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Abstract: In a recent publication, we introduced a computational approach to treat the
simultaneous dynamics of electrons and nuclei. The method is based on a synergy between
quantum wave packet dynamics and ab initio molecular dynamics. Atom-centered density-matrix
propagation or Born—Oppenheimer dynamics can be used to perform ab initio dynamics. In
this paper, wave packet dynamics is conducted using a three-dimensional direct product
implementation of the distributed approximating functional free-propagator. A fundamental
computational difficulty in this approach is that the interaction potential between the two
components of the methodology needs to be calculated frequently. Here, we overcome this
problem through the use of a time-dependent deterministic sampling measure that predicts, at
every step of the dynamics, regions of the potential which are important. The algorithm, when
combined with an on-the-fly interpolation scheme, allows us to determine the quantum dynamical
interaction potential and gradients at every dynamics step in an extremely efficient manner.
Numerical demonstrations of our sampling algorithm are provided through several examples
arranged in a cascading level of complexity. Starting from a simple one-dimensional quantum
dynamical treatment of the shared proton in [CI-H—CI]- and [CH3—H-—CI]~ along with
simultaneous dynamical treatment of the electrons and classical nuclei, through a complete
three-dimensional treatment of the shared proton in [CI-H—CI]~ as well as treatment of a
hydrogen atom undergoing donor—acceptor transitions in the biological enzyme, soybean
lipoxygenase-1 (SLO-1), we benchmark the algorithm thoroughly. Apart from computing various
error estimates, we also compare vibrational density of states, inclusive of full quantum effects
from the shared proton, using a novel unified velocity—velocity, flux—flux autocorrelation function.
In all cases, the potential-adapted, time-dependent sampling procedure is seen to improve the
computational scheme tremendously (by orders of magnitude) with minimal loss of accuracy.

Introduction same. For cases where fitted electronic surfaces are used,
The time-dependent Schdimger equation is a starting point  the required number of quantum chemical calculations to
for several dynamical methodologies in gas-phased obtain a representation of the surface can be large depending
condensed-phase quantum mechahithe Born-Oppen- upon the size of the system. It is in this regard that “on-the-
heimer approximation, when invoked, allows for separation fly” approaches to dynamics of nuclei and elec-
of electronic and nuclear degrees of freedom and the trong® 3340-434%51 have recently become popular, leading
subsequent propagation of nuclei, quantum-mechanicafy, to the subfield of ab initio molecular dynamics (AIMD).
classically?®32 or semiclassicalf{?~*® on fitted electronic In AIMD, an approximation to the electronic wave
surfaces or “on-the-fly?®-3340-434%-51 gpproximations to the  function is propagated along with the nuclear degrees of
freedom to simulate dynamics on the Beit@ppenheimer
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(a) Born—Oppenheimer molecular dynamics approaches, The paper is organized as follows: For the convenience
where the electronic degrees of freedom are represented usingf the reader, the dynamics formalism is briefly reviewed in
self-consistently converged electronic structure calculations section 2. Details can be found in refs 59 and 60. The time-
(at the level of density functional theory, Hartreleock, post- dependent deterministic sampling algorithm is briefly intro-
Hartree-Fock or semiempirical methods) or (b) extended duced toward the end of section 2 and discussed in more
Lagrangian approaché&%53where an approximation to the detail in sections 3 and 4. Appendices-& facilitate this
electronic structure is propagated through an adjustment offormal discussion. Numerical tests are presented in section
the relative time-scales of electrons and nu#lé}.>0545The 5 and include demonstrations of the computational improve-
AIMD approaches, when combined with full quantum or ment obtained from the sampling technique for quantum
semiclassical dynamics schemes, have the potential to treatlynamical treatment of a single particle undergoing dynamics
large problems accurately with the complete machinery of along with the surrounding electronic degrees of freedom
guantum dynamics. Several steps have been taken in thisand classical nuclear degrees of freedom. Examples include
direction both for real and imaginary time quantum treatment of the single quantum particle in one dimension
propagatiory342.56-60 and in full three dimensions, and the systems studied involve
We have recently developed an appré&€fthat attempts ~ hydrogen, hydride or proton-transfer processes in-j&t
to overcome some computational bottlenecks in this area.Cll ™, [CHs—H—CI]", and the biological enzyme, soybean
Our approach is quantum-classfégk®” and combines lipoxygenase-1 (SLO-1). In all cases the computational
quantum-wave packet dynamics treatment of the time- improvements seen due to the use of time-dependent
dependent Schdinger equation with ab initio molecular ~deterministic sampling are excellent. Our conclusions and
dynamics (where the nuclei are treated classical). The latteroutlook toward further improvements are presented in section
can be performed using Atom-centered Density-Matrix 6
Propagation (ADMP}-%5or Born—Oppenheimer molecular
dynamics (BOMDY82931 The wave packet dynamics is Il. A Quantum Wave Packet Generalization
performed through an analytic, banded, Toeplitz representa-for ab Initio Molecular Dynamics
tion to the discretized free propagator known as “distributed |n this section we first summarize the governing equations
approximating functionals” (DAF).%¥72[The (ij)th element  of motion and approximations involved in the quantum wave
of a Toeplitz matrix depends only dn— j|. This property  packet ab initio dynamics formalism. (Further details can
of the free propagator used in the current contribution yields pe found in refs 59 and 60.) We then proceed to highlight
an efficient scheme where only the first (banded) row of the the main computational bottlenecks which form the basis
matrix representation of the time-evolution operator needs for the rest of this paper.
to be stored.] Some notable features of our wave packet To efficiently propagate an electremuclear system, we
AIMD approach are as follows: (a) The quantum dynamical start from the time dependent Sétinger equation (TDSE)
free-propagation is formally exact and computationally and assume that, in large systems, some nuclei may require
efficient. It includes important quantum-effects such as zero- only classical treatment, but other parts of the system may
point effects, tunneling, and over-barrier reflections. (b) The need to be treated by applying quantum dynarfié&As a
electronic structure is simultaneously treated using hybrid result, we partition the electremuclear system into separate,
density functionals (for example, B3LYP)™ and derives  put interacting subsystem&:#8 Subsystem 1 comprises
its strength from established linear scaling electronic structure particles that are treated quantum dynamically. Subsystem
techniqueg® "8 (The computational complexity of the quan- 2 contains the nuclei whose description will be given
tum dynamics formalism scales linearly with grid basis classically, and subsystem 3 comprises the electrons in the
size¥) system. In the discussion below and the rest of this paper,
However, there remains an important computational dif- we represent the position variables for the particles in
ficulty in our approachk? An approximation to the time-  subsystem 1 aBqm. Similarly, the particles in subsystem 2
dependent interaction potential between the quantum dy-are represented using the position varialiRs and those
namical system and the AIMD system is required on the in subsystem 3 are represented usiadVe then invoke the
grid representation of the quantum wave packet, at everytime-dependent self-consistent field (TDSCF) mean field
instant in time. If ab initio methods are used to represent separatioff#¢61.7wherein the full wave function is ap-
the electronic degrees of freedom, this presents a majorproximated as a product: (Rom, Rc, re 1) =
computational task and hinders the direct application of this 11(Rom)y2(Rc)yws(re)exply], and y (that is the first time-
methodology for higher dimensional quantum dynamical derivative ofy) is proportional to twice the energy of the
subsystems. We overcome this hurdle here by introducing asystem. This leads to three separate time-dependent-Schro
potential adapted time-dependent, deterministic samplingdinger equations, one for each subsystem, and the Hamil-
measure that allows us to only evaluate the time-dependentionian for each separate ScHioger equation is mean-field
interaction potential in important regions. The sampling and depends on the state of the other two subsystems, for
measure at any given step during the dynamics is cast as @xample,H; = 3| % |yysll (See ref 59.)
function of the interaction potential, the gradients of the In the next step we recognize that the particles in sub-
potential with respect to the quantum dynamical particle and system 1 are to be treated using quantum dynamics, and
wave packet amplitude, all of which are determined at the hence we retain the time-dependent Sdilmger equation
previous dynamics step. for subsystem 1, following dynamics under the Hamiltonian
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H,. But, since subsystem 2 comprises nuclei that are notfunctional treatment (or any other single particle treatment)
required to be treated within a quantum dynamical formalism of the electrons. The equations of motion for subsystem 2
(since they are not part of subsystem 1), we enforce theremain the same as in eq 2 apart from the fact that the forces
classical limit f — 0)%8.6466.67.8987 for these particles. In  used in ADMP are different from that in BorOppenhei-
subsystem 3 we choose to enforce the space-time separatiomer?® through the inclusion of an additional term that
of electrons to obtain a stationary state (Be@ppenheimer) depends on the commutator of the single-particle electronic
description of electrons. In this fashion we recover a form- Hamiltonian (or Fock matrix) anBc. The ADMP subsystem
alism where a portion of the full system is treated using quan- also experiences an “averaged” force similar to subsystem
tum dynamics, another portion of the system is treated clas-2. This averaged force and the N-representability constraints
sically, while a third portion (the electrons) is described with- propagatd Rc, Pc} which in turn affects the enerdy({ Rc,
in a stationary state approximation. The description of the Pc}, Rom) and determines the dynamics)ofThe system of
electrons can be achieved using HartrEeck, DFT, semiem-  eqs 1-3 are thus coupled and are solved simultaneously as
pirical, or post-Hartree Fock formalisms, and if any of the  a single initial value problem.
single particle descriptions are used (Hartr€eck, DFT, If Born—Oppenheimer (BO) dynamics is used to represent
or semiempirical), then the electronic subsystem obeys a self-subsystems 2 and 3, eq 3 is substituted by SCF convergence
consistent field (SCF) procedure which leads to a convergedof Pc. As a result, there arises an important and subtle
single particle electronic density matriRg. In this situation, difference between the ADMP and BO wave packet imple-
the equations of motion for subsystems 1 and 2 are mentations. In BO, the density matric, becomes a
, p2 function of bothRc and Rqum, but in ADMP, Pc does not
9 IR 2 depend orRqgy; Pc only depends on the distribution of the
P Rawi!) ’ ZMQMV Rou + ERe Pl RQM)] * wave pacLFé?X(RQM;t). Thus in ADMP, the dynamics d?c
X(Rows 1) (1) is Ehrenfest-like, while this is not the case when BO is used
for the dynamics ofR¢, Pc in conjunction with quantum
and dynamics. As a result, in ADMP the calculation Bf{ Rc,
) Pc}, Rowm) for each additional grid point is simplified, since
M d'Rc _ _Q‘BE({ Rc.Pchs Row) XD ) the terms that depend only &g (the two-electron integrals
dt? Rc in the Fock matrix) do not need to be recomputed. This
important and subtle difference will be benchmarked in future
where y(Row; 1) represents the quantum dynamical wave Publications. _ _ _ _
packet,M denotes the classical nuclear masses, Magl ~ The time-evolution of;, in the coordinate-representation,
denotes the mass of the quantum subsystem particle(s). AdS approximated using the symmetric split operatei®
stated above the equation B is a self-consistent field -
equation arising from the single particle methodology of P . ‘V(QQM) = ;
choice. If post-HartreeFock treatments are used, then the *(Raut + A = Zex o K (Row Rou)
energy functionals in eqs 1 and 2 are appropriately modified. : p{ i
exp| —

