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A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented.
The approach involves quantum wave packet dynamics using an accurate banded, sparse and
Toeplitz representation for the discrete free propagator, in conjunction withab initio molecular
dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be
achieved either by using atom-centered density-matrix propagation or by using Born–Oppenheimer
dynamics. The two components of the methodology, namely, quantum dynamics andab initio
molecular dynamics, are harnessed together using a time-dependent self-consistent field-like
coupling procedure. The quantum wave packet dynamics is made computationally robust by using
adaptive grids to achieve optimized sampling. One notable feature of the approach is that important
quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections
are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate
levels of density functional theory, including hybrid or gradient corrected approximations.
Benchmark calculations are provided for proton transfer systems and the dynamics results are
compared with exact calculations to determine the accuracy of the approach. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1871876g

I. INTRODUCTION

The time-dependent Schrödinger equation is the starting
point for a number of computational methods in gas-phase1

and condensed phase quantum dynamics.2 In many cases the
Born–Oppenheimer approximation is invoked which allows
for propagation of nuclei, quantum-mechanically,1,3–29

classically,30–34 or semiclassically,35–42 on fitted electronic
surfaces. These potential energy surfaces may be either ob-
tained from highly accurate, but demanding, electronic struc-
ture calculations or from parametrizations of the associated
electronic surfaces. In the former case, the required number
of quantum chemical calculations can be very large depend-
ing upon the size of the system. It is in this regard that
“on-the-fly” approaches to dynamics of nuclei and
electrons30–35,43–45have recently become popular, leading to
the field ofab initio molecular dynamics.46 Here, an approxi-
mation to the electronic wave function is propagated along
with the nuclear degrees of freedom to simulate dynamics on
the Born–Oppenheimer surface. If the nuclei are treated
classically32–34,43,44,47then the forces on the nuclei are deter-
mined from the electronic structure. This approach, when
combined with full quantum or semiclassical dynamics
schemes, has the potential to treat large problems accurately
with the complete machinery of quantum dynamics. Several
steps have been taken in this direction.48–50

In the current paper, a new approach is proposed that
attempts to overcome some bottlenecks in this area. The
method discussed here combines full quantum wave packet
dynamics treatment of the time-dependent Schrödinger equa-

tion with ab initio molecular dynamics. The latter is per-
formed using atom-centered density-matrix propagation
sADMPd34,51 and Born–Oppenheimer molecular
dynamics.30,31,33 The wave packet dynamics is performed
through an analytic, banded, Toeplitz52 approximation to the
discretized free propagator.29,53–57Some features of this ap-
proach include:sad accurate treatment of the electronic de-
grees of freedom by including hybrid density functionals
se.g., B3LYPd, sbd formally exact and efficient quantum
propagation where the numerical description of the wave
packet adapts to the shape and position of the same to pro-
vide a flexible propagation scheme,scd efficient treatment of
large systems based on established linear scaling electronic
structure techniques.58–60The current work, thus, attempts an
important synergy between formally accurate approaches
in quantum scattering theory1,5,6,9,10,12,26,38–40,55,61,62

and approximate ab initio molecular dynamics
methods30–34,43,45,51,63–67to achieve efficient quantum dy-
namics of large systems.

Our approach differs from other efficient quantum dy-
namics methodologies that propagate the Feynman path
centroid49,50 in allowing accurate treatment of the electronic
structure through the use of hybrid density functionals such
as B3LYP. Another important difference is based on the fact
that the delocalization of a quantum particle may change
during dynamics on a corrugated surface and this is ac-
counted for in the current scheme by use of an adaptive grid
description of the wave packet. This is in contrast to standard
implementations of the Feynman path centroid scheme
where a fixed number of Feynman path discretizationssor
beadsd are retained throughout the dynamics process.49,50

The paper is organized as follows: In Sec. II we con-adElectronic mail: iyengar@indiana.edu
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struct the theoretical formalism. This leads to a discussion of
quantum wave packet dynamics in Sec. II A and the ADMP
approach to dynamics of electrons and classical nuclei in
Sec. II B. Some computational aspects of the methodology
are discussed in Sec. II C. Section III deals with a discussion
of the numerical tests and results. This is done in three parts:
In Sec. III A the accuracy and efficiency of the wave packet
dynamics algorithm is evaluated. Its synergy withab initio
ADMP and Born–Oppenheimer dynamics is tested and com-
pared as part of Sec. III B. In Sec. III C we present an appli-
cation to a larger problem to demonstrate the potential of the
approach in studying important chemical problems. The cho-
sen application in Sec. III C is one that has been considered
prototypical40 in condensed phase proton transfer as well as
in weak acid-base chemistry.68 In Sec. IV we present our
conclusions.

II. WAVE PACKET GENERALIZATION
FOR THE ATOM-CENTERED DENSITY-MATRIX
PROPAGATION „ADMP… AND BORN–OPPENHEIMER
DYNAMICS SCHEMES

To derive wave packet generalizations, we start with the
full time-dependent Schrödinger equation:

i"
]

]t
csr,R;td = Hcsr,R;td, s1d

where H is the full electron nuclear Hamiltonian and
csr ,R; td is the state vector that describes the electron-
nuclear system at timet. To proceed further we recognize
that in large systems, some nuclei in the system may require
only classical treatment. But other parts of the systemssuch
as electrons or nuclei with relatively large de Broglie wave-
lengthsd may need to be treated by applying full quantum
dynamics or an approximation to the same. If we assume that
these individual parts of the full system only interact with
each other in an average sense then we may employ a time-
dependent self-consistent fieldsTDSCFd-like69–71 partition-
ing scheme where the full electron-nuclear system is divided
into three parts: The first portion comprises a subsystem that
will eventually be treated using quantum dynamics and the
position variables for the particles in this part are denoted by
RQM, the second subsystem comprises most of the nuclear
degrees of freedom and will eventually be treated within a
classical frameworksnote that some nuclei may be included
in the first part treated with quantum dynamicsd and the po-
sition variables for these particles are denoted byRC in the
following discussion, and the third portion comprises the
electrons in the system. Based on the time-dependent self-
consistent field technique69–72 we can now reduce Eq.s1d
into three separate equations one describing each subsystem:

i"
]

