ ) 101 grid points. For all cases, the
deterministic sampling parameters for potential and gradient

σaV(IV, IV′) ) ∑
i

| f i - fapp
i |2

| f i - f i
0|2

(30)

Table 1: Quantum Wave Packet Propagation Errors for
the [Cl-H-Cl]- Systema

IV IV′ Iø σ21 σ15

B3LYP/6-31G, R ) 4.2 Å
1 3 0 0.0000083 0.0001035
1 3 1 0.0000036 0.0000720
1 3 3 0.0000048 0.0000870
1 3 7 0.0000302 0.0003881
1 3 15 0.0003555 0.0069267
1 3 31 0.0079059 0.0491048
1 3 63 0.0331312 0.1068715
1 3 127 0.0581166 0.1515045
1 3 255 0.0732637 0.1826569
1 3 -1 0.0929057 0.2199152

B3LYP/aug-cc-pVTZ, R ) 4.2 Å
1 3 0 0.0000171 0.0002318
1 3 1 0.0000066 0.0001336
1 3 -1 0.0066394 0.0492104

B3LYP/aug-cc-pVTZ, R ) 3.6 Å
1 3 0 0.0000955 0.0013409
1 3 1 0.0000405 0.0007540
1 3 -1 0.2722858 0.4808945

a The shared proton is treated quantum-dynamically, while the
chloride ions are treated using Born-Oppenheimer dynamics. Sym-
bols σ21 and σ15 refer to wave packet errors as determined using eq
6 with NE ) 21 and NE ) 15, respectively. R represents the chloride-
chloride distance. The optimal sampling parameters are shown in
bold. NQ ) 101 is used for all cases.
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have been set to the previously found optimal values ofIV

) 1 andIV′ ) 3.
We find thatIø ) 1 is the optimal value for quantum wave

packet simulation withIV ) 1 andIV′ ) 3. The corresponding
entries in Tables 1-3 are shown in bold. To further
substantiate the accuracy of the sampling approach, in Figure
3 we present the time-evolution of theL2-norm of the error
in the potential (extrapolated potential based on deterministic
sampling minus the reference potential calculated on all grid
points) for long simulations (10 ps). As can be seen the error
is minimal and well within the acceptable range for DFT
electronic structure calculations. Furthermore,NE ) 11
represents a sizable reduction in the number of grid points
where potential evaluations need to be conducted. We further
note that the results for the B3LYP/6-31G,R ) 4.2 Å
calculations on the [Cl-H-Cl]- system described in Table
1 are rather important.First, at this geometry, the zero-point
energy of the proton (≈2 milli-Hartrees) is comparable to
the height of the barrier (≈4 milli-Hartrees) separating the
protonated states on each chloride. Furthermore, there are
multiple states accessible below the barrier and immediately
aboVe the barrier. This proVides the opportunity for tunnel-
ing, zero point effects, and oVerbarrier reflection of the waVe
packet playing an important role in the dynamics.It is
interesting to note that the time-dependent sampling measure
performs well even under these highly quantum-mechanical,
tunneling oriented conditions.

To analyze the physics behind the choice,Iø ) 1, IV ) 1,
andIV′ ) 3, using eq 11, let us consider two separate regions
of a potential energy surface that are of interest in quantum
dynamics. (a) Minimum energy region of the potential
surface: The region where the potential energy is low, the
wave packet amplitude may be high, and the gradient here
is generally small. (b) The region where the potential is high
and the gradient is also high represents the region of a

potential surface that could mark the advent of tunneling.
This region also generally comprises a classical turning point,
and the standard semiclassical approximation breaks down80

in this region. (Also see Appendix A.) Thus, this is an
interesting region in quantum dynamical simulations, and,
on average, the wave packet amplitude may be expected to
be small in such regions. In eq 11 the quantitiesF̃, Ẽ′, and
Ẽ are each in the region [0,1] (see discussion before eq 11)
and hence for region (a)

where we have usedIø ) 1, IV ) 1, andIV′ ) 3 in eq 11 and
also substituted the maximum values ofF̃ and minimum
possible values ofẼ′ andẼ as required by the definition of
region (a) above. Now, in region (b), the tunneling and
classical turning-point regions

That is, the choice of Iø ) 1, IV ) 1, andIV′ ) 3 provides an
equal distribution of grid points in low potential regions as
well as tunneling regions.