Pc

Subsystem 2 experiences an “averaged” f&rteat depends M

wl
on the instantaneous wave packet t]X(RQM’t) “)
An alternative description is obtained by employing the o ,
recently developed Atom-centered Density Matrix Propaga- and the free-propagatok(Roy, Roy), is represented using
tion (ADMP) formalisn#255:87:8992 for subsystems 2 and 3.  distributed approximating functionals (DAF?}50.68.70
To arrive at this step, we first note that classical dynamics

of subsystem 2 and the simultaneous self-consistent treatment, . ; 1 (%M - %M)Z

of electrons together comprise the now well-known ab initio K(Row Row) = o R [

molecular dynamics (AIMD) paradigf§. 3340495193 |t has o(0) 20(Atgy)

been noted that under conditions of.“adiabatic con- w2 (0) 21 1\ ) %M - %M
trol”,50.89.90.94extended-Lagrangian formalisPis® such as Z} —| =@27) YH, | ——| (5)
ADMP can provide dynamical results in good agreement =0\ 0(Atgy) 4 n

. . . . 20(Atgy)
with Born Oppenheimer dynamics and experinféftwWhen

ADMP is used to describe the dynamics of the electrons, |n eq 5, H,, are even order Hermite polynomidisThe

the equation of motion for subsystem 3 is structureK(F?QM, F@'QM) = R(“:?'QM _ FgQMD, renders a great
deal of efficiency to our quantum propagation as discussed
2
9 Pe o _ _@‘35({RC’PC}’ Row) D in refs 27, 59, 60, and 70. The evolution fRc, Pc} is
dt® oP¢ Re based on the velocity Verlet integrat®ras discussed in ref

[AP. + PcA — A] (3) 59.
An important advantage of this dynamical procedure for
Here,u is a fictitious inertia tensé#°°8%%°describing the  {y(Rowm;t);Rc,Pc} is that there is no need to prepare the
motion of Pc, andA is a Lagrangian multiplier matrix used potential energy surface a priori, since the potential in eq 1
to impose N-representability ¢fc. The energy functional, is obtained on-the-fly. However, the need to obtain an
E{Rc,Pc}, Rom), in egs 3 and 2, is obtained from a density approximation to the energy and gradiemi$oE({ Rc,Pc},
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Rom)/dRc|p.|yBand ¥ |0E({ Rc,Pc} ,Rom)/0Pc|r |y L] at every evaluations on alNg uniformly spaced grid points. The
time-step, also constitutes a computational bottleneck in thefunctionyn. denotes the propagated wave packet on a surface
current procedure, and the complexity grows with the number obtained using potential and gradient evaluations only on
of grid points defined as part of the quadrature scheme in theNg, in general nonuniformly distributed, grid points. The
eq 4. Hence, the number of grid points where the electronic potential values at the remaininiyd — Ng) grid points are
structure energy and gradients are evaluated needs to béo be obtained from a suitable interpolation scheme and used
optimized. This should bring the overall scaling of the inthe quantum propagation @f.. The quantityT in eq 6 is
algorithm down from a dependence on the total number of the total time of propagation.

quantum dynamical grid points to a small fraction where the  To determine the position of th&le grid points, we
electronic structure calculations are performed. In section introduce a sampling functionyo(Rom), Which represents

Ill, we introduce a time-dependent deterministic sampling the density of points where the ab initio potential is to be
measure which helps us to predetermine the relevant regionsevaluated. While constructingo(Rom), we assume that it

of the potential where the energy and gradients are to bedepends on the density of the wave packgRov) =
obtained; the values of these parameters in the other regiongy(Rowm)|?, the potential energ¥E({Rc,Pc}, Rom), and the

are obtained through an efficient interpolation scheme. This magnitude of the potential gradierntd,, E]. We define our
procedure greatly reduces the computational cost associatedampling functionwg(Rom) to be inversely proportional to

with the algorithm, as will be seen in section V. the values of potential energy since, generally, wave packets
favor spatial regions with lower potential energy. Similarly,

[ll. Time-Dependent Deterministic Sampling requiringwo(Rowm) to be directly proportional to the gradients

of the Quantum Potential Surface of the potential energy helps to maintain accuracy of

To maintain accuracy of the quantum propagation' it is integration in areas of the grld where the potential energy
desirable to have the discretized coordinate representatiorchanges rapidiy?*We further assume thaty(Row) is directly
(or grid) cover a large area and assume that the wave packeproportional to wave packet amplitug€Row). Accordingly
vanishes outside the grid boundaries. [The boundary condi-our proposed sampling function has the form
tions used here are the standard Dirichlet type boundary ) )
conditions. One could also use Neumann bounda diti — : _ FoRowi!)fe(Rouilv)