]t
c1sRQM;td = H1c1sRQM;td, s2d

i"
]

]t
c2sRC;td = H2c2sRC;td, s3d

i"
]

]t
c3sr ;td = H3c3sr ;td, s4d

whereH1 is the averagesor effectived Hamiltonian of system
1 and is written askc2c3uHuc2c3l. H2 and H3 are defined
similarly. It must be noted that Eqs.s2d–s4d are obtained by
writing the full wave functioncsr ,R; td;c1c2c3 expfigg
wheredg /dt is proportional to twice the energy of the sys-
tem. System 1 is to be treated quantum-dynamically. Since
system 2 comprises nuclei that are not required to be treated
within a quantum dynamical formalismssince they are not
part of system 1d, we enforce the classical limits"→0d for
these particles to obtain a classical Hamilton–Jacobi
equation65,73–81to describe this portion of the system. In sys-
tem 3, which comprises electrons, we choose to enforce the
space–time separation to obtain a stationary state description
of electrons. In this fashion one recovers a formalism where
a portion of the full system is treated using quantum dynam-
ics, another portion of the system is treated classically, while
a third portionsthe electronsd is described within a stationary
state approximation. In absence of system 2, the partitioning
scheme reduces to the adiabatic approximation of electrons
and nuclei which has been the cornerstone for many time-
dependent as well as time-independent methods in quantum
scattering theory.1

An alternative approach is to treat the dynamics of sys-
tems 2 and 3 by employing the recently developed ADMP
formalism.34,51,63–67Here the electronic structure is repre-
sented by the single particle electronic density matrix and
propagated simultaneously with the classical nuclei, with a
simple adjustment of the relative nuclear and electronic time-
scales. This is achieved within an extended Lagrangian
formalism.32,34,51,82,83It has been shown that this dynamical
strategy leads to a trajectory that oscillates about the Born–
Oppenheimer surface with controllable deviations51,64 and
the results agree well with Born–Oppenheimer dynamics
calculations.63,67 ADMP has also been shown to be compu-
tationally superior to Born–Oppenheimer dynamics, and this
is on account of the relaxation of SCF convergence require-
ment in ADMP.63,66,67sPlease see Appendix for details in this
regard.d The corresponding equations for the systems 2 and 3
are given by

M
d2RC

dt2
= −KxUU ]EshRC,PCj,RQMd

]RC
U

PC

UxL , s5d

and

m1/2d2PC

dt2
m1/2 = −KxUU ]EshRC,PCj,RQMd

]PC
U

RC

UxL
− fLPC + PCL − Lg, s6d

where we have usedx instead ofc1 to describe the state of
the quantum dynamical system 1.sFor convenience, from
this point on we usex to represent the state of the quantum
dynamical system, instead ofc1.d HereM denotes the clas-
sical nuclear masses in system 2 andm denotes a fictitious
mass tensor or inertia tensor describing the effective elec-
tronic degrees of freedom.L is a Lagrangian multiplier ma-
trix used to imposeN-representability of the single particle
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density matrix,PC. It is to be noted that Eq.s6d is classical in
form, but not in content. Equationss5d and s6d are obtained
by enforcing constraints ofN-representability on the density
matrix; the extended Lagrangian thus obtained, however, dif-
fers from that found in the standard time-dependent varia-
tional principle69,84and is hence a fictitious Lagrangian. Fur-
ther discussion on the associated fictitious dynamics of the
electrons can be found in Sec. II B with more details in Refs.
51 and 64.

Equations2d retains its original form and is given explic-
itly as

i"
]

]t
xsRQM;td = H1xsRQM;td

; F−
"2

2MQM
¹RQM

2 + EshRC,PCj,RQMdG
3xsRQM;td. s7d

The energy functional,EshRC ,PCj ,RQMd, in Eqs.s5d–s7d, de-
pends on the quantum particle coordinates,RQM, the sur-
rounding classical nuclear coordinates,RC, and single par-
ticle electronic density matrix,PC, written in an orthonormal
basis to be discussed further in the following. The energy,
EshRC ,PCj ,RQMd, may be a density functional that involves
exact exchange,85 a pure functional86 swith gradient
corrections87 or higher order corrections88d or may be based
on other single particle formalisms such as Hartree–Fock or
semiempirical treatments. It is written here using McWeeny

purification89 for the density matrix,P̃C=3PC
2−2PC

3:

E = TrfhP̃C + 1
2GsP̃CdP̃Cg + Exc + VNN. s8d

Here, h is the one-electron matrix andGsP̃Cd is the two-
electron matrix for Hartree–Fock calculations, but for den-
sity functional theorysDFTd it represents the Coulomb po-
tential. Exc is the DFT exchange-correlation functionalsfor
Hartree–FockExc=0d and VNN represents the nuclear repul-
sion energy. Since the Gaussian basis set is employed in the
ADMP formalism sthis is by no means a requirement and
density matrix propagation along identical lines can be for-
mulated for other bases as welld, the overlap matrix for the
nonorthogonal Gaussian basis,S8, may be factorized asS8
=UTU to obtain the instantaneous orthonormal basis set.90

There are a number of choices forU ;U can be obtained from
Cholesky decomposition91 of S8 or U=S81/2 for Löwdin
symmetric orthogonalization. Further discussion on theab
initio molecular dynamics portion of the current algorithm is
presented in Sec. II B.