There can be other possible values ofIø, IV, and IV′ that
also have the property of producing an equal distribution of
grid points in regions (a) and (b). For the special case ofIø

) IV it is possible to show that

will always provide an equal distribution of points in regions
(a) and (b). (We have only consideredIø ) IV in this analysis
since one would expect the potential and the wave packet
amplitude to behave in a mutually complementary fashion.)
However, for larger values ofIø, IV, andIV′ (larger than 1,3,1)
the distribution of points in other classically forbidden regions
(regions of high potential and low gradient) becomes smaller,
and hence the choiceIø ) 1, IV ) 1, andIV′ ) 3 provides a
good physical choice as is seen from the numerical experi-
ments described in this section.

B. Quantum Dynamical Treatment of Hydrogen Trans-
fer in Soybean Lipoxygenase-1 (SLO-1) and Treatment
of the Shared Proton in [Cl-H-Cl]-. To study the scaling
of errors with dimensionality and system complexity, we
have considered (a) the [Cl-H-Cl]- system again but with
full three-dimensional quantum wave packet treatment of the
shared proton and (b) soybean lipoxygenase-1 (SLO-1) which
has been thought to exhibit hydrogen tunneling in recent
literature.119-125 SLO-1 is a non-heme metalloenzyme that
catalyzes the oxidation of unsaturated fatty acids. The active
site for the enzyme is shown in Figure 4(a) and the model
for the active site used in our study is shown in Figure 4(b).
The rate-determining step in the catalytic cycle for SLO-1
involves the abstraction of a hydrogen atom from the fatty
acid chain by the octahedral Fe3+-OH complex present in
the active site and shows a remarkably large H/D kinetic
isotope effect of 81 near room temperature and a weak

Table 2: Quantum Wave Packet Propagation Errors for
[Cl-H-Cl]- a

IV IV′ Iø σ21 σ15

B3LYP/6-31G, R ) 4.2 Å
1 3 -1 0.15531148 0.32244568
1 3 1 0.00001817 0.00015913

B3LYP/aug-cc-pVTZ, R ) 3.6 Å
1 3 -1 0.17838404 0.53823434
1 3 0 0.00163375 0.21019838
1 3 1 0.00020302 0.04537375
a The shared proton is treated quantum-dynamically, while the rest

of the system is treated using ADMP. Symbols σ21 and σ15 refer to
wave packet errors as determined using eq 6 with NE ) 21 and NE

) 15, respectively. The optimal sampling parameters are shown in
bold. NQ ) 101 is used for all cases.

Table 3: Quantum Wave Packet Propagation Errors for
[CH3-H-Cl]- a

IV IV′ Iø σ21 σ15 σ11

B3LYP/6-311+G(d,p)
1 3 -1 0.12067507 0.27055252 0.45599940
1 3 0 0.00003690 0.00083307 0.00783050
1 3 1 0.00004855 0.00032730 0.00523513

a The shared proton is treated quantum-dynamically, while the rest
of the system is treated using ADMP. Symbols σ21, σ15, and σ11 refer
to wave packet errors as determined using eq 6 with NE ) 21, NE )
15, and NE ) 11, respectively. The optimal sampling parameters are
shown in bold. NQ ) 101 in all cases.