) ry conditions wo(Rom) = @o(Rowilvi Iy, 1) = . (1)
to solve this problem, and this generalization to the meth- fe(Romi1v)
odology is currently in progre$g] The density of grid points
is then required to be high enough in “important” regions
so as to facilitate accurate evaluation of the wave packet.
This, however, leads us to a computational bottleneck for

where the parametefg v, andl, can take on any numerical
value, and the functiors, fg, andfe are accordingly defined

an on-the-fly calculation of the electronic energy and Y(Row) fori <0
gradients. Here, we aim to dynamically determine an optimal ) 1 fori=0
and adequate set of grid point locations where the electronici(Roum: 1) = Yo — Yo (8)
energy and gradients are to be evaluated such that the error Y(Row) = Yimin +—— i o fori >0

in the quantum dynamics is minimal and controllable. We

introduce a potential adapted, time-dependent, deterministicere Y(Ry,) denotes the wave packet densipfRow),
sampling measure for this purpose. The formal discussion potential energy, or gradients. The quantitiésy and Yiin

on the sampling measure in section Il and subsequentdenote the maximum and minimum valuesyasn the grid.
discussion of the algorithm in section IV are couched in one \when the index,, is zero, thenfy becomes a uniform
dimension. The numerical implementation of this methodol- fynction independent of, and all grid points are considered
ogy in higher dimensions for Cartesian-like grids is discussed gqually important. When the index is less than zero, then
in section IV B. Multidimensional benchmarks are provided the functionY(x) is used as is in eq 7, and if the index is
in sectiors V B and V C. greater than zero, thef{x) is shifted as per eq 8. We further

Consider a uniformly spaced set N grid points in the  a5sume that, is L normalized®! according to
closed interval , b]. The numbeMg could in principle be

large and constitutes the set of points where quantum No _ b

dynamical propagation is to be performed. Netrepresent llewgll; = Zwo(RQm)ARQM = [log®)dx=1(9)

a subset of thes®ly grid points N < Ng) where the =

eleCtrOHiC structure energies and gradients are to be Obtained\Nhere{ %M} are a set Of quantum gnd points in the C|osed
The location of thesée points needs to be optimal and interval [a,b],ARom = (b — &)/Ng andll-+-Il; defines the &

determined dynamicallyso that the propagation error norm. This normalization, in conjunction with the last option
1.1 in eq 8, is used to regulate the contributions of wave packet
oN=T j(’) {Ilyet) — XNE(t)IIZ}Zdt (6) density, potential energy, and gradients to the sampling

function. This aspect is clear from the fact that for 0
is small for both ADMP and BO wave packet implementa- ~ 1
tions. The quantitylAll, is the L2 normi°-192 of vector A, fy(Roms 1) = (Ymax— Ymin)[Y(RQM) + T] (10)
andyer denotes the reference wave packet propagated on a
potential energy surface determined by electronic structurewhere Y(Rom) = (Y(Rom) — Ymin)/(Ymax — Ymin) @and hence
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0 < Y < 1. Thus, for the case df> 0, the normalization
condition essentially reduces the sampling function to

[+ 1) x [E' + 1/,]
E+ 1/,

@o(Rom) 11)

wherep, E', andE are each bounded by 1. The contributions
from the wave packet, gradients, and energy are thus
controlled to allow a flexible scheme to enhance accuracy
and efficiency. The performance of eq 7 for various values
of ly, lv, andl, and different potentials is presented in section
5. Using the implementations of this approach described in
section 4, we choose a setMf grid points Ne = olNg and
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fication of the sampling function. Consider a smooth
transformation, wo(Rom) — w(Rowm), that maintains the
original functional form ofw(Rom) = wo(Rom) for small
values ofa (the practically interesting case df < Ng)
but allowsw(Rowm) to smoothly approach a uniform distribu-
tion aso. — 1:

(a) @(Rowm) tends to a uniform distribution d@$s/Ng — 1

and

(b) &(Rom) — wo(Row) for No > Ne.

If w(Rowm) is normalized and bounded according to

No
llox(Roplly = le(FéQM)ARQM = [CoMdx=1 (12)

a < 1] where the potential and gradients are evaluated. These .
data are used in conjunction with an interpolation procedure  INew(Ro) ARGl = Ne miaxlw(%M)ARQM| =1 (13

(discussed in Appendix B) to perform quantum wave packet
dynamics on a uniform grid comprisingg points.

The interpretation ofvo(Rom) is such that large values of
this quantity indicate regions on the grid where energy and
gradient evaluationshouldbe conducted accurately using
electronic structure methods. Wher(Row) is small, the

it follows from eq 13 that

oo Rell, = Maxe (R < ﬁ

where we have usedRow = (b — a)/Ng. Using eq 12 we

=ao* (14)

accuracy of energy and gradients is not critical, and the valueayve

of the potential in such regions is obtained though interpola-
tion. Additional interpretations that connect the sampling
function in eq 7 to the WentzeKramers-Brillouin (WKB)#
semiclassical theory and also to Bohmian mech&hi¢go+1%8

are discussed in Appendix A.

IV. Algorithms and Prescriptions for
Time-Dependent Deterministic Sampling

A. Conditions on ay(x): The Requirements for a Smooth
Transformation. Two important challenges arise while
deriving a stable, general, numerical algorithm to carry out
grid sampling as per eq 7. Both challenges only arise when
the fraction of grid points where electronic structure calcula-
tions are to be performed becomes large (i.e., whea
Ne/Ng is close to 1). While this is not the practically
interesting limit, since it is desired that most dynamical
calculations are performed for small the demand for a
stable numerical algorithm requires that we analyze all
regions ofa, and this analysis is carried out in the current
section (section IV A). The computational algorithm of wave
packet ab initio dynamics inclusive of sampling is described
in section IV B.

For suitably largex the following problems arise. (i) On
account of a uniform grid implementation of eq 4 in the
current work, the functiomwo(Rom) should tend to a uniform
function asa — 1. That is the set oNg grid points must
coincide with the set oflg underlying grid points ag. — 1.

(ii) In general, for any specific grid discretization given by
grid spacingARqw and for any normalized function in eq 9,
values of Newo(Rom)ARowm] could be greater than 1 i is
large. [Note thalNeARom = (b — @)a.] This would imply
that there is a need for more than one potential evaluation
in the vicinity of the pointRqum, Which is clearly impossible.

<

1= [fo®dx = (b-allwRgyll.  (15)

and thus

1
b—

lo(Ropll, = (16)

a

Using egs 14 and 16 we obtain upper and lower bounds to
the L® norm of w(Rom) as

1
(b—a)

1

a(b — a)

llo (Rl o (7)

and hence

lim w(Roy) = (b —a)* (18)
Thus w(RQM) tends to a uniform distribution in the limit

o — 1, and condition (a) above is automatically satisfied
from the requirements of eqs 12 and 13.

The second requirement, condition (b), is satisfied by
introducing a smooth transformation that uses an additive
correction functionU(Rqwv) to suitably compensate high-
density regions (i.e., regions ok(Row) that are in violation
of eq 13) ofwo(Rowm). Since this scheme has the physical
effect of equalizing the sampling weights, it is referred to
as the “spreading technique” and is the subject of the section
below.

1. Smooth Transformation Spreading Technigile.now
construct a spreading transformation to satisfy the condition
(b) above, i.e.@(Rom) — wo(Rom) for Ng > Ne. Let us start
with a modification ofwo(Rom) that satisfies eq 13. Toward
this we construct two projection operatds andQ¢, such
that

The solutions to both of these challenges are discussed for

the remaining portion of this section.
As we see below, the first problem above is trivially
solved. The second problem, however, necessitates a modi

Qq f(x) = f(x)-Olwe(x) — o*] (19)

wheref is an arbitrary function defined in the closed interval
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[a, b], the quantityf[wo(X) — a*] is a Heaviside function

Jakowski et al.

