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A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented.
The approach involves quantum wave packet dynamics using an accurate banded, sparse and
Toeplitz representation for the discrete free propagator, in conjunction akitmitio molecular
dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be
achieved either by using atom-centered density-matrix propagation or by using Born—-Oppenheimer
dynamics. The two components of the methodology, namely, quantum dynamicabaimiio
molecular dynamics, are harnessed together using a time-dependent self-consistent field-like
coupling procedure. The quantum wave packet dynamics is made computationally robust by using
adaptive grids to achieve optimized sampling. One notable feature of the approach is that important
quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections
are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate
levels of density functional theory, including hybrid or gradient corrected approximations.
Benchmark calculations are provided for proton transfer systems and the dynamics results are
compared with exact calculations to determine the accuracy of the approa2@0®American
Institute of Physic§ DOI: 10.1063/1.1871876

I. INTRODUCTION tion with ab initio molecular dynamics. The latter is per-
formed using atom-centered density-matrix propagation
The time-dependent Schrédinger equation is the startingaApMpP)®***!  and Born—Oppenheimer molecular
point for a number of computational methods in gas—phasedynamics?°'31~33 The wave packet dynamics is performed
and condensed phase quantum dynarhlesmany cases the  through an analytic, banded, Toepitapproximation to the
Born—-Oppenheimer approximation is invoked which allowsdiscretized free propagator>>—>’ Some features of this ap-
for propagation of nuclei, gquantum-mechanicalfy* proach include(a) accurate treatment of the electronic de-
classically}®* or semiclassically?™** on fitted electronic grees of freedom by including hybrid density functionals
surfaces. These potential energy surfaces may be either op;_g_, B3LYP, (b) formally exact and efficient quantum
tained from hlgh'y accurate, but demanding, electronic StrUCpropagation where the numerical description of the wave
ture calculations or from parametrizations of the associateglacket adapts to the shape and position of the same to pro-
electronic surfaces. In the former case, the required numbsjide a flexible propagation schente) efficient treatment of
of quantum chemical calculations can be very large dependarge systems based on established linear scaling electronic
ing upon the size of the system. It is in this regard thatstructure technique¥-®°The current work, thus, attempts an

“on-the-fly” ?pgroaches to dynamics of nuclei andimportant synergy between formally accurate approaches
electrond®>***have recently become popular, leading tojn quantum  scattering  thedry®°:10:12:26,38-4055,6162

the field ofab initio molecular dynamicé@ Here, an approxi- and approxima‘[e ab initio  molecular dynamics
mation to the electronic wave function is propagated alongnethodd®3*43455163-6%5 achieve efficient quantum dy-
with the nuclear degrees of freedom to simulate dynamics oRamics of large systems.
the Born—Oppenheimer surface. If the nuclei are treated Our approach differs from other efficient guantum dy_
ClassicalI§2_34'43'44'47then the forces on the nuclei are deter- namics methodok)gies that propagate the Feynman path
mined from the electronic structure. This approach, whercentroid®*°in allowing accurate treatment of the electronic
combined with full quantum or semiclassical dynamicsstructure through the use of hybrid density functionals such
schemes, has the potential to treat large problems accuratedy B3LYP. Another important difference is based on the fact
with the complete machinery of quantum dynamics. Severajhat the delocalization of a quantum particle may change
steps have been taken in this directidr? during dynamics on a corrugated surface and this is ac-
In the current paper, a new approach is proposed thaiounted for in the current scheme by use of an adaptive grid
attempts to overcome some bottlenecks in this area. Thgescription of the wave packet. This is in contrast to standard
method discussed here combines full quantum wave paCk%plementations of the Feynman path centroid scheme
dynamics treatment of the time-dependent Schrédinger equgshere a fixed number of Feynman path discretizatitors
beads are retained throughout the dynamics prodésg.
¥Electronic mail: iyengar@indiana.edu The paper is organized as follows: In Sec. Il we con-
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struct the theoretical formalism. This leads to a discussion of 9

quantum wave packet dynamics in Sec. 1| A and the ADMP ¢~ 1s(131) = Hays(r 1), (4)

approach to dynamics of electrons and classical nuclei in

Sec. I B. Some computational aspects of the methodologyhere? is the averagéor effective Hamiltonian of system

are discussed in Sec. Il C. Section Ill deals with a discussiod and is written asynys|H|ipoi3). H, and H; are defined

of the numerical tests and results. This is done in three partsimilarly. It must be noted that Eq&2)—(4) are obtained by

In Sec. Il A the accuracy and efficiency of the wave packetwriting the full wave functionyd(r,R;t)= ¢ yis3 exp[ry]

dynamics algorithm is evaluated. Its synergy wath initioc ~ wheredy/dt is proportional to twice the energy of the sys-

ADMP and Born—Oppenheimer dynamics is tested and comtem. System 1 is to be treated quantum-dynamically. Since

pared as part of Sec. lll B. In Sec. Ill C we present an appli-system 2 comprises nuclei that are not required to be treated

cation to a larger problem to demonstrate the potential of thavithin a quantum dynamical formalisifsince they are not

approach in studying important chemical problems. The chopart of system J, we enforce the classical limi: — 0) for

sen application in Sec. Il C is one that has been consideretfiese particles to obtain a classical Hamilton—Jacobi

prototypicaf® in condensed phase proton transfer as well agquatioi>’*~®'to describe this portion of the system. In sys-

in weak acid-base chemist¥.In Sec. IV we present our tem 3, which comprises electrons, we choose to enforce the

conclusions. space—time separation to obtain a stationary state description
of electrons. In this fashion one recovers a formalism where
a portion of the full system is treated using quantum dynam-

Il WAVE PACKET GENERALIZATION ics, another portion of the system is treated classically, while

FOR THE ATOM-CENTERED DENSITY-MATRIX a third portion(the electronkis described within a stationary
PROPAGATION (ADMP) AND BORN-OPPENHEIMER state approximation. In absence of system 2, the partitioning
DYNAMICS SCHEMES scheme reduces to the adiabatic approximation of electrons

and nuclei which has been the cornerstone for many time-
To derive wave packet generalizations, we start with thedependent as well as time-independent methods in quantum

full time-dependent Schrddinger equation: scattering theor§/.
An alternative approach is to treat the dynamics of sys-
J tems 2 and 3 by employing the recently developed ADMP
A—(r,R;t) = Hy(r,R;t), 1 ) 2 . .
‘ atl’b( ) =HYTRY @ formalism3*°2%3%"Here the electronic structure is repre-

sented by the single particle electronic density matrix and
where H is the full electron nuclear Hamiltonian and propagated simultaneously with the classical nuclei, with a
¥(r,R;t) is the state vector that describes the electronsimple adjustment of the relative nuclear and electronic time-
nuclear system at time To proceed further we recognize scales. This is achieved within an extended Lagrangian
that in large systems, some nuclei in the system may requirgyrmalism3*34°8283t has been shown that this dynamical
only classical treatment. But other parts of the systeuth  strategy leads to a trajectory that oscillates about the Born—
as electrons or nuclei with relatively large de Broglie wave-oppenheimer surface with controllable deviatfh?é and
length may need to be treated by applying full quantumthe results agree well with Born—Oppenheimer dynamics
dynamics or an approximation to the same. If we assume thady|culation$>*” ADMP has also been shown to be compu-
these individual parts of the full system only interact with tationally superior to Born-Oppenheimer dynamics, and this
each other in an average sense then we may employ a timgs on account of the relaxation of SCF convergence require-
dependent self-consistent fiel@DSCR-like® " partition-  ment in ADMP®*%°7(Please see Appendix for details in this
ing scheme where the full electron-nuclear SyStem is diVideqiegard) The Corresponding equations for the Systems 2and3
into three parts: The first portion comprises a subsystem thafre given by
will eventually be treated using quantum dynamics and the )
position variables for the particles in this part are denoted by 4 dRe - Y), (5)
Roms: the second subsystem comprises most of the nuclear dt?
sition variables for these particles are denoted_yin the £ g <X X>
following discussion, and the third portion comprises the
electrons in the system. Based on the time-dependent self- —[APc+PcA - A], (6)
consistent field techniqd®&’? we can now reduce Eql)

degrees of freedom and will eventually be treated within a
into three separate equations one describing each subsyst