[ω0
1,3,1]Case(a)) constant*

[1 + 1/1] × [0 + 1/3]
0 + 1/1

)

constant* 2/3 (31)

[ω0
1,3,1]Case(b)) constant*

[0 + 1/1] × [1 + 1/3]
1 + 1/1

)

constant* 2/3 (32)

IV′ ) (Iø + 1)2 - 1 (33)
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temperature dependence of the reaction rate constant.120

These observations are thought to reflect the fact that
hydrogen transfer occurs extensively via a tunneling
mechanism.120-123

In this section we consider SLO-1 to study the scaling of
errors in the methodology with respect to dimensionality and
system complexity and to demonstrate the power of our
methodology in attacking large complex problems. We
simplify the active site by substituting amine groups for the
imidazole rings. Since the purpose of the current section is
only to illustrate the scaling of errors in the deterministic
sampling methodology, a detailed study of the SLO-1
problem, using wave packet ab initio molecular dynamics
along with a more elaborate description of the active site
and substrate, to evaluate the extent of nuclear quantum
effects will be the subject of a future publication.

To study the evolution of errors, we considered frozen
geometries for both [Cl-H-Cl]- and SLO-1 where a
potential energy scan was performed along a three-
dimensional Cartesian grid for the shared hydrogen atom.
In addition to the electronic energy (at the level of B3LYP/
6-31+G**) we also computed gradients of the electronic
energy at each grid point for use with the sampling algorithm.
(Note: this does not constitute additional effort since the

gradients are required to be computed to propagate the
classical nuclear degrees of freedom and the electrons for
the case of a full wave packet ab initio dynamics calculation.)
Once the potential energy surface was obtained, the eigen-
states for the quantum nuclei were obtained using the Arnoldi
iterative diagonalization procedure.101,126,127 The Arnoldi
scheme is a variant of the Lanczos procedure101 and involves
the repetitive application of the Hamiltonian matrix to an
initial vector to form a Krylov basis set.101 The representation
of the Hamiltonian in this new basis set leads to a Hessenberg
form or tridiagonal form101 for the Hamiltonian, which is
relatively easy to diagonalize. The action of the Hamiltonian
matrix on any vector is calculated easily by taking advantage
of the sparse structure of the DAF kinetic energy operator
(second derivative of the zero∆tQM limit of eq 5) and the
fact that the full three-dimensional kinetic energy operator
can be written in direct product form which obviates the need
to store the full (million by million) Hamiltonian matrix. For
a grid comprising 101 points in each direction (that is, a
million points in three dimensions) we only store three 101
× 101 sparse matrices that are used to construct the action
of the full Hamiltonian matrix on a vector as required by
the Arnoldi scheme. This is also the case for propagation of
a wave packet in three dimensions, where again we only

Figure 3. The error in the interpolated potential energy, for the [Cl-H-Cl]- system, from using time-dependent deterministic
sampling during the wave packet dynamics calculations. The shared hydrogen is treated as a one-dimensional quantum wave
packet discretized over NQ ) 101 regularly spaced grid points. As can be seen the errors in the potential energy for NE greater
than 11 are in the microhartree range.

Figure 4. Soybean lipoxygenase-1: The active site is shown in part (a), and the model used for the active site in the current
study, after geometry optimization, is shown in part (b). The iron atom is represented by the large sphere close to the center of
the two figures. The shared hydrogen atom is marked. Note that in our study the three imidazole rings have been terminated
with amine groups.
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store three one-dimensional free propagators, eq 5, to
construct the evolution of a three-dimensional wave packet.

The eigenvectors obtained from the Arnoldi process are
then used to construct initial wave packets, as described in
Table 4, and propagated with and without deterministic
sampling, and the propagation errors are compared in Table
4. Here, the wave packet is propagated at each step, and the
potential, gradient, and wave packet atNE grid points are
used to compute a sampling function for the next step. This
sampling function is then used to obtain a new grid
distribution ofNE points (potentially different from theNE

points used in the previous step) which are then used for to
propagate the wave packet. The errors in Table 4 indicate
that reasonable accuracy in the propagation is obtained using
only 11 grid points per dimension.