Wi = o+ U(w) (25)

that is equal to 1 when the argument in parentheses is greater

than or equal to zero, and is defined in eq 14. The operator
Qg is the orthogonal complement €%, and is defined as
Qp F() =F(x):{1— Olog(x) — o*]} (20)
The projection operator®q and Qg by definition exhaust
the closed intervald, b], i.e.
I =Q,+ Qg (21)
and| is the identity matrix.
If we assume a grid discretization comprisiNg evenly

spaced grid points ing} by, it is then our aim to obtailNg
optimally placed points as per the sampling function defined

whereU(w;), as usual, corrects the excess densityin

Qal,
——{Q1}

Vi) == + I QCL}II,

le

(26)

Hence, the generalized spreading transformation can be
summarized using eqs 25 and 26 as

Il .
o= [Qor + ——{Q%} | + Q%
I{ QC1}HI,
NALSYAIR
= Qo+ Qf—+o, 27)
I{ QC1}HI,

earlier. However, as a consequence of egs 13 and 14 it he convergence of this iterative technique is analyzed in

follows that the operatdR, represents a projection onto the
region in space wherfNewo(X)dx| = wo(X)/o* = 1. This is

precisely the region where potential evaluations need to be
performed. However, there is excess sampling density in this

Appendix C, and the scheme is shown to converge uncon-
ditionally.
It is further interesting to note that the procedure high-

lighted above, wherein the family of operatdr®;} and
C

region which violates eq 13. This excess sampling density {¢%} modify the sampling functionwo, has properties

is exactly equal tdlQ2o@dll, wheredo = { wo(x) — o*}, and

needs to be “spread” uniformly in the region represented by

the projection operatd®g. To achieve this, we subtract this
excess density from the regions belongingQe and add
this excess densityniformlyto the region belonging t&g.
Consequently an additive correctiondsg is introduced

w, = wy+ U(wy) (22)

where the additive spreading functitf{wo) is defined as

U(wo) = — Qoo + M{ Q51} (23)
I{ QE1}I,

Again, the first term of the above equation subtracts the
excess density from the regions belongingp The second
term adds this excess densityniformly to the region
belonging toQg. In the second term, the quantif£2;1}
represents the projection of a constant vecigx)(= 1 for

x €[a, b]) onto the region belonging t&.

reminiscent of multiresolution analysi1°%-113 Our scheme,
however, differs in that themultiresolutionis based on
spreading the “excess densit}iQ2o@dl; as opposed to a
translation-dilation process used in standard wavelet theory.

We now comment on the behavior ©faso. — 0. In this
case the upper bound i@ (Rowm)ll. in eq 14 goes to infinity,
and spreading is not required. Consequené#yRov) —
wo(Rom) for Ng > Ne (condition (b) in section IV A).
However, for values ot greater than zero, the spreading
transformation enforces the condition in eq 14 as highlighted
above.

B. Computational Implementation of Potential Adapted
Time-Dependent Deterministic Sampling for Wave Packet
ab Initio Molecular Dynamics. The algorithm to perform
mixed quantum wave packet and ab initio dynamics (ADMP
or BO) of the {Rc, Pc,x(Rom)} system, based on the
sampling scheme, is outlined in this section.

As a preliminary step, a set &fg grid points,{ R'QM}, is
created to represent the discretization of the quantum wave
packet. The initial wave packet is defined on this grid. In

After applying the spreading transformationag(Row), the

width chosen such that the wave packet vanishes at the edges

excess sampling density described above is removed. How-Of the grid, (b) a thermally sampled linear combination of
ever, in this process a similar excess density may be createdhe €igenstates of the quantum Hamiltonian in eqtl=a0,

in the region belonging t€2g. Thus, the sampling function
w1 obtained from eq 22 may suffer the same waywgsn
the sense that there probably exists a finite regien f(x),
on the grid:

Q; f(x) =1(X)0lw(x) — a*] (24)

This implies thatw; does not satisfy eq 14 either. However,

and (c) eigenstates of the quantum Hamiltonian in eqtl at
= 0, as initial wave packets.

During each propagation cycle, the first step is to prepare
a potential energy surface and corresponding gradients. The
potential is used for quantum propagation, and the gradients
are used to construct the AIMD forces (ADMP or BO) for
propagation of the classical nuclei and electronic structure.
The grid points where the potential and gradients are

the excess density in the region represented by eq 24 iscalculated is controlled by the sampling technique discussed

always smaller in magnitude théi®wdl, (see Appendix C

earlier. Toward this, the sampling function is calculated based

for details on the convergence properties of the spreadingon the wave packet density, potential energy, and gradients

technique) but stilheeds to be spread agai@onsequently,

of potential energy obtained from the previous step. [For

the procedure described in eqs 22 and 23 is to be iteratedthe first wave packet AIMD step, the potential energy,

according to

gradients, and wave packet density are not available. Thus,
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Figure 1. An illustration of the sampling function, w(Rowm), for Ng = 21 and Np = 101. Part (a) shows the sampling function
(dotted line), its integral (dashed line), and ceiling function Efjo dxX'w(x')0 The 21 grid points are set at discontinuities of the
ceiling function, and these points are represented in the figure using black dots on the discontinuous ceiling function and “X” at

corresponding spots along the abscissa. Part (b) shows the corresponding potential surface and density of wave packet from
which the sampling function is calculated.

the initial sampling function is chosen to be uniform.] The number of sampling grid points, although their respective
condition of eq 13 is then verified, and the iterative spreading sizes may be different. If the number of sampling grid points
scheme described in section IV Al is applied dg if inside each cuboid is chosen to be a small fractiomNgf
required. For small values aft (=Ng/Ng), spreading is  we may perform marginal sampling (eq 28) inside each
generally not needed. Once the sampling function is deter-parallelepiped. Both of these approaches constitute general
mined based on the discussion in sections IV A, the grid schemes that we implement in arbitrary dimensions. The
points where the potential and gradients evaluations are t0second scheme above, again, has strong connections to
be condgcted are determined based on the dimensionalityyayvelet theory, and this aspect will be investigated as part
of the grid as follows. of future publications.

1. One-dimensional quantum propagation: The potential Once the grid points are determined as above, the potential

1S sgmpled' at grid pomts Where the cglllng function and gradients are computed, and the averaged AIMD forces
INe/f, dXw(X)Obecomes discontinuous and is demonstrated . . . .
=% . in egs 2 and 3 are updated. Since the wave packet is defined
in Figure 1. Here[y[represents the least integer greater than

or equal to y and is called the ceiling of y. Accordingly, a on the entire grid, w_hile j[he pott_entia_l and gradien_ts are
grid map is created that describes the location oNpgrid evaluated only omE gr!d po_mts, es_t|mat|0n of the gradients
points where the potential energy and gradients are to beOn [No = Ne] grid points is reguwed to calculate AIMD_
evaluated. This one-dimensional algorithm is used to obtain fOrCeS as per egs 2 and 3. In this paper we have used a linear
acceptable values df, Iy, andl,, to perform preliminary mterpolatlon- scheme to mterpolatg all gradlents. The e\{alu-
tests and also in the higher dimensional algorithm described@ted potential on theNe grid points is used to obtain
below. The approach here has close connections to the theorPProximations to the potential energy at the remaining grid
of Haar wavelet transforms popular in digital signal proces- Points using the Hermite curve interpolation schéifé’
sing76:92.108-115 described in Appendix B. For thiE({Rc,Pc}, Rom) and

2. Quantum propagation in higher dimensions: There are dE({Rc,Pc}, Row)/dRqwm at all Ne grid points are used.
in turn two options that we consider here. In one case, we Next, the potential energy on the grid along with the DAF
construct reduced (or marginal) one-dimensional sampling free propagator given by eq 5 are used for causal propagation

functions according to of wave packety(t), according to eq 4. The averaged
energy gradients [y(t)|0E({ Rc,Pc} ,Rom)/dRc|x ()T and
o) = [ dydzw(x,y, 2) (28) B (H)|9E{ Re,Pc} ,Rom)/dPcly(t)Dare used to propagaRc

_ . andPc. (The density matrixPc, is obtained through SCF

and similarly form,(y) andw4z). The sampling along each . .
L . : : . convergence for BornOppenheimer dynamics.) The next

direction is then performed using the one-dimensional . : . .