A. Quantum wave packet propagation

The quantum-dynamical propagation, based on Eq.s7d,
is approximated using a kinetic reference symmetric split
operator approach:5,92

expH−
iHt

"
J = expH−

iVt

2"
JexpH−

iKt

"
JexpH−

iVt

2"
J

+ Ost3d, s9d

whereK is the kinetic energy operator of Eq.s7d and theV is

the slocald potential energy operator. This approach has the
attractive feature that it provides dynamics strictly obeying
time-reversal symmetry5,92 if the approximations used for the
separate components of Eq.s9d are unitary.

For local potentials, the potential energy operator is di-
agonal in the coordinate representation. There are a number
of ways to approximate the free-propagator, exph−iKt /"j.
One approach is to recognize that this operator is diagonal in
the momentum representation. Hence fast Fourier transforms
have been commonly used5,8,19–22to obtain the result of the
free-propagator operating on a wave packet in the coordinate
representation. A few alternative approaches include:sad the
use of direct25 or iterative, Lanczos7 based diagonalization of
the full Hamiltonian and the subsequent representation of the
evolution operator exph−iHt /"j using the eigenstates,sbd the
use of Chebychev polynomial approximations6,11,23–25,93

which are based on the Jacobi–Anger formula,94 scd use of
eigenstates of various portions of the Hamiltonian,95 andsdd
the use of Feynman path integrals.12–15,96–99sThe list here is
not exhaustive and a detailed discussion on the topic may be
found in Refs. 1 and 35.d In all cases, the Hamiltonian needs
to be approximated in some representation. In the coordinate
representation this is generally achieved with the discrete-
variable representations26–28 or distributed approximating
functionalssDAFd.53,54,57,100–102

In the current study we employ an analytic banded
DAF53,55 representation for the coordinate space version of
the free-propagator:

KRQMUexpH−
iKDtQM

"
JURQM8 L

DAF

=
1

ss0d
expH−

sRQM − RQM8 d2

2ssDtQMd2 J
3 o

n=0

M/2 S ss0d
ssDtQMd

D2n+1S− 1

4
Dn 1

n!
s2pd−1/2

3H2nSRQM − RQM8

Î2ssDtQMd
D , s10d

where

hssDtQMdj2 = ss0d2 +
iDtQM"

MQM
s11d

andH2nsxd are the Hermite polynomials of even order. Equa-
tion s10d is obtained from the well-known analytical expres-
sion for free evolution of a Gaussian function,96

expH−
iKDtQM

"
JexpF−

x2

2ss0d2G
=

ss0d
ssDtQMd

expF−
x2

2ssDtQMd2G s12d

along with the fact that the Hermite functions are generated
from Gaussians according to
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HnsxdexpF−
x2

2s2G = s− 1dn dn

dxn expF−
x2

2s2G . s13d

Since the derivative operatorsdn/dxn commute with the free-
propagator, the Hermite functions can be used as a basis to
expand the exact quantum free propagator with coefficients
as described in Eq.s10d.53 This yields an efficient propaga-
tion scheme to perform quantum dynamics and Feynman
path integration96,97 through the action of a banded, sparse,
Toeplitz matrix on a vector.

For the rest of this section we will briefly describe DAF
quantum propagator theory as it pertains to the current wave
packetab initio dynamics approach. Further details on DAF
theory can be found in Refs. 29, 53, and 55–57

Equations10d is presented in its continuous form and is
valid for all values ofRQM andRQM8 . Here the free evolution
of a wave packetxsRQM; td is obtained by discretization:

xsRQM;t + Dtd

=E dRQM8 KRQMUexpH−
ıKDtQM

"
JURQM8 L

DAF
xsRQM8 ;td,

xsRQM
i ;t + Dtd

=
Dx

ss0doj

expH−
sRQM

i − RQM
j d2

2ssDtQMd2 Jo
n=0

M/2 S ss0d
ssDtQMd

D2n+1

3S− 1

4
Dn 1

n!
s2pd−1/2H2nSRQM

i − RQM
j

Î2ssDtQMd
DxsRQM

j ;td, s14d

whereDx is the grid discretizationsassumed uniform in this
cased in one dimension. Generalization to higher dimensions
is straightforward and is carried out by writing the propaga-
tor in direct product form with components as in Eq.s10d.
The variablesM andss0d determine the accuracy and width
sor computational efficiencyd, respectively, of the DAF. It has
been shown53,57 that these parameters are not independent
and that for a given value ofM there exists ass0d that
provides optimal accuracy for the propagation. We have
studied the accuracy of the quantum propagation in Sec. III
using a variety of values forM andss0d, to demonstrate the
convergence of our results with DAF parameters. The values
used in our study are listed in Sec. III and are based on the
requirement of optimal accuracy as discussed in Ref. 53. In
the computational section of this paper, we have also dis-
cussed comparison of this propagation scheme with a propa-
gation obtained from exact diagonalization of the Hamil-
tonian,H1 in Eq. s7d. This provides a useful benchmark of
our results.

To calculate the Hermite polynomials in Eq.s10d, the
standard recursion procedure can be used, however, for large
values ofM swhich leads to greater accuracy of the propa-
gationd, these polynomials numerically diverge. As a result
we have modified the recursion relation to allow the direct
evaluation of the functions

H̃2nS x
Î2s

D = expH−
x2

2s2J 1

n!
H2nS x

Î2s
D , s15d

using

H̃2nsyd =
2

n
fs2y2 − 4n + 3dH̃2n−2syd − 4s2n − 3dH̃2n−4sydg.

s16d

Equations16d only includes the even polynomials as needed
in Eq. s10d. This modified recursion allows numerically
stable evaluation of the components required in Eq.s10d
even for very large values ofM.