JE({Rc,Pc},Rom)
JRe

Pc

classical frameworknote that some nuclei may be included and

in the first part treated with quantum dynanjiesd the po- 1/2d2pc o JE({Rc,Pc},Rom)

dPc

Re

ewpere we have useg instead ofy;, to describe the state of
the quantum dynamical system (For convenience, from
J this point on we usg to represent the state of the quantum

Lﬁa'ﬂl(RQM;t) =Haa(Rom; 1), (2)  dynamical system, instead @f.) HereM denotes the clas-
sical nuclear masses in system 2 amndlenotes a fictitious

5 mass tensor or inertia tensor describing the effective elec-
4 = . tronic degrees of freedonA is a Lagrangian multiplier ma-
Lﬁat Va(Reit) = Hayo(Re ), ® trix usedgto imposd\l—representabili%y ofgthe singlz particle
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density matrixPc. It is to be noted that Eq6) is classical in  the (local) potential energy operator. This approach has the
form, but not in content. Equatior(§) and (6) are obtained attractive feature that it provides dynamics strictly obeying
by enforcing constraints dfl-representability on the density time-reversal symmet?}f’2 if the approximations used for the
matrix; the extended Lagrangian thus obtained, however, difseparate components of E®) are unitary.

fers from that found in the standard time-dependent varia- For local potentials, the potential energy operator is di-
tional principlé59'84and is hence a fictitious Lagrangian. Fur- agonal in the coordinate representation. There are a number
ther discussion on the associated fictitious dynamics of thef ways to approximate the free-propagator, {exgt/#}.
electrons can be found in Sec. Il B with more details in RefsOne approach is to recognize that this operator is diagonal in

51 and 64. the momentum representation. Hence fast Fourier transforms
Equation(2) retains its original form and is given explic- have been commonly use¥'*?*to obtain the result of the
itly as free-propagator operating on a wave packet in the coordinate
g representation. A few alternative approaches inclédethe
th— x(Rom:;t) = Hix(Rom:t) use of direct’ or iterative, Lanczosbased diagonalization of
Jt the full Hamiltonian and the subsequent representation of the
h? evolution operator eXptHt/A} using the eigenstatefh) the
=" ZMQMVRQM +E({Rc.Pc}Row) use of Chebychev polynomial approximatifajr"fszs‘%'93
which are based on the Jacobi—Anger formiléc) use of
X X(Rowm:b)- (7) eigenstates of various portions of the Hamiltoriaand (d)

The energy functionaE({Re, P}, Row), in Eqs.(5)<7), de- the use of Feynman path integrafs:>°¢°%The list here is
pends on the quantum particle coordinatBgy, the sur- not exhaustive and a detailed discussion on the topic may be

rounding classical nuclear coordinat@,, and single par- found in Refs. 1 and 35In all cases, the Hamiltonian needs

ticle electronic density matri¥o, written in an orthonormal to be approximated in some representation. In the coordinate

basis to be discussed further in the following. The energy’representation this is generally achieved with the discrete-

. . _28 — . .
E({Rc.Pc},Rom), may be a density functional that involves ;/ana_ble lrepreseggiﬂ%ﬁ?w_l%g distributed approximating
exact exchang® a pure functiondf (with gradient uncltlonr? S(DAF). g I viic banded
correction&’ or higher order correctiofi§ or may be based n ihe current study we employ an analytic bande
on other single particle formalisms such as Hartree—Fock oPAF" representation for the coordinate space version of

semiempirical treatments. It is written here using McWeem}he free-propagator:
purificatiorf® for the density matrixPc=3Pc2-2P¢3:

~ ~ _ Katou || -,

E=Tr[hPc + 6(Pe)Pe] + Exo* Vi ®) <RQM ex"{ ﬁ HRQM>DAF

Here, h is the one-electron matrix anG(TDC) is the two- 1 (Rom — R(’),\,,)2

electron matrix for Hartree—Fock calculations, but for den- ™ 4(() &Xp) = ZO'(AtQM)Z

sity functional theory(DFT) it represents the Coulomb po- M2

tential. E,. is the DFT exchange-correlation functior(@r y ( a(0) )2”+1(—_1>”£(2W)_1,2
Hartree—Focki,.=0) and Vyy represents the nuclear repul- o \ o(Atgy) 4 ) nl

sion energy. Since the Gaussian basis set is employed in the

ADMP formalism (this is by no means a requirement and x (RQM_ 'M) (10)
density matrix propagation along identical lines can be for- 2n \EU(MQM) '

mulated for other bases as welthe overlap matrix for the

nonorthogonal Gaussian basf, may be factorized a$’ where

=UTU to obtain the instantaneous orthonormal basis’set.

There are a number of choices 1dr U can be obtained from

Cholesky decomposit_ié’ﬁ of S or U:S_’l’2 for Lowdin {O'(AIQM)}2=0'(0)2+M (12)

symmetric orthogonalization. Further discussion on e Mawm

initio molecular dynamics portion of the current algorithm is

presented in Sec. Il B. andH,,(x) are the Hermite polynomials of even order. Equa-
tion (10) is obtained from the well-known analytical expres-

A. Quantum wave packet propagation sion for free evolution of a Gaussian functih,

The guantum-dynamical propagation, based on (£g. 5
is approximated using a kinetic reference symmetric spligxp{_ﬁm} p{_x_]
operator approach®? h 20(0)?

TS S CY O < B s | 12
exp) — = [ =exp) = - (eXp) — = rexp) ~ " a(Atgy) 20(Atgu)?

+0O(t%), (9) . . .
along with the fact that the Hermite functions are generated
whereK is the kinetic energy operator of E(f) and theVis  from Gaussians according to

Downloaded 24 Mar 2005 to 129.79.138.80. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114105-4 S. S. lyengar and J. Jakowski J. Chem. Phys. 122, 114105 (2005)

x2 d" X2 ~ 2 ~ ~
Hn(X)eXP{‘ ﬁ} =(= 1)“@ eXP{‘ F} : (13 Han(y) = H[(Zy2 =4+ 3)Hzn-o(y) = 4(2n = 3Ha-4(Y)].
Since the derivative operatod/dx" commute with the free- (16)

propagator, the Hermite functions can be used as a basis to
expand the exact quantum free propagator with coefficientequation(16) only includes the even polynomials as needed
as described in Eq10).>® This yields an efficient propaga- in Eqg. (10). This modified recursion allows numerically
tion scheme to perform quantum dynamics and Feynmagtable evaluation of the components required in Ed)
path integratiof™”’ through the action of a banded, sparse,even for very large values d.
Toeplitz matrix on a vector. It is worth noting a few characteristics of EGLO). For
For the rest of this section we will briefly describe DAF any fixed level of approximation, determined by the choice
quantum propagator theory as it pertains to the current wavef parameterdM and o(0), the kernel in Eq(10) only de-
packetab initio dynamics approach. Further details on DAF pends on the quantitfRow—Rhy) (that is the distance be-
theory can be found in Refs. 29, 53, and 55-57 tween points in the coordinate representatiand goes to
Equation(10) is presented in its continuous form and is zero as this quantity becomes numerically large on account
valid for all values ofRqy andRy,),. Here the free evolution of the Gaussian dependence. This yields a banded matrix
of a wave packe(Rqw;t) is obtained by discretization: approximation to Eq(10), for any finiteM and o(0). Fur-
X(Rowit+ A thermore, on acco_unt of its dependence (R@M—R{?M), a
matrix representation of Eq10) has the property that all