. : i propagation cycle starts by calculating the sampling function
algorithm discussed above, and the overall grid is constructed L . . . :
as a direct sum. This algorithm is called marginal sampling and determining the grid positions for potential evaluation.
in further discussion. The simplicity of this approach is ~ The propagation scheme has one additional feature that
appealing, and we find that the results obtained this way are@llows for further reduction in computational cost. As a
sufficiently good as seen in sectdl Band V C. Asecond  preliminary step, the distance between all nuclei forall
algorithm that is more nonisotropic is as follows. The grid points is calculated, and if any of these is found to be
complete set olg grid points are first partitioned into regular  smaller than a fixed threshold, then the point is skipped
rectangular parallelepipeds (or cuboids) such that the integralduring the potential and gradient evaluation and interpolated
of w inside each parallelepiped is roughly a constant. This later. This aspect is similar to that used in the partial
implies that each parallelepiped must contain the samemultidimensional grid method of lordanov et &i,where
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Figure 2. Part (a) shows the average error represented by eq 29 for No = 101. Maximum deviations from the average error for
individual potentials is displayed using the vertical error bars. As can be seen the error is negligible for all potentials beyond Ng
= 15. Part (b) shows the behavior of o,, in eq 30 as a function of Iy, and //. This part indicates that on average Iy =1 and I/
= 3 are a good choice.

the authors use a fixed energy cutoff based on short-range 4. A realistic one-dimensional potential obtained from the

interaction between particles. [CI-H—CI]~ system. The distance between chloride
ions were fixed at 4.2 A, and the position of the

V. Numerical Results hydrogen atom was scanned along the chlericldoride

In this section, we first obtain optimal values for sampling axis to obtain a total of 101 potential energy points at

parametersy, |\, andl, described by eq 8. Our general idea the B3LYP/6-31G level of theory.
toward this issue is to perform a multidimensional searchin 5. A symmetric double-well potentifilw(x) = (x — 1)*(x

functional space to determine values of these parameters that ~ — 3)? for x € [0.4, 3.6].
would be optimal in an average sense. To simplify the 6. An asymmetric double-wefhso(X) = (x — 2)7[1 + 3(x
problem, we first consider a series of one-dimensional — 5)?)/10 for x € [1, 6].
potential energy functions and use these with the sampling 7. A damped double-well potentifidow(X) = [(x — 1)%(x
measure to determink andly. (I, is set to zero for this — 3)2 — 0.4]expt 1.5¢). The range ok is [0.6, 8].

portion of the parametrization.) These are then used to The well farther from the origin is relatively weak and
perform a series of quantum wave packet simulations in one may be interpreted as supporting a resonance state from
dimension, and the accuracy of the dynamics is studied asa  dissociation.

function of I, values. This helps to determine the value of 8. A plane wave functioffis(x) = sin(x) for x €[0, °/, 7).

all three parameters, and these calculations are described in 9. A simple Gaussian functida(x) = —6 exp[-(x — 4)7]
section V A. A physical basis for the choicelgf I/, andl, for x €[0, 8].

is also provided at the end of section V A. 10. A real coherent stafiem(x) = exp(—x%32)cos(0.%).

In sectios V B and V C we use th@arameters thus  The last three functions are not standard potentials. These,
determined to (a) analyze the error in three-dimensional however, have characteristics that a wave packet might
quantum dynamics for the [EH—CI]” system and a possess.
biological enzyme, soybean lipoxygenase-1 (SLO-1), and (b)  For each of the above potentials the sampling function
to obtain a vibrational density of states inclusive of nuclear was calculated for a set dfz values. In each case the values
quantum effects. The density of states are obtained from aof Iy and |l were scanned, and the normalized error was
unified velocity-velocity, flux—flux autocorrelation function.  calculated according to
We show that our sampling measure is very efficient in
determining these spectra since small valuesNefare =t dlh
sufficient to determine the spectral data accurately. AT - fol,

A. Optimal Choice of Iy, I\, and I,. To find optimal
values forly and Iy, 10 different model potentials were wheref, = (b — a)™* fg f(x)dx, and fap(X) is the ap-
considered. The choice of these functions was based on theiproximation tof(x) obtained from sampling and interpolation.
propensity to appear during molecular dynamics simulations. For all calculationdNg = 101 andNg were scanned in the
The potentials used in our tests are as follows: range 6-51 which corresponds to compression faatoin

1. Lennard-Jones-612 potential with coefficient€s = the range 1/17 through 1/2. To cover even smaller values of

Ci2 = 100. The range of independent variable is [1, 3]. o a second set of tests were carried out Wih= 1001 and
2. Morse potential, with minimum deptb, =10, located the same valuelle as above. This resulted in compression
atx. = 2. The exponent was chosen tope 0.9. The ratios ranging from 1/170 through 1/20.
range ofx is [1, 8]. The behavior of the error is shown in Figure 2(a). In
3. Harmonic potential/, k(x — xo)?, with xo = 4, k = addition, deviations from the average error, due to the
0.002. The range af is [0, 8]. individual potentials, are indicated through the use of the

(29)
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vertical bars in the figure. To understand these error values, Table 1: Quantum Wave Packet Propagation Errors for
consider the following interpretation of eq 29. The numerator the [CI-H—CI]~ System?
of eq 29 is the B norm of a difference vector when the ly

potential is normalized as per the denominator. Using simple
trigonometry one can see that the hyperangle between the

Iy v 021 015

B3LYP/6-31G, R=4.2 A

! X : : 1 3 0 0.0000083 0.0001035
ketvectors fandfap, in aNg-dimensional linear vector space 1 3 1 0.0000036 0.0000720
is approximately cos{(2 — ¢?)/2] for smallo. Hence foro 1 3 3 0.0000048 0.0000870
= 0.01 (WhiCh is approximately the case flg = 10 in 1 3 7 0.0000302 0.0003881
Figure 2(a)), the hyperangle betweérand f, is 0.57 1 3 15 0.0003555 0.0069267
degrees! Clearly, the error due to deterministic sampling and 1 3 31 0.0079059 0.0491048
interpolation is negligible folNg > 15 (No = 101) and 1 3 63 0.0331312 0.1068715
acceptable foNg = 11. We will see in the next section that 1 3 127 0.0581166 0.1515045
even smaller values & can be used with acceptable error 1 3 255 0.0732637 0.1826569
in vibrational spectroscopic propertiesnd as the dimen- 1 3 -1 0.0929057 0.2199152
sionality of the problem increases, the method gets more B3LYP/aug-cc-pVTZ, R=4.2 A
efficient, exponentiallyThis provides the opportunity for a 1 3 0 0.0000171 0.0002318
large reduction in computational overhead within the current 1 3 1 0.0000066 0.0001336
scheme. 1 3 -1 0.0066394 0.0492104
To obtain a single set of values fty andly that work B3LYP/aug-cc-pVTZ, R = 3.6 A
well on average, we first note that for complex systems the 3 0 0.0000955 0.0013409
interaction potential is rarely a pure model potential suchas 1 3 1 0.0000405 0.0007540
those used here. In fact, these could in general possess a 1 3 -1 0.2722858 0.4808945

mixtu_re of the complexities present in eaCh_indiVidu_al aThe shared proton is treated quantum-dynamically, while the
function studied here. Consequently, for an optimal choice chloride ions are treated using Born—Oppenheimer dynamics. Sym-

of Iv andly for realistic potentials we consider the average bols 021 and o1s refer to wave packet errors as determined using eq

6 with Ne = 21 and Ne = 15, respectively. R represents the chloride—
error chloride distance. The optimal sampling parameters are shown in
bold. No = 101 is used for all cases.

= f ol

T — L,

Talvs Iv) (30) this constitutes the simplest test case. However, if the ADMP
dynamics option were chosen for the chloride ions, the
potential energy surface would change as the wave packet
moves, since the potential is determined in ADMP using the
electronic density matrix at the wave packet centroid
configuration. Hence the ADMP implementation presents a
slightly more challenging test case. For the case off€H
H—CI]~, again the shared proton is treated using quantum

dynamics, while all other atoms are treated using ADMP.

where the sum runs over all the model potentials. Figure
2(b) shows the normalized average potential error calculated
according to eq 30 as a function of natural legf 1) and
natural log(y + 1) for No = 101 andNg = 10. The
parameterd, andly, are each scanned in the range2®6.
The minimum in the plot is at approximately = 1 andl\
= 3. Based on this analysis, we find that= 1 andly, = 3

are suitable values that work well for the average case
complexity, and, hence, these are the values chosen for th
rest of the study in this publication.

To find an optimall, we have conducted a series of one-
dimensional wave packet dynamics simulations for the-[Cl

We constrain the carbon and chloride atoms to remain at a

dixed distance; however, the three remaining hydrogen atoms

are completely free to move according to the ADMP forces.
Furthermore, since ADMP is used, the potential energy
surface experienced by the wave packet changes with time.