It is worth noting a few characteristics of Eq.s10d. For
any fixed level of approximation, determined by the choice
of parametersM and ss0d, the kernel in Eq.s10d only de-
pends on the quantitysRQM−RQM8 d sthat is the distance be-
tween points in the coordinate representationd and goes to
zero as this quantity becomes numerically large on account
of the Gaussian dependence. This yields a banded matrix
approximation to Eq.s10d, for any finite M and ss0d. Fur-
thermore, on account of its dependence onsRQM−RQM8 d, a
matrix representation of Eq.s10d has the property that all
diagonal elements of this matrix are equal; similarly allnth
supersand subd diagonal elements are the same. Such a ma-
trix is called a Toeplitz matrix.fOne may note that the
Toeplitz matrix is very similar to the Vandemonde matrix
that makes its appearance in Fourier theory.91 This is no
surprise since the exact quantum propagator in the coordi-
nate representation96 is obtained by representing the free-
propagator in the momentum representation. Furthermore,
the matrix representation of Eq.s10d becomes a Vandemonde
matrix when a symmetry adaptation scheme103 is introduced
and this will be discussed as part of a future study104 of the
methodology described in this paper.g In addition, the depen-
dence onsRQM−RQM8 d implies a translational symmetry prop-
erty in Eq. s10d, seemingly reminiscent of wavelet
theories.105–108 On account of such attractive mathematical
properties, Eq.s10d provides great simplicity in computation
of the quantum propagation within our scheme and is ex-
pected to be useful for large systems. For example, it is only
necessary to store the first row of such a matrix, in each
dimension, to obtain the result of a propagation. Further-
more, the computational scaling of the quantum propagation
described in Eq.s14d is hs2W+1dsN−Wd−W2j, whereN is
the number of grid points used in the discretization scheme
ands2W+1d is the width of the propagator in the coordinate
representation. SinceW does not depend onN fW in fact
depends onM and ss0d, that is the required accuracy of
propagationg, this scaling goes asOsNd for large grids.

Another important property of the expression in Eq.s10d
is that it is not formally unitary. This, however, does not
present any problems in the numerical propagation as will be
discussed in the results section. The reason for the lack of
formal unitarity can be understood by considering theDtQM

→0 limit of Eq. s10d. It is true that for the free propagator

lim
DtQM→0

KxUexpF−
ıKDtQM

"
GUx8L ; dsx − x8d, s17d

where the right-hand side is a projection operator in the fol-
lowing sense:
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E dsx − x8ddsx8 − x9ddx8 ; dsx − x9d. s18d

For the approximation in Eq.s10d, this becomes an exact
result only for large values ofM, since the DAF-
approximation,dDAFsx−x8d:

lim
DtQM→0

KxUexpF−
ıKDtQM

"
GUx8L

DAF

; dDAFsx − x8d < dsx − x8d, s19d

is generally not a projection operator109 in the sense of Eq.
s18d. The computational implications of this result are dis-
cussed in Sec. III A and found to be negligible.

Finally, we illustrate the form of the DAF propagator in
Fig. 1 for two different time steps. As can be seen, the propa-
gator gets broader in the coordinate representation, just by
increasing the time step, even when the order of the approxi-
mation fdetermined by the choice ofM and ss0dg is main-
tained. This is particularly interesting since the current ap-
proach allows for an adaptive control of quantum time steps,
based on energy conservation, and in such cases when the
time step is increased more points in the vicinity ofxsxd
contribute to its propagation. This aspect is further high-
lighted by considering the momentum space form of the
DAF propagator:

1
Î2ssDtQMd

expH−
k2ssDtQMd2

4
Jo

n=0

M/2
2n

n!
fss0dkg2n, s20d

which is basically a polynomial multiplied by a coherent
state,

expH−
k2ssDtQMd2

4
J

; expH−
k2

4
sss0d2 + ıDtQM"/MQMdJ .

As can be seen, the plane wave frequency in the coherent
state is time-step dependent, which implies that for larger
time stepsfbut fixedM andss0dg the plane-wave portion of
the Fourier transform of Eq.s10d becomes oscillatory for a
given k. This is particularly interesting since coherent states
have been used to propagate quantum systems,110–113but in
our case the propagator in the momentum representation is a
coherent state multiplied by a polynomial.

B. Ab initio dynamics using ADMP
and Born–Oppenheimer dynamics

The ADMP approach has been discussed in great detail
in Refs. 34, 51, and 63–67. In this section we present a brief
outline as it pertains to the current quantum wave packetab
initio dynamics approach. The ADMP equations,s5d ands6d,
are propagated using the velocity Verlet algorithm:

PC
i+1 = PC

i + ṖC
i Dt −

Dt2

2
m−1/2

3fFPC

i + LiPC
i + PC

i Li − Ligm−1/2, s21d

ṖC
i+1 = ṖC

i −
Dt

2
m−1/2fhFPC

i + LiPC
i + PC

i Li − Lij

+ hFPC

i+1 + Li+1PC
i+1 + PC

i+1Li+1 − Li+1jgm−1/2, s22d

with

FPC

i =KxUU ]EshRC,PCj,RQMd
]PC

U
RC

UxL . s23d

Similarly, the nuclei are propagated according to

RC
i+1 = RC

i + ṘC
i Dt −

Dt2

2
M −1/2FRC

i M −1/2, s24d

ṘC
i+1 = ṘC

i −
Dt

2
M −1/2fFRC

i + FRC

i+1gM −1/2, s25d

whereṘC
i are the nuclear velocity at time stepi and

FRC

i =KxUU ]EshRC,PCj,RQMd
]RC

U
PC

UxL . s26d

Equationss23d and s26d represent the essential difference in
the current methodology as compared to standard ADMP
since the forces here are averaged over the quantum wave
packet as required from the discussion in Sec. II.