: , _ IKAtgy , ;o diagonal elements of this matrix are equal; similarly rah
_J dRQM<RQM exp{ 3 Rom DAFX(RQM’U’ super(and sub diagonal elements are the same. Such a ma-
trix is called a Toeplitz matrix][One may note that the
(Rt + At) Toeplitz matrix is very similar to the Vandemonde matrix
X(Rowm; . . . .
_ _ /2 that makes its appearance in Fourier theSfyThis is no
_ Ax > _ (Rom— B’QM)Z o(0) |2t surprise since the exact quantum propagator in the coordi-
) J_ ex ZU(AtQM)2 =0 \ a(Atgy) nate representatidhis obtained by representing the free-

11 i j propagaftor in the mo_mentum representation. Furthermore,

X(T) —'(277)"1’2H2n( &FM Rowm )X(Rbmit), (14) the rr_1atr|x representation of EQLO)_ becomée%{;l \_/andemonde
n! V20(Atow) matrlx_whe_n a sy_mmetry adaptation schemés introduced

and this will be discussed as part of a future stddipf the
whereAx is the grld diSCfetizatiomaSSUmed uniform in this methodo|ogy described in this paddn addition, the depen_
case in one dimension. Generalization to higher dimensiongjence OI’(RQM—R'QM) implies a translational symmetry prop-
is straightforward and is carried out by writing the propaga-erty in Eq. (10), seemingly reminiscent of wavelet
tor in direct product form with components as in BG40).  theoriest®® % On account of such attractive mathematical
The variablesVl and ¢(0) determine the accuracy and width properties, Eq(10) provides great simplicity in computation
(OI’ Computational effiCienOyreSpeCtively, Of the DAF. It haS of the quantum propagation W|th|n our Scheme and is ex-
been showi*’ that these parameters are not independengected to be useful for large systems. For example, it is only
and that for a given value o there exists ao(0) that  pecessary to store the first row of such a matrix, in each
provides optimal accuracy for the propagation. We havejimension, to obtain the result of a propagation. Further-
studied the accuracy of the quantum propagation in Sec. llilhore, the computational scaling of the quantum propagation
using a variety of values favl and ¢(0), to demonstrate the described in Eq(14) is {(2W+1)(N-W)-W2}, whereN is
convergence of our results with DAF parameters. The valueghe number of grid points used in the discretization scheme
used in our study are listed in Sec. Ill and are based on thgnd(2w+ 1) is the width of the propagator in the coordinate
requirement of optimal accuracy as discussed in Ref. 53. “f'epresentation. Sinc#/ does not depend oN [W in fact
the computational section of this paper, we have also disdepends orM and o(0), that is the required accuracy of
cussed comparison of this propagation scheme with a ProPgropagatiof, this scaling goes a®(N) for large grids.

ga.tion Obtained from exact diagonalization Of the Hamil' Another important property of the expression in Etp)
tonian,  in Eq. (7). This provides a useful benchmark of js that it is not formally unitary. This, however, does not
our results. present any problems in the numerical propagation as will be

To calculate the Hermite polynomials in E(LO), the  discussed in the results section. The reason for the lack of
standard recursion procedure can be used, however, for larggrmal unitarity can be understood by considering gy,

values ofM (which leads to greater accuracy of the propa-_. g |imit of Eq. (10). It is true that for the free propagator
gation, these polynomials numerically diverge. As a result

we have modified the recursion relation to allow the direct
) . IKAt

evaluation of the functions lim <x exp{— QM] x’> = 5(x-X), (17)

~ X X2 1 X Atgm—0 h

Hon| —= =exp - —Hop| =/, (15)

V20 20% | n! V20 . L L .
where the right-hand side is a projection operator in the fol-

using lowing sense:
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FIG. 1. DAF propagator in Eq(10) for (a) At=5a.u. and(b) At
=1 a.u.M=20 ando(0)/Ax=1.5744 for both cases.

f Sx=X")o(x' =x")dx = s(x-X'). (18)

For the approximation in Eq(10), this becomes an exact
result only for large values ofM, since the DAF-

approximation,Spag(X—X’):
IKAtg
lim <x exp{— M} x’>
Atgy—0 f DAF

= Spar(X—X') = 8(x-X'), (19

is generally not a projection opera%?f’rin the sense of Eq.

(18). The computational implications of this result are dis-

cussed in Sec. lll A and found to be negligible.
Finally, we illustrate the form of the DAF propagator in

Fig. 1 for two different time steps. As can be seen, the propa- RG =R -

J. Chem. Phys. 122, 114105 (2005)

1 k U(AIQM)Z}MIZ 2n
\EU(MQM)exp{ n EO LK (20)

which is basically a polynomial multiplied by a coherent
state,

exp{_ kza(AtQM)z}

k2
= ex%_ 2(0(0)2 + IAtQMﬁ/MQM)} .

As can be seen, the plane wave frequency in the coherent
state is time-step dependent, which implies that for larger
time stepdbut fixedM and ¢(0)] the plane-wave portion of

the Fourier transform of Eq10) becomes oscillatory for a
givenk. This is particularly interesting since coherent states
have been used to propagate quantum syst&his2but in

our case the propagator in the momentum representation is a
coherent state multiplied by a polynomial.

B. Ab initio dynamics using ADMP
and Born—Oppenheimer dynamics

The ADMP approach has been discussed in great detail
in Refs. 34, 51, and 63-67. In this section we present a brief
outline as it pertains to the current quantum wave paaket
initio dynamics approach. The ADMP equatiof®, and(6),
are propagated using the velocity Verlet algorithm:

2

P"= P+ PLAt- -

x[f* +APo+PCA - AT ™2, (21)

N . At ) ) )
P'cl: P'C— Eﬁ llz[{f'PC+AiPIC+ PICAl _Ai}

+ {]:' + A|+1P|+1 Pi(;rlAHl |+1}:|/~L_l/2 (22)

X> : (23

Similarly, the nuclei are propagated according to

with
A - <X‘ IE({Re.PchRou)

dPc

Re

At? ;
RE! =R +REAL - 5 MR M (24)

A 1/2[‘FR +.P+1]M 1/2 (25)

gator gets broader in the coordinate representation, just by

increasing the time step, even when the order of the apprOXWhereR'

mation [determined by the choice dfl and ¢(0)] is main-

tained. This is particularly interesting since the current ap- A= JE({Rc,Pct Rom)
proach allows for an adaptive control of quantum time steps, Re™
based on energy conservation, and in such cases when the

time step is increased more points in the vicinity )

are the nuclear velocity at time sté@nd

X> : (26)

Equations(23) and (26) represent the essential difference in

IRc Pc

contribute to its propagation. This aspect is further high-the current methodology as compared to standard ADMP
lighted by considering the momentum space form of thesince the forces here are averaged over the quantum wave