H—CI]~ and [CH—H—CI]~ systems. Each simulation was For all cases, a variety of basis sets was studied, and many

100 fs long, and there were a total of 70 simulations which Values of Ne and I, were considered. Our results are
helped us determine an optimal value farFor the case of summarized in Tables-13. In Table 1, the data obtained
the [CHH—CI]~, the shared proton is treated quantum from Born—Oppenheimer subdynamics of the chloride ion
dynamically, and two different sets of simulations have been (along with quantum wave packet dynamics of the shared
conducted. In one case, the dynamics of the chloride ionsProton) are summarized for two different basis sets;

and the electrons are treated using ADMP. In the other case distances, differerlile, and sampling parameter values. The
these are treated using Ber@ppenheimer dynamics. The O Values reported in these tables is described in eq 6, which
choice of these systems was based on the following criteria.again has the same physical interpretation as the error in eq
We needed to test the time-dependent deterministic sampling29. Hence, these errors are very small for many different
approach in conjunction with both ADMP and Betn values ofl,. In Tables 2 and 3, the data obtained from ADMP
Oppenheimer dynamics approximation. The {€I—Cl]~ subdynamics (along with quantum wave packet dynamics
system presents a simple test, since it is possible to constrairof the shared proton) are summarized for{€1—CI]~ and

the Cl atoms at various distances and perform the dynamics;[CHs—H—CI]~, respectively. The reference wave packet for
if the Born—Oppenheimer dynamics option were chosen for all cases is obtained from a full calculation (without
the chloride ions, the potential energy surface experiencedsampling) overNg = 101 grid points. For all cases, the
by the wave packet would remain roughly the same. Hence deterministic sampling parameters for potential and gradient
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Table 2: Quantum Wave Packet Propagation Errors for potential surface that could mark the advent of tunneling.

[CI-H-CI]~ 2 This region also generally comprises a classical turning point,

Iy I I, on o1s and the standard semiclassical approximation breaks @own
B3LYP/6-31G, R=4.2 A in this region. (Also see Appendix A.) Thus, this is an
1 3 -1 0.15531148 0.32244568 interesting region in quantum dynamical simulations, and,
1 3 1 0.00001817 0.00015913 i
BALYP/aug-co-pVTZ, R = 3.6 A on average, the wave packet amplitude may be expected to

1 3 1 0.17838404 0.53823434 be small in such regions. In eq 11 the quantiie&’, and
1 3 0 0.00163375 0.21019838 E are each in the region [0,1] (see discussion before eq 11)
1 3 1 0.00020302 0.04537375

and hence for region (a)

2 The shared proton is treated quantum-dynamically, while the rest
of the system is treated using ADMP. Symbols 021 and o1s refer to
wave packet errors as determined using eq 6 with Ne = 21 and Ng
= 15, respectively. The optimal sampling parameters are shown in
bold. No = 101 is used for all cases.

[1+ 1/1] x [0 + 1/3]
[06"* ] case(™ CONSANt 0+1/1 -

constant* 2/3 (31)

Table 3: Quantum Wave Packet Propagation Errors for where we have usdd =1,y =1, andly =3 ineq 11 and

[CH3—H—CI]~ 2 also substituted the maximum values @fand minimum

Iy I, Oo1 015 o1 possible values o’ andE as required by the definition of
B3LYP/6-311+G(d,p) region (a) above. Now, in region (b), the tunneling and

1 3 -1 012067507 0.27055252  0.45599940 classical turning-point regions

1 3 0  0.00003690  0.00083307  0.00783050

1 3 1 0.00004855  0.00032730  0.00523513

[0+ 1/1] x [1+1/3] _

- - - 13, —
2 The shared proton is treated quantum-dynamically, while the rest [wg ]]Case(b)— constant

of the system is treated using ADMP. Symbols o021, 015, and o011 refer
to wave packet errors as determined using eq 6 with Ng = 21, Ng =
15, and Ng = 11, respectively. The optimal sampling parameters are
shown in bold. No = 101 in all cases.

have been set to the previously found optimal valuek,of

1+1/1
constant* 2/3 (32)

That is, the choice of = 1,1y = 1, andly’ = 3 provides an
equal distribution of grid points in low potential regions as
well as tunneling regions.

=1 andly = 3.

! ) ) There can be other possible valueslgfly, andly' that
We find thatl, = 1 is the optimal value for quantum wave

also have the property of producing an equal distribution of

packet simulation withy = 1 andlv = 3. The corresponding  grid points in regions (a) and (b). For the special cask of
entries in Tables 13 are shown in bold. To further  — it is possible to show that

substantiate the accuracy of the sampling approach, in Figure
3 we present the time-evolution of thé-norm of the error

in the potential (extrapolated potential based on deterministic
sampling minus the reference potential calculated on all grid will always provide an equal distribution of points in regions
points) for long simulations (10 ps). As can be seen the error (a) and (b). (We have only considergd= Iy in this analysis

is minimal and well within the acceptable range for DFT since one would expect the potential and the wave packet
electronic structure calculations. Furthermois = 11 amplitude to behave in a mutually complementary fashion.)
represents a sizable reduction in the number of grid points However, for larger values df, Iy, andly (larger than 1,3,1)
where potential evaluations need to be conducted. We furtherthe distribution of points in other classically forbidden regions
note that the results for the B3LYP/6-31®, = 4.2 A (regions of high potential and low gradient) becomes smaller,
calculations on the [GtH—CI]~ system described in Table and hence the choide = 1, Iy = 1, andl\/ = 3 provides a

1 are rather importanEirst, at this geometry, the zero-point good physical choice as is seen from the numerical experi-
energy of the proton~2 milli-Hartrees) is comparable to  ments described in this section.

the height of the barrier£4 milli-Hartrees) separating the B. Quantum Dynamical Treatment of Hydrogen Trans-
protonated states on each chloride. Furthermore, there are fer in Soybean Lipoxygenase-1 (SLO-1) and Treatment
multiple states accessible below the barrier and immediately of the Shared Proton in [CI-H—CI]~ To study the scaling

Iy =(,+17-1 (33)

above the barrier. This proides the opportunity for tunnel-
ing, zero point effects, anderbarrier reflection of the wae
packet playing an important role in the dynamids.is

of errors with dimensionality and system complexity, we
have considered (a) the [EH—CI]~ system again but with
full three-dimensional quantum wave packet treatment of the

interesting to note that the time-dependent sampling measureshared proton and (b) soybean lipoxygenase-1 (SLO-1) which
performs well even under these highly quantum-mechanical, has been thought to exhibit hydrogen tunneling in recent
tunneling oriented conditions. literature!'®-125 SLO-1 is a non-heme metalloenzyme that
To analyze the physics behind the choiges 1, Iv = 1, catalyzes the oxidation of unsaturated fatty acids. The active
andly = 3, using eq 11, let us consider two separate regionssite for the enzyme is shown in Figure 4(a) and the model
of a potential energy surface that are of interest in quantum for the active site used in our study is shown in Figure 4(b).
dynamics. (a) Minimum energy region of the potential The rate-determining step in the catalytic cycle for SLO-1
surface: The region where the potential energy is low, the involves the abstraction of a hydrogen atom from the fatty
wave packet amplitude may be high, and the gradient hereacid chain by the octahedral Fe-OH complex present in
is generally small. (b) The region where the potential is high the active site and shows a remarkably large H/D kinetic
and the gradient is also high represents the region of aisotope effect of 81 near room temperature and a weak
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Figure 3. The error in the interpolated potential energy, for the [CI—H—CI]~ system, from using time-dependent deterministic
sampling during the wave packet dynamics calculations. The shared hydrogen is treated as a one-dimensional quantum wave
packet discretized over No = 101 regularly spaced grid points. As can be seen the errors in the potential energy for Ng greater
than 11 are in the microhartree range.