C. Comparison of Vibrational Properties for Different
Values of NE. As a further test and illustrative calculation,
we present the quantum dynamically averaged vibrational
density of states from wave packet ab initio dynamics
simulations. It is well-known that the Fourier transform of
the velocity-velocity autocorrelation represents the vibra-
tional density of states and has been widely used in classical
dynamics128,129 as well as in ab initio molecular dynam-
ics.95,130 Quantum corrections to such classical correlation
functions131-133 are an important problem in chemical phys-
ics.

In our case, the existence of classical and quantum-
dynamical nuclei complicates the direct application of the
velocity correlation concept. To provide a cogent treatment
we exploit the fact that the quantum correspondence to the
classical nuclear velocity is given in terms of the probability
flux (or probability current)80

whereI [A] represents the imaginary portion of the complex
numberA. Thus to construct the velocity-velocity autocor-
relation function, we consider the average flux (or the
expectation value of flux) at any given time

to be used in conjunction with the classical nuclear velocities.
The symbolR represents the real part of the bracketed
quantity.

We thus, simultaneously, construct the correlation func-
tions〈J(t)J(0)〉 and〈V(t)V(0)〉 and the full vibrational density
of states as the cumulative Fourier transform

where the symbols〈‚‚‚〉C and 〈‚‚‚〉Q represent the classical
and quantum variables ensemble averages.

In Figure 5 we present the vibrational density of states
for [Cl-H-Cl]- from full three-dimensional treatment of
the shared hydrogen atom. The results for the uninterpolated
study are shown in Figure 5(a), and these are comparable to
the experimental results in ref 134. The observedν3 band is
approximately at 722 cm-1, while the strongest peak in
Figure 5(a) is close to 750 cm-1. The discrepancy is
explained based on the fact that the Cl-Cl distance used in
our simulations are different from those seen in the experi-
ment.134 In Figure 5(b) we provide the difference spectrum
of errors forNE ) (11)3, (15)3, and (21)3 with NQ ) (101)3.
It is interesting to note thatNE ) (11)3 reproduces the
spectrum well in comparison with the fullNQ ) (101)3

calculation resulting in atruly extraordinary compression
of the quantum grid and a computational gain of ap-
proximately 3 orders of magnitude. All three-dimensional
calculations here used the marginal sampling approach
discussed in section IV B.

VI. Concluding Remarks
In this paper, we present a computational scheme to improve
the efficiency of our recently developed approach to perform
simultaneous dynamics of electrons and nuclei59 through
quantum wave packet ab initio dynamics. A robust and
efficient potential adapted time-dependent, deterministic,
sampling scheme is derived which improves the efficiency
associated with the calculation of the interaction potential
between the ab initio system and quantum wave packet. This
interaction potential can now be dynamically constructed on
a sparse, irregular grid based on deterministic sampling that
takes into account the potential energy function at the
previous dynamics step, its gradients, and instantaneous
density of the wave packet. The sampling criterion has the

Table 4: Quantum Wave Packet Propagation Errors for [Cl-H-Cl]- and Soybean Lipoxygenase-1 (SLO-1)d