DAF propagator:

packet as required from the discussion in Sec. Il.
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If Born—Oppenheimer dynamics is to be used instead of 1 e
ADMP, Eq. (6) is replaced by SCF convergenceR{. The ICF.Pclll-= PP [Tr[Pcp™*Pcp 1, (29
nuclear propagation equation remains the same in both for- IPe.Pclle

malisms. However, the nuclear forces are different since theyhere|[- -] is the Frobenius norfi**°of the commutator
ADMP nuclear forces are more general than the standard,q is defined abA=3; A2 pc and |5c arevelocityand
Born-Oppenheimer dynamics nuclear foféé8and the dif-  ,ccelerationof the density matrix and can be determined on

ference between these is proportional to the commutator g fy as outlined in the propagation scheme described in the

the Fock and density matr_icee“sthat is generally small in fo10wing. Second, the rate of change of the fictitious kinetic
Born—Oppenheimer dynamigsvhen the SCF convergence energy

threshold is tight but may not be small in ADMP:

dH fict : -
dtlc - Tr[Pcﬂllzpcﬂllz]
JE({Rc,Pc},Rom)
R _ . L?E(Rc,Pc)
d C PC ==Tr PC D +Apc+PcA_A y

dh G e lre

"~ 1dG'(P¢ ~
| Wy 2 F)) (30
dR¢ 2 IRc |pr
¢ is required to be bounded and oscillatoand this again is
R Y ds’ B4 JE¢ . IVNN determined by the choice of fictitious mass tensor. Note that
cdRC c dRc|p.  dRc the numerator in Eq29) is the same as the expression in Eq.
C

; (30) and hence this implies that the rate of change of the
~ ~ du ., ~ . dU fictitious kinetic energy in ADMP is also proportional to the
+Tr{[PC’F]<QCdRCU PcU dRC)]’ (27 commutator[Pc,F] and hence determines deviations from
the Born—Oppenheimer surface. One must monitor the quan-
- - _ ~ tities in Egs.(29) and(30) to ascertain that the ADMP por-
where Qc=1-Pc and as noted in Eq(8), Pc is the tion of the dynamics is physically consistent. In all ADMP
McWeeny purified density matrix. Notice that as the commu-gpplications studied to dafer1:63.66.116-118hase conditions
tator of the Fock and density matrices goes to zero, the lagre satisfied thus yielding a computationally efficient and
term in Eq.(27) becomes small leading to well-known gra- accurate approach to model dynamics on the Bom-
dient expression¥"®****[The primed variables in Eq27)  Qppenheimer surface. It has been shown that ADMP trajec-

are in the nonorthogonal Gaussian bdsfs] In the absence tories thus obtained are in good agreement with dynamics on
of this condition, Eq(27) presents a more general form of the Born—Oppenheimer surfa®e®’

the nuclear gradient and we use this for both cases, espe-

cially for the case of weak convergence thre_shold on th_eC_ Computational implementation

Born—Oppenheimer surface. The density matrix gradient in

Eq. (6) is given by The algorithm to perform the simultaneous dynamics of
the{R¢,Pc, x} system is described as follows: First a grid is
created around the particle to be treated quantum dynami-

JE({Rc,Pc},Rom) cally. This grid represents the discretization of the wave
JPc R packet, y, in the coordinate representation. If the ADMP
¢ ) ) dynamics option is desired, the potential energy
=3FPc + 3PcF = 2FPc” - 2PcFPc - 2PcF E({Rc,Pc},Row), the nuclear forces,
= [[F,Pc],Pc]. (28) JE({R¢,Pc},Rom)
Equation(6) is similar to that used in the Car-Parrinello IRc Pc

(CP) scheme however, it differs importantly in using the

single particle density matrix in an orthonormal basis sef"nd density matrix forces,

formed from Gaussian basis functions. In this sense(&q. JE({Rc,Pc},Rom)

represents fictitious dynamigske CP), where the density IP¢ s
C

matrix is propagated instead of being convergas would
be required if the time-independent Schrédinger equatiomre calculated on the grid points. On the contrary if Born—
were used instead of E¢6)]. The accuracy and efficiency of Oppenheimer dynamics is the chosen approach, then the po-
ADMP is controlled by the choice gk. Hence one must be tential energy and only classical nuclear forces are obtained
aware of the limits on this quantity. Two criteti€* have  based on SCF convergence. This is an important difference
been derived to place bounds on the choice of the fictitiousand clearly indicates the lower computational effort required
mass. First, the choice of the fictitious mass determines thin ADMP. (The Appendix explains this in detail and as will
magnitude of the commutat§P.,F] (whereF is the Fock be seen in Sec. Ill B the associated loss in accuracy is basi-
matrix that represents the single particle picture; DFT,cally negligible)

Hartree—Fock, or semiempirigahus determining the extent The potential energy on the grid along with the free
of deviation from the Born-Oppenheimer surface: propagator in Eq(10) are then used for causal propagation
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KAtg i
DAF

is nonzero fofi<W] andj <0. That is, the DAF propagator
extends beyond the region of definition of the grid on either
side! However, the size of this extended region is propor-

grid points are used along with the wave packet to construct
the force on the ADMP system as required by EgS) and
(26), which propagates the ADMP variable®R,P:} and

the associated velocitigR¢,Pc}, as allowed by Eqs(21),
(22), (24), and (25). (Only the nuclear degrees of freedom

are propagated for the Born-Oppenheimer 0aBRis pro- o5 toWax. Now, one of the properties of the DAF propa-
cess Is then repeated for the nt_axt propagaﬂon SteP- . gator is that its bandwidthyy, is independent of the grid size
The above-presented algorithm is, of course, limited byAx (although it does depend on the time step as seen in

the size of the quantum grid and to facilitate maximum Com'Fig 1) as long as the values af(0) and M are kept

pactness, we use an adaptive grid methodology wherein the,an{03 ence, astx is made smaller, the total number
required grid positions are recalculated every few time stepgy grid points, N, increases and the rat//N(=<Ax) gets

based on the center and instantaneous distribution of thgmaller Hence, as the grid spacing is reduced, the size of the
wave packet. The wave packet amplitudes at the new gri bove-described extended region gets smaller and in the con-

of the quantum wave packet. The energy gradients on the <R'Q
M

ggﬁgﬁgﬁﬁfﬁﬁﬁged with an accurate grid interpolatioqinu’ous limit, i.e., asAx beco_mgs_ inf_initesimally small, _this
' region, W/Noc Ax, becomes infinitesimally small. For finite
, 1 ( ~Rl,,)2 size grid spacings the numerlcal effects of this problem gt
X(Row:t) = f dRowm ,—exp(— % grid boundaries is reduced using a symmetry-adapted version
oN2mw of thes?gfpagator scheme and will be the subject of future
M/2 / studies:
1\"1 Rom — Rom
xE(——) H ( (Rowt),
n=0 4) n! an \”EO’ X RQM
(31) Ill. DISCUSSION OF NUMERICAL TESTS

to transform the wave packet from the priméald) set of

. . X ) To conduct an exhaustive study of the parameters in the
grid points to the unprimethew) set. This way the quantum y P

. . roposed methodology and to test the accuracy of the ap-
grid adapts to the region where the quantum wave packet h foach we have performed many sets of calculations; an il-

significant contributions. Equatio81) also allows us the lustrative sample is discussed here. In the first set of calcu-

adjustment of wave packet grid sampling by having MO8 ,tions we compare the quantum dynamics obtained for the

points in regions where the wave packet is rapidly varying.Shareol proton in the §Z1H+ system using two differerttme-

This sampling is maintained based on predetermined .faCtoriﬁdependenpotential energy surfaces: in one case full SCF
such as de Broglie wavelength of the quantum particle o'irvith a wave function convergence threshold of & @/hich

local, instantaneous gradient and curvature of the potentiq anslates to an energy convergence threshold of roughly

21,122 ; :
surface. The adaptive nature of the quantum grid makes, ;10 hartre¢ was used to construct the potential surffas
the approach robust. It is also important to note that th

Svould be the case in the Born—Oppenhein®®) dynamics

computationally expensive portion of the algorithm de"mplementation of the proposed methodoldgnd in the

X . ; i
scribed here is the evaluation of the energy and forces on th&her case a single SCF cycle was used to estimate the en-

grid poin_ts to be used for ADMP_dyna_mics. This necessitate%rgy surface as would be the case for ADMP. In both cases
a reduction of the number of grid poinis where such Calcu'the chloride atomic positions are fixed. In all cases the elec-

lations are performed and Wwe are cur.rently deyelopmg Fronic structure was determined from density functional
scheme that involves potential adapted interpolation to miniz

e th ber of arid points wh h calculati theory, using pure and hybrid functionals. We carefully
mize the numuer of grid points where SUch calculations areyqqyeq sensitivity of the quantum dynamics with respect to
performed. Exhaustive discussion of these novel extensmr}

Re parameters including the quantum time step and values of
to the methodology and detailed examination of grid size P 9 N P

. : . DAF-free propagator parameteid, and the associates(0).
and othe_r cqmplz,lztanonal aspects will l_ae t_he subject of a quse of a single time-independent potential energy surface
ture publlcat|or11. In the current contribution we focus on

th fici d let luati £ th during the course of propagation allows us to compare and
€ accuracy, etficiency, and compiete evaluation ot the Pag i ate the DAF-based propagation approach with results
rameters involved in the proposed methodology.