(b)

Figure 4. Soybean lipoxygenase-1: The active site is shown in part (a), and the model used for the active site in the current
study, after geometry optimization, is shown in part (b). The iron atom is represented by the large sphere close to the center of
the two figures. The shared hydrogen atom is marked. Note that in our study the three imidazole rings have been terminated
with amine groups.

temperature dependence of the reaction rate con$fant. gradients are required to be computed to propagate the
These observations are thought to reflect the fact thatclassical nuclear degrees of freedom and the electrons for
hydrogen transfer occurs extensively via a tunneling the case of a full wave packet ab initio dynamics calculation.)
mechanisni?0-123 Once the potential energy surface was obtained, the eigen-
In this section we consider SLO-1 to study the scaling of states for the quantum nuclei were obtained using the Arnoldi
errors in the methodology with respect to dimensionality and iterative diagonalization proceduf®:'2612” The Arnoldi
system complexity and to demonstrate the power of our scheme is a variant of the Lanczos proceffiiand involves
methodology in attacking large complex problems. We the repetitive application of the Hamiltonian matrix to an
simplify the active site by substituting amine groups for the initial vector to form a Krylov basis sé¢! The representation
imidazole rings. Since the purpose of the current section is of the Hamiltonian in this new basis set leads to a Hessenberg
only to illustrate the scaling of errors in the deterministic form or tridiagonal forn* for the Hamiltonian, which is
sampling methodology, a detailed study of the SLO-1 relatively easy to diagonalize. The action of the Hamiltonian
problem, using wave packet ab initio molecular dynamics matrix on any vector is calculated easily by taking advantage
along with a more elaborate description of the active site of the sparse structure of the DAF kinetic energy operator
and substrate, to evaluate the extent of nuclear quantum(second derivative of the zemdtom limit of eq 5) and the
effects will be the subject of a future publication. fact that the full three-dimensional kinetic energy operator
To study the evolution of errors, we considered frozen can be written in direct product form which obviates the need
geometries for both [CIH—CI]- and SLO-1 where a to store the full (million by million) Hamiltonian matrix. For
potential energy scan was performed along a three-a grid comprising 101 points in each direction (that is, a
dimensional Cartesian grid for the shared hydrogen atom.million points in three dimensions) we only store three 101
In addition to the electronic energy (at the level of B3LYP/ x 101 sparse matrices that are used to construct the action
6-31+G**) we also computed gradients of the electronic of the full Hamiltonian matrix on a vector as required by
energy at each grid point for use with the sampling algorithm. the Arnoldi scheme. This is also the case for propagation of
(Note: this does not constitute additional effort since the a wave packet in three dimensions, where again we only
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Table 4: Quantum Wave Packet Propagation Errors for [CI-H—CI]~ and Soybean Lipoxygenase-1 (SLO-1)¢

[CI-H-CI]~ o101° o118 015° 021°
20th? 3.059 x 10798 6.660 x 10704 1.989 x 10704 5.221 x 1079
seventh? 2.219 x 10708 3.999 x 10703 5.275 x 10795 1.176 x 10794
firsta 1.079 x 10708 2.614 x 10702 1.308 x 10793 3.429 x 107%
thermal sampling® 1.066 x 10798 3.433 x 10792 1.491 x 10794 2.785 x 10794
Gaussian® 7.243 x 10797 6.037 x 10793 1.182 x 10794 8.640 x 1079

SLO-1 01013 o113 015° 0213
20tha 2.812 x 10793 7.324 x 10701 1.913 x 1079t 4,421 x 1079
firsta 3.140 x 1079 4,500 x 10791 8.927 x 10701 2.027 x 1079
thermal sampling® 4541 x 10795 5.558 x 10701 7.492 x 10701 1.371 x 10701
Gaussian® 1.593 x 10708 6.998 x 10703 4,593 x 10793 2.356 x 10793

a Number represents the eigenstates number that is used as initial wave packet. ? Initial wave packet is constructed as a linear combination
of eigenstate with coefficients for the ith eigenstate: exp[—E/kT]. Temperature = 300 K. ¢ Initial wave packet is a Gaussian centered close to
the top of the barrier. ¢ Symbols 0213, 0153, and o113 refer to wave packet errors as determined using eq 6 with Ng = 213, Ng = 153, and Ng =
118, respectively. No = 10183 in all cases. Total time of propagation for all cases is 500 fs.

store three one-dimensional free propagators, eq 5, toto be used in conjunction with the classical nuclear velocities.
construct the evolution of a three-dimensional wave packet. The symbol &2 represents the real part of the bracketed
The eigenvectors obtained from the Arnoldi process are quantity.
then used to construct initial wave packets, as described in  We thus, simultaneously, construct the correlation func-
Table 4, and propagated with and without deterministic tions[J(t)J(0)Jand@(t)»(0)Cand the full vibrational density
sampling, and the propagation errors are compared in Tableof states as the cumulative Fourier transform
4. Here, the wave packet is propagated at each step, and the
potential, gradient, and wave packetNy grid points are
used to compute a sampling function for the next step. This
sampling function is then used to obtain a new grid where the symbol&l--[¢ and [3--[§ represent the classical
distribution of Ne points (potentially different from thélg and quantum variables ensemble averages.
points used in the previous step) which are then used for to In Figure 5 we present the vibrational density of states
propagate the wave packet. The errors in Table 4 indicatefor [CI-H—CI]~ from full three-dimensional treatment of
that reasonable accuracy in the propagation is obtained usinghe shared hydrogen atom. The results for the uninterpolated
only 11 grid points per dimension. study are shown in Figure 5(a), and these are comparable to
C. Comparison of Vibrational Properties for Different the experimental results in ref 134. The observetand is
Values of Ne. As a further test and illustrative calculation, approximately at 722 cm, while the strongest peak in
we present the quantum dynamically averaged vibrational Figure 5(a) is close to 750 crh The discrepancy is
density of states from wave packet ab initio dynamics explained based on the fact that the-Cll distance used in
simulations. It is well-known that the Fourier transform of our simulations are different from those seen in the experi-
the velocity-velocity autocorrelation represents the vibra- ment3 In Figure 5(b) we provide the difference spectrum
tional density of states and has been widely used in classicalof errors forNg = (11), (15), and (21§ with Ng = (101}.
dynamicd?12° as well as in ab initio molecular dynam- It is interesting to note thaNe = (11)* reproduces the
ics 5130 Quantum corrections to such classical correlation spectrum well in comparison with the fulo = (101}
functiong313% gre an important problem in chemical phys- calculation resulting in aruly extraordinary compression
ics. of the quantum grid and a computational gain of ap-
In our case, the existence of classical and quantum-proximately 3 orders of magnitud@ll three-dimensional
dynamical nuclei complicates the direct application of the calculations here used the marginal sampling approach
velocity correlation concept. To provide a cogent treatment discussed in section IV B.
we exploit the fact that the quantum correspondence to the
classical nuclear velocity is given in terms of the probability VI. Concluding Remarks
flux (or probability current)’ In this paper, we present a computational scheme to improve
the efficiency of our recently developed approach to perform
simultaneous dynamics of electrons and ndléirough
guantum wave packet ab initio dynamics. A robust and
efficient potential adapted time-dependent, deterministic,
sampling scheme is derived which improves the efficiency
associated with the calculation of the interaction potential
between the ab initio system and quantum wave packet. This
interaction potential can now be dynamically constructed on
a sparse, irregular grid based on deterministic sampling that
takes into account the potential energy function at the
previous dynamics step, its gradients, and instantaneous
density of the wave packet. The sampling criterion has the

Cw) = [ expl-wtl{ B(t)v(0) + DHIO)Y  (36)

_ h
J XY =5 WX OVYX Y = (% HVPH(xD]
h
= 57 W vy (x 9] (34)
where.7 [A] represents the imaginary portion of the complex
numberA. Thus to construct the velocityelocity autocor-

relation function, we consider the average flux (or the
expectation value of flux) at any given time

=07 o= Apofmvee] @)
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Figure 5. The [CI—H—CI]~ vibrational states obtained using eq 36 with the shared hydrogen treated as a three-dimensional
wave packet. Part (a) represents the spectrum without time-dependent deterministic sampling for No = 101.2 Part (b) describes
the difference spectrum for different values of Ng. All spectra are obtained from 500 fs dynamics data.