FIG. 1. DAF propagator in Eq.s10d for sad Dt=5 a.u. and sbd Dt
=1 a.u.M =20 andss0d /Dx=1.5744 for both cases.
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If Born–Oppenheimer dynamics is to be used instead of
ADMP, Eq. s6d is replaced by SCF convergence ofPC. The
nuclear propagation equation remains the same in both for-
malisms. However, the nuclear forces are different since the
ADMP nuclear forces are more general than the standard
Born–Oppenheimer dynamics nuclear forces34,64and the dif-
ference between these is proportional to the commutator of
the Fock and density matrices64 that is generally small in
Born–Oppenheimer dynamicsswhen the SCF convergence
threshold is tightd but may not be small in ADMP:

U ]EshRC,PCj,RQMd
]RC

U
PC

=HTrFU dh8

dRC
P̃C8 +

1

2

]G8sPC8 d
]RC

U
PC8

P̃C8G
− TrFF8P̃C8

dS8

dRC
P̃C8G + U ]Exc

]RC
U

PC

+
]VNN

]RC
J

+ TrFfP̃C,FgSQ̃C
dU

dRC
U−1 − P̃CU−T dUT

dRC
DG , s27d

where Q̃C; I −P̃C and as noted in Eq.s8d, P̃C is the
McWeeny purified density matrix. Notice that as the commu-
tator of the Fock and density matrices goes to zero, the last
term in Eq.s27d becomes small leading to well-known gra-
dient expressions.34,64,114fThe primed variables in Eq.s27d
are in the nonorthogonal Gaussian basis.34,64g In the absence
of this condition, Eq.s27d presents a more general form of
the nuclear gradient and we use this for both cases, espe-
cially for the case of weak convergence threshold on the
Born–Oppenheimer surface. The density matrix gradient in
Eq. s6d is given by

U ]EshRC,PCj,RQMd
]PC

U
RC

= 3FPC + 3PCF − 2FPC
2 − 2PCFPC − 2PC

2F

; ffF,PCg,PCg. s28d

Equations6d is similar to that used in the Car-Parrinello
sCPd scheme however, it differs importantly in using the
single particle density matrix in an orthonormal basis set
formed from Gaussian basis functions. In this sense Eq.s6d
represents fictitious dynamicsslike CPd, where the density
matrix is propagated instead of being convergedfas would
be required if the time-independent Schrödinger equation
were used instead of Eq.s6dg. The accuracy and efficiency of
ADMP is controlled by the choice ofm. Hence one must be
aware of the limits on this quantity. Two criteria51,64 have
been derived to place bounds on the choice of the fictitious
mass. First, the choice of the fictitious mass determines the
magnitude of the commutatorfPC ,Fg swhereF is the Fock
matrix that represents the single particle picture; DFT,
Hartree–Fock, or semiempiricald thus determining the extent
of deviation from the Born-Oppenheimer surface:64

ifF,PCgiF ù
1

ifPC,ṖCgiF

uTrfṖCm1/2P̈Cm1/2gu, s29d

whereif¯giF is the Frobenius norm91,115of the commutator

and is defined asiAiF=Îoi,jAi,j
2 . ṖC andP̈C arevelocityand

accelerationof the density matrix and can be determined on
the fly as outlined in the propagation scheme described in the
following. Second, the rate of change of the fictitious kinetic
energy,

dHfict

dt
= TrfṖCm1/2P̈Cm1/2g

= − TrFṖCSU ]EsRC,PCd
]PC

U
RC

+ LPC + PCL − LDG ,

s30d

is required to be bounded and oscillatoryand this again is
determined by the choice of fictitious mass tensor. Note that
the numerator in Eq.s29d is the same as the expression in Eq.
s30d and hence this implies that the rate of change of the
fictitious kinetic energy in ADMP is also proportional to the
commutatorfPC ,Fg and hence determines deviations from
the Born–Oppenheimer surface. One must monitor the quan-
tities in Eqs.s29d and s30d to ascertain that the ADMP por-
tion of the dynamics is physically consistent. In all ADMP
applications studied to date34,51,63,66,116–118these conditions
are satisfied thus yielding a computationally efficient and
accurate approach to model dynamics on the Born–
Oppenheimer surface. It has been shown that ADMP trajec-
tories thus obtained are in good agreement with dynamics on
the Born–Oppenheimer surface.63,67

C. Computational implementation

The algorithm to perform the simultaneous dynamics of
the hRC ,PC ,xj system is described as follows: First a grid is
created around the particle to be treated quantum dynami-
cally. This grid represents the discretization of the wave
packet, x, in the coordinate representation. If the ADMP
dynamics option is desired, the potential energy
EshRC ,PCj ,RQMd, the nuclear forces,

U ]EshRC,PCj,RQMd
]RC

U
PC

and density matrix forces,

U ]EshRC,PCj,RQMd
]PC

U
RC

,

are calculated on the grid points. On the contrary if Born–
Oppenheimer dynamics is the chosen approach, then the po-
tential energy and only classical nuclear forces are obtained
based on SCF convergence. This is an important difference
and clearly indicates the lower computational effort required
in ADMP. sThe Appendix explains this in detail and as will
be seen in Sec. III B the associated loss in accuracy is basi-
cally negligible.d

The potential energy on the grid along with the free
propagator in Eq.s10d are then used for causal propagation
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of the quantum wave packet. The energy gradients on the
grid points are used along with the wave packet to construct
the force on the ADMP system as required by Eqs.s23d and
s26d, which propagates the ADMP variables:hRC ,PCj and

the associated velocitieshṘC ,ṖCj, as allowed by Eqs.s21d,
s22d, s24d, and s25d. sOnly the nuclear degrees of freedom
are propagated for the Born–Oppenheimer case.d This pro-
cess is then repeated for the next propagation step.