; . .__obtained from exact propagation via diagonalization of the
Another important factor in the quantum propagation

. : X Hamiltonian. The instantaneous quantum wave packet in the
scheme is related to the nature of the discretized DAF propa; q P

; : . 2xact case is simply a linear combination of the stationary
gator in Eq.(14). .Equayon(14) may ibe interpreted as a eigenstates of the Hamiltonian multiplied by energy-
matrix-vector multiplication where tr(eRQM,R{?M)th element dependent phase factors:
of the propagator matrix acts on the initial vector to create '
the new vector. In this case, we note that for points near the
edges of the grid defined Hy<W] and[N-i<W], where  |x(1))exac= 2 (0| = X, ¢ (O)exp— (E/Alld)  (32)
R'QMEiAx, N is the number of grid discretization points and i i
(2W+1) is the width of the DAF propagator in the coordi-
nate representation, there is an error in the discretizatiowhere the eigenstatég;} are obtained from exact diagonal-

scheme in Eq(14) due to the fact that ization of the Hamiltonian in Eq.7):
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0.001

2 0

- V2 +E{R ,P , D =E|d). 33 onservation of probability - - -
ZMQM Rom { C c} RQM) |¢|> ||¢|> (33 00002 tion of probability

Deviation in total energy I(kcal/mol)I

0.0008
These eigenvalues and eigenvectors were determined usin
two different methods to confirm our resultq) first the
Numerov approacf® to boundary value problert§ was
used to determine the eigenvalues and eigenvedioreext

the kinetic energy operator was obtained in the coord-
inate representation using “distributed approximating
functional™!#>2923545719 4 the Hamiltonian was subse-
quently diagonalized. In both cases the eigenvalues ant _ggo12

-0.0004
¥ 0.0006
-0.0006

-0.0008 0.0004

Energy (kcal/mol)
Conservation of probability

-0.001 II
0.0002

eigenvectors were found to be in very good agreement. SNSRI S PN
1 -0.0014 ! L L L L

Hence we proceedgd to use these ellgenstates to benchma -0.0014 - S m 3 20 > 0

our results as described in the following. Simulation Time (picoseconds)

The DAF-propagated wave packet could, in a similar

fashion. be resolved as FIG. 2. Conservation of total energy and probability are presented for a 30

ps quantum dynamics simulation. The deviations in total en@ggillatory

_ DAF ! curve) are in the microhartree range. The conservation of probability flux
|X(t)>DAF B E G (t)|¢'> (34) (flat dashed ling outlined in Eq.(36), is also more than adequate. Calcula-
: tions are performed usiniyl =60.

to provide a platform for comparing our results. A range of

applicable DAF parameters have been te;ted for accuracy. ﬁives rise to the possibility of tunnelingnd zero point ef-
smaller numbeM does allow a reduction in the CPU time fects playing an important role in the dynamics if the initial
for quantum propagation, although this is not the computayaye packet is chosen to have a finite overlap with the pro-
tionally critical portion of the full method. We have per- ton ground state. In addition there are multiple states acces-
formed this comparison to evaluate the accuracy of our wavgip|e for tunneling below the barrier. Such physical situations
packet dynamics scheme for both the ADMP and BO caseaye been termed “nonadiabatic” in the proton transfer
The results from this comparison are presented in Sec. Il Ajiterature® The other interesting aspect of this geometry is
After checking accuracy of quantum propagation for fixedine proximity of states immediately above the barrier which
potential energy surfaces the chloride atoms and the elegsovides for a high probability of over-barrier reflection of
trons are allowed to evolve as per ADMP or Bom-ihe wave packet if the initial packet has finite overlap with
Oppenheimer dynamics simultaneously with the quantumpese over-barrier states. It must be noted that most method-
wave packet. This is used to test the full methodology an%logies that study quantum dynamics in large systéi&®
the results obtained are presented in Sec. Il B. do not adequately reproduce all three effects. While many

Another set of tests is dedicated to the study of a protonnethods accurately reproduce the zero-point effects, few are
tunneling problem for a more computationally intensive casgpje to reproduce both tunneling and over-barrier reflection
to demonstrate the potential applications of this approach. 3ccyrately. It is also worthwhile to note that the standard
Sec. Il C the dynamics of a “quantum-proton” between asemiclassical approximatibhbreaks down in the vicinity of
phenol and tri-methyl amine system is studied and compariparrier height, which provides the rationale for a fully quan-
sons between different density functionals are presented. ;m dynamical approach.

_ To test our scheme with reference to all three quantum

A. Accuracy of quantum propagation dynamical aspects described earlier, we have constructed the

We have conducted simulations for thgl* system to initial wave packet as a Gaussian having finite overlap with
test the accuracy of our quantum propagation. The wavétates all the way from the ground state to states a few mil-
packet approach outlined in the previous section has bedfiartrees above the barrier:
used to study the quantum dynamics representing the shared . _
proton. Hybrid density functional theorgB3LYP) with a X(0)) = expl - Xz/QCYz)]—; ci(0)| ). (35)
6-31G Gaussian basis was used for all electronic calculations
discussed in this section. The quantum propagation is performed using the DAF ex-

We consider the quantum dynamics of the shared protopression in Eq.(10) and, to calibrate the approach, these
in the CE‘H+ system with the chloride ions fixed at about 4.2 results are compared with the exact propagation in(82).

A separation and the initial wave packet, chosen to be a We first assess the numerical effects of the formal non-
Gaussian. While the 4.2 A starting geometry is one amonginitarity of the DAF propagation scheme. A serious loss in
many geometries that we considered, it is useful to discussnitarity could result in many unphysical results: for ex-
this geometry to exemplify the implications of our numerical ample,(a) loss in energy conservation during the dynamics
tests. First, at this geometry, the zero-point energy of th@rocess(b) loss of probability,(c) the coefficients may not
proton is rather high and comparable to the height of thestrictly obey, or may deviate substantially from, the result of
barrier that separates the protonated states on each chloridtg. (32), and (d) loss of time-reversal symmetry which
ion. (The zero-point energy is approximately 2 millihartreesis one of the cornerstones of the split-operator
and the height of the barrier is close to 4 millihartredhis  approximatior?®*2"1%n Fig. 2 we present the evolution of
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TABLE |. Propagation error, as calculated from Eg8), for different values of DAF parameters. The simulations witi=0.1 fs were 10 ps long while the
At=0.5 fs simulations were 40 ps long.