[Cl-H-Cl]- σ101
3 σ11

3 σ15
3 σ21

3

20tha 3.059 × 10-08 6.660 × 10-04 1.989 × 10-04 5.221 × 10-05

seventha 2.219 × 10-08 3.999 × 10-03 5.275 × 10-05 1.176 × 10-04

firsta 1.079 × 10-08 2.614 × 10-02 1.308 × 10-03 3.429 × 10-04

thermal samplingb 1.066 × 10-08 3.433 × 10-02 1.491 × 10-04 2.785 × 10-04

Gaussianc 7.243 × 10-07 6.037 × 10-03 1.182 × 10-04 8.640 × 10-05

SLO-1 σ101
3 σ11

3 σ15
3 σ21

3

20tha 2.812 × 10-03 7.324 × 10-01 1.913 × 10-01 4.421 × 10-01

firsta 3.140 × 10-05 4.500 × 10-01 8.927 × 10-01 2.027 × 10-01

thermal samplingb 4.541 × 10-05 5.558 × 10-01 7.492 × 10-01 1.371 × 10-01

Gaussianc 1.593 × 10-03 6.998 × 10-03 4.593 × 10-03 2.356 × 10-03

a Number represents the eigenstates number that is used as initial wave packet. b Initial wave packet is constructed as a linear combination
of eigenstate with coefficients for the ith eigenstate: exp[-Ei/kT]. Temperature ) 300 K. c Initial wave packet is a Gaussian centered close to
the top of the barrier. d Symbols σ213, σ153, and σ113 refer to wave packet errors as determined using eq 6 with NE ) 213, NE ) 153, and NE )
113, respectively. NQ ) 1013 in all cases. Total time of propagation for all cases is 500 fs.

J (x, t) ) p
2mι

[ψ*(x, t)∇ψ(x, t) - ψ(x, t)∇ψ*(x,t)]

) p
m

I [ψ*(x, t)∇ψ(x, t)] (34)

J(t) ) 〈 J 〉 ) R[〈ψ(t)|-ιp
m

∇|ψ(t)〉] (35)

C(ω) ) ∫-∞

+∞
exp[-ιωt]{〈V(t)V(0)〉C + 〈J(t)J(0)〉Q} (36)
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attractive feature that it targets regions of the potential that
are rapidly varying or lower in energy. In addition, it uses
the wave packet density at the previous step to attenuate the
distribution of grid points. We have also constructed a
cumulative correlation function that includes velocity cor-
relation for the classical degrees of freedom and flux
correlation for the quantum dynamical degrees of freedom
to obtain the vibrational density of states, inclusive of
quantum dynamical effects. The vibrational density of states
is used as a tool to check the accuracy of the dynamic
sampling algorithm, but the methodology seems general and
has promise within the current dynamical framework.

The dynamic sampling function has three adjustable
parameters that have been optimized to present an accurate
and efficient “on-the-fly” fit of the time-dependent potential.
We find that using the sampling functionaccurate dynamical
and spectral properties can be obtained from only a small
fraction of the grid points.For cases when a single particle
is treated quantum mechanically in a bath of surrounding
electrons and classical nuclei, the regular grid describing the
quantum wave packet can be compressed by several orders
of magnitude using the dynamical sampling algorithm and
still retain accuracy at a high level. Since the compressed
grid is where the electronic energies are determined during
the dynamics, this represents an enormous reduction in
computational cost. The computational methodology has been
demonstrated for both ADMP and Born-Oppenheimer
treatment of the classical nuclear and electronic degrees of
freedom in conjunction with wave packet propagation.
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Appendix A: A Few Comments on the
Physical Interpretation of Eq 7: Connections
to WKB Semiclassical Theory and Bohmian
Mechanics
Another physical interpretation for the function in eq 7 can
be obtained by recognizing its connection to the Wentzel-

Kramers-Brillouin (WKB)80 semiclassical theory. To ex-
pound further on this aspect we first introduce the fact that
the semiclassical approximation is accurate when

i.e. the slowly varying limit of the potential compared to
the momentum of the particle and inverse de Broglie
wavelength. The sampling function in eq 7 has the property
that it is directly proportional to∂V/∂x and inversely
proportional to the potential. [The modification to the
sampling scheme discussed in eq 8 retains this functional
dependence.] Hence,ω0(RQM) is inversely proportional to the
WKB length scaleλ (or local de Broglie wavelength) in the
sense that a greater number of potential evaluations are
directed to regions where the potential is rapidly varying and
the WKB length scale is smaller. This has the following
implications: when the right side of eq A1 is too large, a
semiclassical approximation has a greater propensity to
failure (unless the momentum of the particle is suitably
large). However, for the current methodology, when the right-
hand side of eq A1 is large, i.e. when the potential is rapidly
varying or when the potential is low, then the sampling
function has a larger magnitude which leads to additional
potential evaluations in this region. Hence the current
approach makes a greater effort to perform accurate quantum
dynamics in regions of a potential where a semiclassical
approximation may break down. (Also see the discussion at
the end of section V A.)