The above-presented algorithm is, of course, limited by
the size of the quantum grid and to facilitate maximum com-
pactness, we use an adaptive grid methodology wherein the
required grid positions are recalculated every few time steps
based on the center and instantaneous distribution of the
wave packet. The wave packet amplitudes at the new grid
positions are calculated with an accurate grid interpolation
scheme:54,100,103,119,120

xsRQM;td =E dRQM8 H 1

sÎ2p
expS−

sRQM − RQM8 d2

2s2 D
3 o

n=0

M/2 S−
1

4
Dn 1

n!
H2nSRQM − RQM8

Î2s
DJxsRQM8 ;td,

s31d

to transform the wave packet from the primedsoldd set of
grid points to the unprimedsnewd set. This way the quantum
grid adapts to the region where the quantum wave packet has
significant contributions. Equations31d also allows us the
adjustment of wave packet grid sampling by having more
points in regions where the wave packet is rapidly varying.
This sampling is maintained based on predetermined factors
such as de Broglie wavelength of the quantum particle or
local, instantaneous gradient and curvature of the potential
surface.121,122The adaptive nature of the quantum grid makes
the approach robust. It is also important to note that the
computationally expensive portion of the algorithm de-
scribed here is the evaluation of the energy and forces on the
grid points to be used for ADMP dynamics. This necessitates
a reduction of the number of grid points where such calcu-
lations are performed and we are currently developing a
scheme that involves potential adapted interpolation to mini-
mize the number of grid points where such calculations are
performed. Exhaustive discussion of these novel extensions
to the methodology and detailed examination of grid sizes
and other computational aspects will be the subject of a fu-
ture publication.122 In the current contribution we focus on
the accuracy, efficiency, and complete evaluation of the pa-
rameters involved in the proposed methodology.

Another important factor in the quantum propagation
scheme is related to the nature of the discretized DAF propa-
gator in Eq. s14d. Equation s14d may be interpreted as a
matrix-vector multiplication where thesRQM

i ,RQM
j dth element

of the propagator matrix acts on the initial vector to create
the new vector. In this case, we note that for points near the
edges of the grid defined byfi øWg and fN− i øWg, where
RQM

i ; iDx, N is the number of grid discretization points and
s2W+1d is the width of the DAF propagator in the coordi-
nate representation, there is an error in the discretization
scheme in Eq.s14d due to the fact that

KRQM
i UexpH−

iKDtQM

"
JURQM

j L
DAF

is nonzero forfi øWg and j ,0. That is, the DAF propagator
extends beyond the region of definition of the grid on either
side! However, the size of this extended region is propor-
tional toWDx. Now, one of the properties of the DAF propa-
gator is that its bandwidth,W, is independent of the grid size
Dx salthough it does depend on the time stepDt, as seen in
Fig. 1d as long as the values ofss0d and M are kept
constant.103 Hence, asDx is made smaller, the total number
of grid points, N, increases and the ratioW/Ns~Dxd gets
smaller. Hence, as the grid spacing is reduced, the size of the
above-described extended region gets smaller and in the con-
tinuous limit, i.e., asDx becomes infinitesimally small, this
region, W/N~Dx, becomes infinitesimally small. For finite
size grid spacings the numerical effects of this problem at
grid boundaries is reduced using a symmetry-adapted version
of the propagator scheme and will be the subject of future
studies.104

III. DISCUSSION OF NUMERICAL TESTS

To conduct an exhaustive study of the parameters in the
proposed methodology and to test the accuracy of the ap-
proach we have performed many sets of calculations; an il-
lustrative sample is discussed here. In the first set of calcu-
lations we compare the quantum dynamics obtained for the
shared proton in the Cl2

2−H+ system using two differenttime-
independentpotential energy surfaces: in one case full SCF
swith a wave function convergence threshold of 10−8 which
translates to an energy convergence threshold of roughly
10−10 hartreed was used to construct the potential surfacefas
would be the case in the Born–OppenheimersBOd dynamics
implementation of the proposed methodologyg and in the
other case a single SCF cycle was used to estimate the en-
ergy surface as would be the case for ADMP. In both cases
the chloride atomic positions are fixed. In all cases the elec-
tronic structure was determined from density functional
theory, using pure and hybrid functionals. We carefully
checked sensitivity of the quantum dynamics with respect to
the parameters including the quantum time step and values of
DAF-free propagator parameters,M and the associatedss0d.
Use of a single time-independent potential energy surface
during the course of propagation allows us to compare and
calibrate the DAF-based propagation approach with results
obtained from exact propagation via diagonalization of the
Hamiltonian. The instantaneous quantum wave packet in the
exact case is simply a linear combination of the stationary
eigenstates of the Hamiltonian multiplied by energy-
dependent phase factors:

uxstdlexact= o
i

ci
exactstdufil = o

i

cis0dexpf− iEit/"gufil s32d

where the eigenstateshfij are obtained from exact diagonal-
ization of the Hamiltonian in Eq.s7d:
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F−
"2

2MQM
¹RQM

2 + EshRC,PCj,RQMdGufil = Eiufil. s33d

These eigenvalues and eigenvectors were determined using
two different methods to confirm our results:sad first the
Numerov approach123 to boundary value problems124 was
used to determine the eigenvalues and eigenvectors,sbd next
the kinetic energy operator was obtained in the coord-
inate representation using “distributed approximating
functional”11,25,29,53,54,57,100and the Hamiltonian was subse-
quently diagonalized. In both cases the eigenvalues and
eigenvectors were found to be in very good agreement.
Hence we proceeded to use these eigenstates to benchmark
our results as described in the following.

The DAF-propagated wave packet could, in a similar
fashion, be resolved as

uxstdlDAF = o
i

ci
DAFstdufil s34d

to provide a platform for comparing our results. A range of
applicable DAF parameters have been tested for accuracy. A
smaller numberM does allow a reduction in the CPU time
for quantum propagation, although this is not the computa-
tionally critical portion of the full method. We have per-
formed this comparison to evaluate the accuracy of our wave
packet dynamics scheme for both the ADMP and BO cases.
The results from this comparison are presented in Sec. III A.
After checking accuracy of quantum propagation for fixed
potential energy surfaces the chloride atoms and the elec-
trons are allowed to evolve as per ADMP or Born–
Oppenheimer dynamics simultaneously with the quantum
wave packet. This is used to test the full methodology and
the results obtained are presented in Sec. III B.