a(0) a(0) a(0) a(0) a(0)
PES At(fs) M=10 +=1.1805 M=20 +=1.5744 M=30 +=1.8800 M=40 +-=2.1387 M=60 - =2.5742
BO 0.1 0.002 3129 0.000 495 5 0.000 4939 0.000 494 3 0.000 4939
ADMP 0.1 0.001976 3 0.000 404 4 0.000 4030 0.000 403 4 0.000 4030
BO 0.5 0.014 6712 0.014 7009 0.014 7009 0.014 7012 0.014 700 8
ADMP 0.5 0.012 7625 0.012 768 5 0.012 768 3 0.012 769 2 0.012 768 2

the total energy and loss of wave packet probability as af simulation time,T. The quantity in Eq(38) is the average
function of time. We note that the total energy is conservedength of the vector{|xpas(t))—|xexaclt))} Where both
tp beyond mlcrohartree.accurgcy over a _30 ps simulatiomy . (1)) and|yexac(t)) have unit magnitudes. In Table | we
time. (Note that the vertical axis in Fig. 2 is such that the yresent our results for a range of DAF parameter values, two
energy has units of kcal/molSimilarly the loss of wave igterent At values and for Born-Oppenheimer as well as
packet probability in the DAF propagation, ADMP surfaces. Table | clearly indicates that the average
N length of the error vector is negligible, as compared to the
1 \/ > |cPAR(1)[2 - |ci(0)2 length of the ket vectors representing the wave packet, for
N i the smaller time step of 0.1 fs, but clearly gro(@ithough is
N still acceptablgfor the larger time step of 0.5 fs.

= 1 \/E |CiDAF(t)|2_ |ceactp) 2, (36) This leads us to an investigation of the dependence of

N [ propagation error on quantum time step. The quantity in Eq.
) ) (398) is plotted in Fig. 8a) for a range of time steps with fixed
is also conserved to an extremely high level. These two reg mper of simulation steps. This is done for both Born—

SUItIS in?icite.th?rt] thSAn:merical irtnplicati(?n_sl ofllla(.:tk(;)f focrj- Oppenheimer and ADMP potential surfaces. A plot propor-
mal uhitanty 1n the propagator are fairly imited and ;o1 15 A3 is also shown in the same figure, which indi-

the DAF propagator conserves probability and energy up to . ) N
very high accuracy. cates that the error in propagation scales<a3(At°) with

To further ascertain the accuracy of the propagatior?tep size. This is consistent with tf112e7 truncation properties of
scheme it is also important to study the phase of the DAFIhe third-order Trotter factorizatiéfi**’in Eq. (9). To further
propagated wave packet and compare this to that obtaine?laborate on thi©(At3) scaling of errors due to truncation in
from the exact propagation result in E82). We have stud- the Trotter factorization, we provide the time evolution of
ied the time evolution of the quantity, errors indicated in Eq.37) [see Fig. 8)] for three different

time steps(0.05, 0.1, and 0.2 js however the vertical axis
1 Et 2 has been adjusted in the following fashion. The deviations in
N \/ by CPAF(t)exp[%} -0
i
1
= N”X(X;t)DAF = X(X; Dexacllzs (37)

Eq. (37) for the 0.05 fs time step have been multiplied by a
factor (2)%. Similarly the deviations for 0.2 fs time step have
been divided by a factai2)®. Note that these scaling factors
are obtained based on the expectd@t®) scaling. Clearly,

) ] _ the deviations after scaling are minimal over-80 ps time
for many different time steps. Note that the terRi;toar  scale. Thus the dominant truncation error in the quantum

and x(X; Yexaciin Eq. (37) are the coordinate representations ropagation isO(At®), consistent with Trotter factorization.

of the respective kets and the numerator on the rlght_hanaowever, while integrating differential equations there is an-

side is the B-norm of the error vector. The quantity in Eq. ther Kkind of that b ¢ and th
(37) allows us to evaluate the instantaneous error in theé o' KINd O errorina égfﬂgg € aware otand these are
propagation scheme, with respect to exact diagonalization. falled the global errors. These errors arise when

also allows us to study the change in such error as a functioRroperties are calculated over a fixed total time simulation
of quantum time step. In addition, the absolute integral of thétnd are related to the accumulation of errors at each simula-
quantity in Eq.(37), that is, tion step. Figure @) presents the behavior of propagation
error for a fixed total simulation timgas opposed to fixed
T N
1 1
T dtﬁ E scales quadratically with step size and is consistent with a
0 ' discussion of Trotter factorization, in Refs. 129 and 130, for
T classical propagation. Thus we conclude that the dominant
order of truncation in Eq(9).
provides a measure of the deviation in the approximate dy- Furthermore, the convergence of results with respect to
namics with respect to the exact dynamics, for a given lengtiDAF parameters is already clear from Table I. In Fig. 4 we

ciDAF(t)exp[ %] -¢(0)

2 number of steps in Fig.(8)]. The deviations in this error
- ?fo dtN”X(X;t)DAF_X(X;t)exacuz' (38 source of erors in our propagation scheme is due to the
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BO,
0.0015F 2e-06r I
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0.0005¢
- -1e-06 L L | L | L 1 L L
ole L ) 1 2 3 4 5 6 7 8 9 10
0 0.2 0.4 0.6 0.8 1 (a) Propagation time (picoseconds)
(a) Time step (femtoseconds) 4e-06 . . . . : . . : .
M=20 ——
8e-05 Quanfum Dynamics Time Step = 0.2fs — ' T ﬁiig ______..__
Quantum Dynamics Time Step =0.1fs — — - - 3e-06 " k
6¢-05 I Quantum Dynamics Time Step =0.05fs = - . - ST
4e-05 PR ] 2e-06| ]
2¢-05 b ‘
le-06f 7
0 I e .
2605 ] 0
-4e-05 b
—1le-06 . L . . . . . . .
-6e-05 1 0 1 2 3 4 5 6 7 8 9 10
(b) Propagation time (picoseconds)
_8e-05 1 1 ! 1 1 1 !
© 0 20 40 60 80 100 120 140 160 .
(b) Number of Simulation Steps (in thousands) FIG. 4. The time dependence of the length of the error vector from{3g.
relative to that aM=60. (a) At=0.1 fs, ADMP surface(b) At=0.1 fs, BO
0.0025 T surface.

ADMP,

0.002 | ADMP, B. Comparison of results between wave packet

ADMP and wave packet Born—Oppenheimer

of o of ot
oo

P OO

Having shown the numerical validity of the quantum
propagation, we now embark on describing the performance
of the wave packet ADMP and wave packet Born-
Oppenheimer schemes. Theét]:—l+ system was propagated
starting from a wide range of chloride—chloride distances and
initial position of the quantum proton. Unlike in the previous
section, the chloride ions were allowed to move as per
ADMP or Born—Oppenheimer dynamics. However, to keep

0 0.2 0.4 0.6 0.8 1 the cluster stable for the full length of the simulatighat is
) Time step (femtoseconds) to avoid unnecessary dissociation effects to influence the nu-
FIG. 3. (a) The O(At®) scaling of errors during the quantum dynamics as merlc_al tgst}s the motlon of chIondg lons was controllled by
calculated using Eq(38). A plot proportional toAf is also shown for ~ Substituting larger isotope masses in all the calculations. The
comparison. This result shows that the dominant error in our algorithm ignitial wave packet, representing the shared quantum proton,

due to Trotter factorizgtiofsee _Eq.(9)]. (b) The deviatior_ls in Eq(37) are was chosen to be a simple Gaussian, as in (Ba), with
presented for three different time steps with the vertical axis adjusted to

expose theAt® dependence of errors. See the text for detédsThe accu- exponentxl/(4ﬂ-) A. . )
mulation of global errors during propagation and this is obtained by ploting ~ Table Il summarizes the comparison of ADMP and

the error in propagation with respect to fixed simulation time. As can beBorn—Oppenheimer dynamics results for different DAF
seen, this has é)(AtZ) scaling and a plot o8At? is also shown for com- propagator parameters. The table contains data only from
parison. Calculations are performed usig- 60. .