A second important connection may be obtained by
understanding the behavior ofω0 in the vicinity of a wave
packet nodal region. This is precisely the region where novel
implementations of quantum dynamics based on Bohm’s
interpretation80-87,104-108 have trouble on account of the fact
that the “quantum potential” [) (-p2/2m)F-1/2∇2F1/2] in
Bohmian dynamics becomes singular in the vicinity of a
node. In our case, the distribution of potential evaluation
points is determined not only by the wave packet amplitude
but also the potential and its gradients. Hence, if the potential
energy is low in the vicinity of a node (as would be the case
for nodes enforced by symmetry) or the gradient is high,

Figure 5. The [Cl-H-Cl]- vibrational states obtained using eq 36 with the shared hydrogen treated as a three-dimensional
wave packet. Part (a) represents the spectrum without time-dependent deterministic sampling for NQ ) 101.3 Part (b) describes
the difference spectrum for different values of NE. All spectra are obtained from 500 fs dynamics data.

p
p

≡ λ-1 . ( 1
E - V(x))∂V

∂x
(A1)
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then that region is well represented by the current algorithm.
Figure 6 shows the number of grid points where potential
evaluations are performed as a function of distance from the
nearest node. The sampling function in eq 7, along with the
algorithm discussed in section IV A 1, is used to determine
the location of theNE grid points. As seen in Figure 6, there
exists a substantial probability of finding grid points close
to a node when the sampling measure introduced here is used.
This was the case over a wide range ofNE. The ADMP
potential used for this calculation is a double well potential.
The number of nodes is determined dynamically, and the
spontaneous appearance or disappearance of nodes is al-
lowed, since the quantum dynamics methodology used here
permits wave packet splitting.

Appendix B: Time-Dependent Hermite Curve
Interpolation of the Potential Energy Surface
The interpolation scheme used here makes full utilization
of the availability of potential and gradients and is described
in this section. The scheme discussed here is a special case
of cubic spline interpolation135 and is known as Hermite
curve interpolation.116,117Consider a function,f(x), defined
in an interval [x0, x1] with the value of the function and the
first derivative at the end points given as{fx0, fx1, f′x0, f′x1}.
The function can then be approximated using a third-order
polynomial in [x0, x1] as

where the weights are defined as

For our purposes the valuesfxk andf ′xk represent the potential
energy and the derivative of potential energy with respect
to the quantum grid onNE grid points. The multidimensional
generalization is conducted in a similar fashion using the
potential and gradient values available at every grid point.

Appendix C: Convergence of the Spreading
Transformation
The aim of the spreading transformation is to disperse the
excess density|Ωiω̃i|1, as described in section IV A1. This
is done through the iterative scheme in eq 27, and it is
necessary to evaluate the convergence properties of this
scheme. Toward this we define the positive semidefinite
convergence measure

Whengi is greater than a numerical threshold, the spreading
transformation is not converged at theith iteration, and the
excess density (gi) needs to be spread onto the region
determined byΩi

c. As a consequence of eq 14 and the
normalization condition in eq 12, it follows thatΩi

c * 0
whengi > 0. Furthermore, sinceΩi

c is a projection opera-
tor, |{Ωi

c1}|1 > 0. The spreading transformation then leads
to new values forωi+1 as per eq 27,Ωi+1 andgi+1 given by