Another set of tests is dedicated to the study of a proton
tunneling problem for a more computationally intensive case
to demonstrate the potential applications of this approach. In
Sec. III C the dynamics of a “quantum-proton” between a
phenol and tri-methyl amine system is studied and compari-
sons between different density functionals are presented.

A. Accuracy of quantum propagation

We have conducted simulations for the Cl2
2−H+ system to

test the accuracy of our quantum propagation. The wave
packet approach outlined in the previous section has been
used to study the quantum dynamics representing the shared
proton. Hybrid density functional theorysB3LYPd with a
6-31G Gaussian basis was used for all electronic calculations
discussed in this section.

We consider the quantum dynamics of the shared proton
in the Cl2

2−H+ system with the chloride ions fixed at about 4.2
Å separation and the initial wave packet, chosen to be a
Gaussian. While the 4.2 Å starting geometry is one among
many geometries that we considered, it is useful to discuss
this geometry to exemplify the implications of our numerical
tests. First, at this geometry, the zero-point energy of the
proton is rather high and comparable to the height of the
barrier that separates the protonated states on each chloride
ion. sThe zero-point energy is approximately 2 millihartrees
and the height of the barrier is close to 4 millihartrees.d This

gives rise to the possibility of tunnelingand zero point ef-
fects playing an important role in the dynamics if the initial
wave packet is chosen to have a finite overlap with the pro-
ton ground state. In addition there are multiple states acces-
sible for tunneling below the barrier. Such physical situations
have been termed “nonadiabatic” in the proton transfer
literature.68 The other interesting aspect of this geometry is
the proximity of states immediately above the barrier which
provides for a high probability of over-barrier reflection of
the wave packet if the initial packet has finite overlap with
these over-barrier states. It must be noted that most method-
ologies that study quantum dynamics in large systems125,126

do not adequately reproduce all three effects. While many
methods accurately reproduce the zero-point effects, few are
able to reproduce both tunneling and over-barrier reflection
accurately. It is also worthwhile to note that the standard
semiclassical approximation73 breaks down in the vicinity of
barrier height, which provides the rationale for a fully quan-
tum dynamical approach.

To test our scheme with reference to all three quantum
dynamical aspects described earlier, we have constructed the
initial wave packet as a Gaussian having finite overlap with
states all the way from the ground state to states a few mil-
lihartrees above the barrier:

uxs0dl ; expf− x2/s2a2dg = o
i

cis0dufil. s35d

The quantum propagation is performed using the DAF ex-
pression in Eq.s10d and, to calibrate the approach, these
results are compared with the exact propagation in Eq.s32d.

We first assess the numerical effects of the formal non-
unitarity of the DAF propagation scheme. A serious loss in
unitarity could result in many unphysical results: for ex-
ample,sad loss in energy conservation during the dynamics
process,sbd loss of probability,scd the coefficients may not
strictly obey, or may deviate substantially from, the result of
Eq. s32d, and sdd loss of time-reversal symmetry which
is one of the cornerstones of the split-operator
approximation.96,127,128In Fig. 2 we present the evolution of

FIG. 2. Conservation of total energy and probability are presented for a 30
ps quantum dynamics simulation. The deviations in total energysoscillatory
curved are in the microhartree range. The conservation of probability flux
sflat dashed lined, outlined in Eq.s36d, is also more than adequate. Calcula-
tions are performed usingM =60.
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the total energy and loss of wave packet probability as a
function of time. We note that the total energy is conserved
to beyond microhartree accuracy over a 30 ps simulation
time. sNote that the vertical axis in Fig. 2 is such that the
energy has units of kcal/mol.d Similarly the loss of wave
packet probability in the DAF propagation,

1

N
Îo

i

N

uci
DAFstdu2 − ucis0du2

;
1

N
Îo

i

N

uci
DAFstdu2 − uci

exactstdu2, s36d

is also conserved to an extremely high level. These two re-
sults indicate that the numerical implications of lack of for-
mal unitarity in the DAF propagator are fairly limited and
the DAF propagator conserves probability and energy up to
very high accuracy.

To further ascertain the accuracy of the propagation
scheme it is also important to study the phase of the DAF-
propagated wave packet and compare this to that obtained
from the exact propagation result in Eq.s32d. We have stud-
ied the time evolution of the quantity,

1

N
Îo

i

N Uci
DAFstdexpF iEit

"
G − cis0dU2

;
1

N
ixsx;tdDAF − xsx;tdexacti2, s37d

for many different time steps. Note that the termsxsx; tdDAF

andxsx; tdexact in Eq. s37d are the coordinate representations
of the respective kets and the numerator on the right-hand
side is the L2-norm of the error vector. The quantity in Eq.
s37d allows us to evaluate the instantaneous error in the
propagation scheme, with respect to exact diagonalization. It
also allows us to study the change in such error as a function
of quantum time step. In addition, the absolute integral of the
quantity in Eq.s37d, that is,

1

T
E

0

T

dt
1

N
Îo

i

N Uci
DAFstdexpF iEit

"
G − cis0dU2

;
1

T
E

0

T

dt
1

N
ixsx;tdDAF − xsx;tdexacti2, s38d

provides a measure of the deviation in the approximate dy-
namics with respect to the exact dynamics, for a given length

of simulation time,T. The quantity in Eq.s38d is the average
length of the vector huxDAFstdl− uxexactstdlj where both
uxDAFstdl and uxexactstdl have unit magnitudes. In Table I we
present our results for a range of DAF parameter values, two
different Dt values and for Born–Oppenheimer as well as
ADMP surfaces. Table I clearly indicates that the average
length of the error vector is negligible, as compared to the
length of the ket vectors representing the wave packet, for
the smaller time step of 0.1 fs, but clearly growssalthough is
still acceptabled for the larger time step of 0.5 fs.