one starting geometr§Re-_c-=4.2 A). The results from all
study the evolution of th&?-norm of the error vector in Eq. other simulations are in similar agreement. The calculated
(37) for many different DAF parameters for both ADMP and test parameters include the root mean square expectation val-
BO calculations. The results are shown relative to the respeates of position and momentum operators for the quantum
tive size of the error vector for DAF parametdr=60. It is  proton, their respective uncertainties and deviations of the
clear that the size of the error vector relative to this referencéotal energy (energy conservationduring the dynamics.
is really small, which indicates that the calculations are al-These are in good agreement between the Born-
ready converged avl =20. Oppenheimer and ADMP simulations and the DAF polyno-

0.0015

0.001

0.0005
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TABLE II. Comparison of wave packet Born—OppenheinféfP-BO) and wave packet ADMPWP-ADMP)

schemes.
Method M a(0) (0?2 (PP (p)?/2m° A Ap® AEf
WP-BO 20 1574 0.373 4.626 7.7
WP-ADMP 20 1574 0.128 1.099 0.206 0.356 4.377 17.1
WP-ADMP 30 1.880 0.128 1.099 0.206 0.356 4.377 16.0
WP-ADMP 40 2.139 0.128 1.099 0.206 0.356 4.377 16.0

drms deviation of the wave packet centey(t)|X|x(t)), (in angstroms
®rms deviation of the wave packet momentup(t)|plx(t)), (in a.u).
°In kecal/mol.

rms of wave packet coordinate dispersigi?)—(X)? (in angstroms
e . Mool

rms of Wave packet momentum dispersigp= —(p)* (in a.u).
frms deviation in total energy during dynami@s microhartreg¢

mial size ofM =20 seems to be large enough to describe thesampled dynamics is in reasonable agreement between the
physical details of this problem, as already seen in Sec. [l AADMP and Born—-Oppenheimer trajectories. This is impor-
The deviations in the rms position expectation value ardant since the ADMP approach is computationally less de-
within a tenth of an angstrom while the energy penalty due tananding as compared to the Born—Oppenheimer approach,
deviations in the rms momentum expectation value is apsince the former does not require the solution to be a matrix
proximately two-tenths of a kcal/mol. One striking feature in eigenvalue problem. Based on the results presented in Table
Table Il is the fact that the product of position and momen-Il and Fig. 5 and similar results for other starting geometries,
tum dispersions deviate substantially from the initial Gausswe conclude that the path error between ADMP and Born—
ian minimal uncertainty product value. This is, of course, toOppenheimer subdynamics is small avig-20 is an accept-

be expected since the time evolution in the current method iable truncation of the DAF propagator expansion given in
fully quantum mechanical and there is no need for the wavéq. (10).

packet to remain a coherent state during the dynamics pro-

cess. Furthermore, the total energy conservation is in the. Phenol-amine system: Scattering amplitudes

microhartree range for both BO and ADMP forms of the from the wave packet ADMP procedure

approach.

In Fig. 5 the average potential energy of the system
(X(W|E{Rc,Pc}, Row|x(1)), is shown for different values of
the DAF parameters for ADMP and BO dynamics. The in-
stantaneous fluctuations are generally of the order o
1 kcal/mol. In addition, the average potential energy of thed

To further illustrate the scalability of the approach with
system size, we have carried out calculations on the proton
transfer in phenol-trimethylamine. This system has been con-
idered prototypical for condensed phase proton trafiSfer.
ddition, similar systems have been recently studied to un-
erstand the quantum nuclear effects involved in the slow

deprotonation step of weak acid-base chem@tryhese
N Bym— studie§® have, however, used Marcus’ thebi{/to obtain
admpyg - guantum corrections on the proton transfer process. Here we
aim to demonstrate the power of the current approach in
contributing significantly to such studies by treating the elec-
tronic effects accurately within hybrid DFT; in addition full
guantum dynamical effects of the hopping proton are accu-
rately treated within the wave packet formalism. As outlined
previously, these quantum effects may include zero-point ef-
fects, tunneling, as well as over-barrier reflection. Our ap-
proach is capable of handling all three effects.

The chosen system, phenol-trimethylamisee Fig. 6,
can exhibit tunneling and zero-point effects and hence a
-1 : : : : guantum treatment of at least the shared proton is essential.

0 50 100 150 200 250 . ; i
Propagation time (femtoseconds) Furthermore, delocalized electrons in the phenol ring and
polarizability of the amino group require the electrons to be
FIG. 5. Time evolution of the change in average potential energytreated accurately. Hence this is a classic case where the loss

(xM|E{Rc,Pc}, Row)|x(1)) for BO and ADMP wave packet simulations of T _
the CE"H* system. The legend admpndicates the value d¥l used in the of the proton from the phenol may be stabilized by the de

DAF propagator while treating the chloride atoms with ADMP. The data for Iocallgatlon Of.eIeCtronS in the rng, dgpendlng UPOIn the sur-
M=20,M=30, andM =40, in the ADMP wave packet simulations are not rounding environment. The electronic structure is treated

distinguishable and are seen as a single solid line. The average potentigere within the level of DFT, using B3LYP and BLYP den-
energies over the entire §|mulat|on fqr.t_he ADMP_ trajectories are approm-sity functionals for comparison. From our study we obtain
mately 0.5 kcal/mol relative to the initial potential energy. The average

potential energies over the entire simulation for the BO trajectories are apth€ change in scatterin_g_ _matrix elemertfer the proton
proximately 0.025 kcal/mol. transfej with respect to initial wave packet energy for both

[any

Energy (kcal/mol)
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B3LYP/6-31+G**
0.9 BLYP/6-314G#¥ -oreeeeee 1

'

0 . . / ¥ VAL
0 20 40 60 80 100 120 140
FIG. 6. The phenol-amine system. The shared proton, the oxygen of the @) Simulation time (femtosecond)

phenol, and the nitrogen in the amine are marked. The shared proton is 10

studied using wave packet dynamics and the rest of the system is treated B3LYP ——
using ADMP. . BLYP -
B3LYP and BLYP treatment of electronic degrees of free- 6l 3 |
dom. This aspect is further discussed in the following. The 0 P—
; . . . /50 150 250 350 450
phenol-trimethylamine system has been previously stdtlied i
4l TN |

in a methanol solvent, however, solvent molecules are ex-
cluded from the current study, to simplify the problem. Fu-

ture studies will involve the treatment of a major portion of 27
the surrounding methanol molecules using molecular me-

chanics along with a QM/MM implementation of the proce- 0 ‘ ) : : ) :
dure i”ustrated here_ 0 500 1000 1500 2000 2500 3000 3500
In Fig. 7 we present a comparison of the velocity— (b frequency (cm’™)

velocity autocorrelation function obtained frofa classical _ _ _ o
treatment of all nuclei an(b) uantum wave packet treat- FIG. 8. The quantityx,| x(t)) as a function of simulation time ita) deter-

! a P mines the survival of the wave packet in the reactant channel. The half-
ment of the shared proton. For the latter case, a wave packgurier transform of x| x(1)) in (b) is directly proportional to the scattering
centroid is extracted usingy|X|x) and its velocity is deter- matrix elements obtained frorS-matrix Kohn variational principle(Ref.
mined via finite difference. The differences between the tWO’SS). The inset in(b) indicates the behavior for low scattering energies.
correlation functions are significant. Since the wave packet
does not split during the simulation time studied henelike  the full quantum nature of the propagation scheme described
the CEH* case treated in the previous sectipnssing the in Eq. (10) allows for an automatic treatment of such split-
wave packet center velocity in Fig. 7 is physically meaning-ting, as seen in the previous sections.
ful. However, when this is not the cafiee., when the quan- In Fig. 8 we provide the wave packet survival time in the
tum wave packet does split is necessary to analyze the full reactant channel,x,|x(t)) and its half Fourier transform:
quantum wave packet instead. It must also be noted here that