Using eq 27 we obtain

The operatorsΩi+1 andΩi
c are both projection operators,

andΩi+1 is created from spreadinggi onto Ωi
c. Thus,

Using this in eq C3, we obtain

However, since the subspace represented by (Ωi+1 - Ωi) ≡
Li is orthogonal to the subspace represented byΩi, this
implies ∀x∈Li: ωi(x) < R*, and hence∫a

b Liω̃idx e 0 where

Figure 6. The figure represents the distribution of potential
evaluation points obtained from eq 7 in the vicinity of a node.
(NQ ) 901.) The maximum at 0.15 Å and the substantial
probability close to zero indicates that the current formalism
maintains an acceptable level of sampling close to nodal
points.

f(x) ≈ fapp(x) ) fx0
νx0

(x) + fx1
νx1

(x) + f ′x0
ν′x0

(x) + f ′x1
ν′x1

(x)

(B1)

νx0(x) ) 2x̃3 - 3x̃2 + 1 (B2)

νx1
(x) ) -2x̃3 + 3x̃2 (B3)

ν′x0
(x) ) (x̃3 - 2x̃2 + x̃)(x1 - x0) (B4)

ν′
x1
(x) ) (x̃3 - x̃2)(x1 - x0) (B5)

x̃ )
x - x0

x1 - x0
(B6)

gi ≡ |Ωiω̃i|1 g 0 (C1)

gi+1 ) |Ωi+1ω̃i+1|1 (C2)

gi+1 ) ∫a

b
Ωi+1(ωi+1 - R*)dx

) ∫a

b
Ωi+1{ΩiR* + Ωi

c( |Ωiω̃i|1

|{Ωi
c1}|1

+ ωi) - R*}dx

) ∫a

b
Ωi+1Ωi

c{- R* +
|Ωiω̃i|1

|{Ωi
c1}|1

+ ωi}dx (C3)

Ωi+1Ωi
c ) (Ωi+1 - Ωi) ) (Ωi

c - Ωi+1
c ) ≡ Li (C4)

gi+1 ) ∫a

b
(Ωi+1 - Ωi)ω̃idx + gi

|{Ωi
c1}|1 - |{Ωi+1

c 1}|1

|{Ωi
c1}|1

) ∫a

b
Liω̃idx + gi(1 -

|{Ωi+1
c 1}|1

|{Ωi
c1}|1

) (C5)
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the equality holds only whenΩi ) 0. Hence,

But, by definitiongi+1 > 0, and hence

or

Now we consider three different limiting cases for the
quantity |{Ωi+1

c 1}|1/|{Ωi
c1}|1 in eq C8 and study the

convergence properties of the sequence{gi} for all these
cases. It is first important to note that

SinceΩi+1
c is created after spreading in theith iteration, the

range of the subspaceΩi+1
c is smaller than that ofΩi

c.
Hence,

1. |{Ωi+1
c 1}|1/|{Ωi

c1}|1 ) 1. It then follows that 0e gi+1

e 0gi, which means thatgi+1 ) 0, that is spreading
transformation has converged at the (i + 1)th iteration.

2. |{Ωi+1
c 1}|1/|{Ωi

c1}|1 ) 0. In this case|Ωi+1
c |1 ) 0. If

gi+1 is nonzero this implies that there exists an excess density
but no region to “spread” the excess density. This is in
violation of the normalization condition eq 12 and thusgi+1

) 0 if |Ωi+1
c |1 ) 0 which again implies that the spreading

transformation has converged at the (i + 1)th iteration.
3. 0< |{Ωi+1

c 1}|1/|{Ωi
c1}|1 < 1 which leads to [0<gi+1/

gi < (1 - |{Ωi+1
c 1}|1/|{Ωi

c1}|1)], where the upper bound is
less that 1. According to de Alembert’s ratio test136 the series
comprising{gi} converges when this ratio is less than 1.
Hence, by extension the{gi} must converge, is a monotonic
decreasing sequence, and is lower bounded by zero.
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