attractive feature that it targets regions of the potential that Kramers-Brillouin (WKB)®° semiclassical theory. To ex-
are rapidly varying or lower in energy. In addition, it uses pound further on this aspect we first introduce the fact that
the wave packet density at the previous step to attenuate thehe semiclassical approximation is accurate when
distribution of grid points. We have also constructed a

cumulative correlation function that includes velocity cor- B_)1s (;)ﬂ (A1)
relation for the classical degrees of freedom and flux h E — V()] x

correlation for the quantum dynamical degrees of freedom j e. the slowly varying limit of the potential compared to
to obtain the vibrational density of states, inclusive of the momentum of the particle and inverse de Broglie
quantum dynamical effects. The vibrational denSity of states Wa\/e|ength. The Samp"ng function in eq 7 has the property
is used as a tool to check the accuracy of the dynamic that it is directly proportional todV/ax and inversely
sampling algorithm, but the methodology seems general andproportional to the potential. [The modification to the
has promise within the current dynamical framework. sampling scheme discussed in eq 8 retains this functional

The dynamic sampling function has three adjustable dependence.] Henceg(Row) is inversely proportional to the
parameters that have been optimized to present an accuratgukB length scalel (or local de Broglie wavelength) in the
and efficient “on-the-fly” fit of the time-dependent potential. sense that a greater number of potential evaluations are
We find that using the sampling functiaccurate dynamical  directed to regions where the potential is rapidly varying and
and spectral properties can be obtained from only a small the WKB length scale is smaller. This has the following
fraction of the gl’ld pointSFor cases when a single partiCIe imp“cations: when the righ[ side of eq Al is too |arge’ a
is treated quantum mechanically in a bath of surrounding semiclassical approximation has a greater propensity to
electrons and classical nuclei, the regular grid describing thefajlure (unless the momentum of the particle is suitably
guantum wave packet can be compressed by several ordergarge). However, for the current methodology, when the right-
of magnitude using the dynamical sampling algorithm and hand side of eq Al is large, i.e. when the potential is rapidly
still retain accuracy at a high level. Since the compressedyarying or when the potential is low, then the sampling
grid is where the electronic energies are determined duringfunction has a larger magnitude which leads to additional
the dynamics, this represents an enormous reduction inpotential evaluations in this region. Hence the current
computational cost. The computational methodology has beengpproach makes a greater effort to perform accurate quantum
demonstrated for both ADMP and BotriOppenheimer  dynamics in regions of a potential where a semiclassical
treatment of the classical nuclear and electronic degrees ofgpproximation may break down. (Also see the discussion at
freedom in conjunction with wave packet propagation. the end of section V A))

A second important connection may be obtained by
understanding the behavior af in the vicinity of a wave
packet nodal region. This is precisely the region where novel
implementations of quantum dynamics based on Bohm'’s
interpretatiof®-87.104-108 have trouble on account of the fact
that the “quantum potential’= (—A%2m)p~2v?0'7 in
Bohmian dynamics becomes singular in the vicinity of a
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Appendix A: A Few Comments on the

Physical Interpretation of Eq 7: Connections node. In our case, the distribution of potential evaluation
to WKB Semiclassical Theory and Bohmian points is determined not only by the wave packet amplitude
Mechanics but also the potential and its gradients. Hence, if the potential

Another physical interpretation for the function in eq 7 can energy is low in the vicinity of a node (as would be the case
be obtained by recognizing its connection to the Wentzel for nodes enforced by symmetry) or the gradient is high,
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generalization is conducted in a similar fashion using the
potential and gradient values available at every grid point.
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Appendix C: Convergence of the Spreading
Transformation

The aim of the spreading transformation is to disperse the
excess densitfQiaill;, as described in section IV Al. This

is done through the iterative scheme in eq 27, and it is
necessary to evaluate the convergence properties of this
scheme. Toward this we define the positive semidefinite
convergence measure

02 04 06 08 1 12 14 16 1.8 2
Distance from node (Angstrom)

Figure 6. The figure represents the distribution of potential
evaluation points obtained from eq 7 in the vicinity of a node.
(No = 901.) The maximum at 0.15 A and the substantial
probability close to zero indicates that the current formalism
maintains an acceptable level of sampling close to nodal
points.

then that region is well represented by the current algorithm. g =, = 0 (C1)
Figure 6 shows the number of grid points where potential
evaluations are performed as a function of distance from the
nearest node. The sampling function in eq 7, along with the
algorithm discussed in section IV A 1, is used to determine
the location of théNg grid points. As seen in Figure 6, there o o :
exists a substantial probgbility of finding grid points close normalization condition in ca 12; .It fO”OW.S th@‘C =0

to a node when the sampling measure introduced here is used’."hengi C> 0. Furthermore, S”_m@‘ s a prOjegtlon opera-
This was the case over a wide rangeNi. The ADMP tor, I{ ©; 1}|II1 >f0. The spreading tra'nsforz]a'uon.thentl)eads
potential used for this calculation is a double well potential. to new values fomi., as per eq 2742+, andg+1 given by
The number of nodes is determined dynamically, and the
spontaneous appearance or disappearance of nodes is al-
lowed, since the quantum dynamics methodology used here
permits wave packet splitting.

Wheng; is greater than a numerical threshold, the spreading
transformation is not converged at thb iteration, and the
excess densityg() needs to be spread onto the region
determined byQ’. As a consequence of eq 14 and the

Oir1 = 114110 4qlly (C2)
Using eq 27 we obtain

. . . Git1= fb Q1(w44 — a¥)dx
Appendix B: Time-Dependent Hermite Curve a
Interpolation of the Potential Energy Surface b .

P 4 =LQH—1{ Qa* + Qf]

19,0,
Ql——= + ;| — a* bdx
I QC1}I,

The interpolation scheme used here makes full utilization

of the availability of potential and gradients and is described Q.6
in this section. The scheme discussed here is a special case = beiHQf{ — ot — 4 wi] dx (C3)
a C
of cubic spline interpolatiod® and is known as Hermite I €27 1HI;
curve interpolatiord!®117 Consider a functionf(x), defined
in an interval ko, x1] with the value of the function and the The operator€2;+; and €] are both projection operators,
first derivative at the end points given &k, fx,, f'x,, f'x}- and Q4 is created from spreading onto Q7. Thus,
The function can then be approximated using a third-order
polynomial in fo, x] as Q. QI =(Q —Q)=(—-Q)=L (C4
) & ) = F v () + Fv () + £, () + 17,0, (0 Using this in eq C3, we obtain
(B1)
b . I{ QP — I Q7 1},
where the weights are defined as G1= [, (Qi1— Q)ddx+g— p—
I Q1}I,
v () =2 -3¢+ 1 (B2) I QC. 11|
N = LbLicT)idx—i— g 1——{ '+C1 Hh (C5)
v, () = —2¢ + 3¢ (B3) I €71}
vV, (0= (& = 2¢ + 20 — %)) (B4) However, since the subspace representedhy;(— Qi) =

, (PP L; is orthogonal to the subspace represented(hy this
V() = (& =)0 = %) (BS) implies O @i(X) < o*, and hencef® Liaidx < 0 where
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the equality holds only whef; = 0. Hence,

I QF, 11}l
o <oll—-——— "= C6
g|+1 g|( ||{Qicl}||1 ( )
But, by definitiongi+; > 0, and hence
I{QF, 11}l
0<g,, <gll-—M— (C7)
A '( I QCL}I,
or
Cc
P L (C8)
O I{ Q713

Now we consider three different limiting cases for the

quantity I{ Q7 1HI/IK{Q1} in eq C8 and study the
convergence properties of the sequefigg for all these
cases. It is first important to note that

Cc
o< Ml ) (C9)
I{ Q131

SinceQ?, , is created after spreading in tha iteration, the
range of the subspac®’,, is smaller than that of’.
Hence,

1IKQ,  BHIMK Q13 = 1. It then follows that O< git+q
< 0g, which means thaty;; = 0, that is spreading
transformation has converged at theH 1)th iteration.

2. 10 Q5 LI/ Q71 = 0. In this caselQf, ll; = 0. If

0i+1is nonzero this implies that there exists an excess density

but no region to “spread the excess densityrhis is in
violation of the normalization condition eq 12 and thgus,
= 0 if 11Qf ,/l; = 0 which again implies that the spreading
transformation has converged at theH 1)th iteration.

3.0 < I{Qf MK Q71 < 1 which leads to [0<gi1/
g < (1 = I{Q7 LI/ Qf1}I;)], where the upper bound is
less that 1. According to de Alembert’s ratio t€%the series

comprising{ g} converges when this ratio is less than 1.

Hence, by extension tHay} must converge, is a monotonic
decreasing sequence, and is lower bounded by zero.
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