1.5 . . . . . f dt eXp{LEt/h}<X0|X(t)>
n Classical- ADMP —— 0
1 Quantum Wavepacket-ADMP  ---------- 1 %
'
0.5F 1 = lim - = G*(E . 39
o X0 E—H+ e Xo (XolG"(B)|xo) (39

0

1 The operatoG*(E)=[lim__o— i(E-H+te)™!] is the causal
b | Green'’s function. It has been sholfr*that such a half Fou-
rier transform is directly proportional to the scattering matrix

Velocity auto-correlation function

Rl | element obtained from theSmatrix Kohn variational
27 i principle.61 Figure 8 reveals marked differences between
25¢ 1 S-matrix element obtained from B3LYP and BLYP function-
3 - \ \ - - als, especially for intermediate scattering energies. For ex-
0 50 100 150 200 250 300

ample, theS-matrix element at an energy of approximately
2000 cm? is three times as much for BLYP as it is for

FIG. 7. Comparison of the velocity—velocity autocorrelation function for B3LYP. Important differences are also seen in the survival
wave packet center and classical proton using BLYP/63G1+o describe  time in the intermediate time region. In this region of inter-
the ele_ctronlc. structure..'l'.he gutocorrelatlon funct[on for the wave papkehediate time, the proton is partially bound to both phenol
center is obtained from finite difference. Note the high correlation exhibited . . . .
by the quantum wave packet which coincides with its initial delocalization@nNd amine and in such_ situations B3LYP and BLYP have

seen in Fig. 6. Similar results are also seen at the B3LYP/6c314evel.  been previously not&8''to provide significantly different

Simulation time (femtoseconds)
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results.(See Refs. 66 and 117 where B3LYP and BLYP pro-sion of QM/MM treatment is critical for proton transfer in
vide different hopping rates for proton translocation across darge systems and this is also currently under study.
water wire in a Gramicidin A ion channel and in medium
sized protonated water clustgrBrom our treatment, we see ACKNOWLEDGMENTS
that these differences in the intermediate time region lead
directly to a discrepancy in th&matrix obtained from the This research was supported by the Camille and Henry
two functionals. Dynamical quantities such as transitionPreyfus Foundation and the Indiana University, Chemistry
probabilities and scattering matrix elements could, thus, b&epartment.
substantially different between the hybrid B3LYP and pure
BLYP functionals when nuclear quantization is fully ex- APPENDIX: COMPUTATIONAL EFFICIENCY
ploited. Thus accurate treatment of the surrounding electron@F WAVE PACKET ADMP OVER WAVE PACKET
could be critical when treating proton transfer problems suclBORN-OPPENHEIMER DYNAMICS
as the ones discussed here. A more detailed analysis of such In this section we present an explanation for the compu-
problems using the current methodology is one of our futurdational efficiency of ADMP over Born-Oppenheimer dy-
goals. Importantly the current approach allows accurate treaff@mics. In Born-Oppenheimer dynamics, the density matrix
ment by employing hybrid functionals thus facilitating in- €lements(or the molecular orbital coefficientsieed to be
depth analysis based on such comparisons. iteratively converged at every dynamics step. Assuming that
the largest possible time step is used during dynamics, this
SCF convergence requires approximately 8—12 st@pss,
of course, depends on the convergence threshold and difficult
IV. CONCLUSION systems such as transition metal complexes may require

In this contribution, we have introduced an approach tomore SCF stepsADMP, on the contrary, is not an iterative

perform efficient quantum dynamics of electronic andmethOd V.Vith respect to convergence of thg density matrix
nuclear degrees of freedom. The salient features of thand requires only one SCF step per dynamics step to calcu-

. ’ - fate the Fock matrix needed for density matrix propagation
method include formally exact, accurate, and efficient quan:_ Eqs(22), (23), and(28)]. Both BOMD and ADMP need
tum dynamics using an analytic banded representation fc%he nuclear ,grad,ientﬁEq ('27)] which requires approxi-
the free propagator and efficient electronic dynamics usin '

; : g'lnately the same amount of time in both methods.
ADMP or Born-Oppenheimer dynamics. The guantum dy- The calculation of the nuclear force per ADMP or BO

namics is performed using an analytic banded distributed . . . S
L0 . : . . tep requires approximately three times the computation time
approximating functional representation for the discretize . . :

) . required for a single SCF CPU cycle. This makes ADMP
free propagator and adaptive grids are used to render an ef-

. ) . . : aster than BOMD by slightly over a factor 4 per potential
ficient |mplemen.tat|pn of wave packet dynamlcs. W.h”e theevaluation steffor classical ADMP/BOMD stepof the cur-
quantum dynamics is currently performed using a third-order

Trotter factorization, the effect of other schemes will be stud—rent wave packeab initio dynamics approach. This step is,

ied in future publications. The electronic structure is treateaof course, to be repeated as many times as there are grid

accurately using hybrid or gradient corrected density func? oints to describe the quantum wave packet in the current

. . . : scheme.
tionals. State of the art, higher order density functioffals However. it has been not&ithat BOMD could allow
can be easily included in the current scheme and such effecfs . ’ L .
will be investioated as part of future studies arger time steps, but to maintain similar energy conservation
We have t%sted thel?nethodolo b com. aring the uant_he BOMD time step could be at most twice as large as those
. ) dy by comparing the q Jn ADMP.® This cuts into the gain in efficiency from using
tum dynamics portion of the approach with results obtaine ) -
X o ' ADMP by a factor of 2; the need to evaluate the potential
from exact diagonalization. We find the agreement to be very, : : : .
ood. In addition we find similar agreement between the - 9Y and gradients at all the grid points in the current
good. . Fag : scheme is, however, expected to far exceed this loss of a
various dynamical averages obtained from treating the ele Sctor of 2 in efficienc
tronic degrees of freedom either within the ADMP formalism Y-
Or_ within the Born-Oppenheimer formallsm, In conjqnctlon 'Dynamics of Molecules and Chemical Reactjoedited by R. E. Wyatt
with quantum wave packet dynamics. This is particularly and J. z. H. ZhangDekker, New York, 1995
encouraging since ADMP has been shown to be computa-Z_CIassicaI and Quantum D_ynan_ﬁics in Condensed Phase_ Sim_ula&(_ins
tionally superior to Born—-Oppenheimer dynamics. Hence we gzzobr;’ Bl.g;;yaeme, G. Ciccotti, and D. F. Col@¥orld Scientific, Sin-
envision that this approach will be useful to stgdy quantum 3G. C. Schatz and A. Kupperman, J. Chem. Ph§&, 4642 (1976).
dynamics in large systems. Future methodological improve-4y. B. Delos, Rev. Mod. Phys53, 287 (1981).
ments will allow larger and more accurate simulations. TheZM- D. Feit and J. A. Fleck, J. Chem. Phy28, 301(1982.
first, critical, area where computational improvement will be 75' *E:fsc"‘r’gétfe’;”‘; R:V'sthsf"'ncr‘ec”“ge%_‘;i(1,3'94’5 Feit R, Freisnr. A
necessary is in the evaluation of the potential and forces ongygperg, A. Hammerich, D. J%’"Card’ V\J, Karrlein, H. D. Meytral, J.
the grid. This is an important bottleneck in the current algo- ,Comput. Phys.94, 59 (1992.
rithm. Multidimensional splines along with targeted potential P- DeVries, NATO ASI Ser., Ser. B71, 113(1988.
sampling based on the local curvature and gradient are cu;og' (\gv Ajﬁ‘r?grsgi;a CD' gg'giaiyc:ﬁrm' 22%3)5@?2(#235493 (2003
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