This leads us to an investigation of the dependence of
propagation error on quantum time step. The quantity in Eq.
s38d is plotted in Fig. 3sad for a range of time steps with fixed
number of simulation steps. This is done for both Born–
Oppenheimer and ADMP potential surfaces. A plot propor-
tional to Dt3 is also shown in the same figure, which indi-
cates that the error in propagation scales as<OsDt3d with
step size. This is consistent with the truncation properties of
the third-order Trotter factorization92,127in Eq. s9d. To further
elaborate on thisOsDt3d scaling of errors due to truncation in
the Trotter factorization, we provide the time evolution of
errors indicated in Eq.s37d fsee Fig. 3sbdg for three different
time stepss0.05, 0.1, and 0.2 fsd; however the vertical axis
has been adjusted in the following fashion. The deviations in
Eq. s37d for the 0.05 fs time step have been multiplied by a
factor s2d3. Similarly the deviations for 0.2 fs time step have
been divided by a factors2d3. Note that these scaling factors
are obtained based on the expectedOsDt3d scaling. Clearly,
the deviations after scaling are minimal over a,30 ps time
scale. Thus the dominant truncation error in the quantum
propagation isOsDt3d, consistent with Trotter factorization.
However, while integrating differential equations there is an-
other kind of error that one must be aware of and these are
called the global errors.124,129,130These errors arise when
properties are calculated over a fixed total time simulation
and are related to the accumulation of errors at each simula-
tion step. Figure 3scd presents the behavior of propagation
error for a fixed total simulation timefas opposed to fixed
number of steps in Fig. 3sadg. The deviations in this error
scales quadratically with step size and is consistent with a
discussion of Trotter factorization, in Refs. 129 and 130, for
classical propagation. Thus we conclude that the dominant
source of errors in our propagation scheme is due to the
order of truncation in Eq.s9d.

Furthermore, the convergence of results with respect to
DAF parameters is already clear from Table I. In Fig. 4 we

TABLE I. Propagation error, as calculated from Eq.s38d, for different values of DAF parameters. The simulations withDt=0.1 fs were 10 ps long while the
Dt=0.5 fs simulations were 40 ps long.

PES Dtsfsd M =10
ss0d

Dx =1.1805 M =20
ss0d

Dx =1.5744 M =30
ss0d

Dx =1.8800 M =40
ss0d

Dx =2.1387 M =60
ss0d

Dx =2.5742

BO 0.1 0.002 312 9 0.000 495 5 0.000 493 9 0.000 494 3 0.000 493 9
ADMP 0.1 0.001 976 3 0.000 404 4 0.000 403 0 0.000 403 4 0.000 403 0
BO 0.5 0.014 671 2 0.014 700 9 0.014 700 9 0.014 701 2 0.014 700 8
ADMP 0.5 0.012 762 5 0.012 768 5 0.012 768 3 0.012 769 2 0.012 768 2
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study the evolution of theL2-norm of the error vector in Eq.
s37d for many different DAF parameters for both ADMP and
BO calculations. The results are shown relative to the respec-
tive size of the error vector for DAF parameterM =60. It is
clear that the size of the error vector relative to this reference
is really small, which indicates that the calculations are al-
ready converged atM =20.

B. Comparison of results between wave packet
ADMP and wave packet Born–Oppenheimer

Having shown the numerical validity of the quantum
propagation, we now embark on describing the performance
of the wave packet ADMP and wave packet Born-
Oppenheimer schemes. The Cl2

2−H+ system was propagated
starting from a wide range of chloride–chloride distances and
initial position of the quantum proton. Unlike in the previous
section, the chloride ions were allowed to move as per
ADMP or Born–Oppenheimer dynamics. However, to keep
the cluster stable for the full length of the simulationsthat is
to avoid unnecessary dissociation effects to influence the nu-
merical testsd, the motion of chloride ions was controlled by
substituting larger isotope masses in all the calculations. The
initial wave packet, representing the shared quantum proton,
was chosen to be a simple Gaussian, as in Eq.s35d, with
exponent<1/s4pd Å.

Table II summarizes the comparison of ADMP and
Born–Oppenheimer dynamics results for different DAF
propagator parameters. The table contains data only from
one starting geometrysRCl−–Cl−=4.2 Åd. The results from all
other simulations are in similar agreement. The calculated
test parameters include the root mean square expectation val-
ues of position and momentum operators for the quantum
proton, their respective uncertainties and deviations of the
total energy senergy conservationd during the dynamics.
These are in good agreement between the Born–
Oppenheimer and ADMP simulations and the DAF polyno-

FIG. 3. sad The OsDt3d scaling of errors during the quantum dynamics as
calculated using Eq.s38d. A plot proportional toDt3 is also shown for
comparison. This result shows that the dominant error in our algorithm is
due to Trotter factorizationfsee Eq.s9dg. sbd The deviations in Eq.s37d are
presented for three different time steps with the vertical axis adjusted to
expose theDt3 dependence of errors. See the text for details.scd The accu-
mulation of global errors during propagation and this is obtained by plotting
the error in propagation with respect to fixed simulation time. As can be
seen, this has aOsDt2d scaling and a plot ofaDt2 is also shown for com-
parison. Calculations are performed usingM =60.

FIG. 4. The time dependence of the length of the error vector from Eq.s37d
relative to that atM =60. sad Dt=0.1 fs, ADMP surface,sbd Dt=0.1 fs, BO
surface.
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mial size ofM =20 seems to be large enough to describe the
physical details of this problem, as already seen in Sec. III A.
The deviations in the rms position expectation value are
within a tenth of an angstrom while the energy penalty due to
deviations in the rms momentum expectation value is ap-
proximately two-tenths of a kcal/mol. One striking feature in
Table II is the fact that the product of position and momen-
tum dispersions deviate substantially from the initial Gauss-
ian minimal uncertainty product value. This is, of course, to
be expected since the time evolution in the current method is
fully quantum mechanical and there is no need for the wave
packet to remain a coherent state during the dynamics pro-
cess. Furthermore, the total energy conservation is in the
microhartree range for both BO and ADMP forms of the
approach.

In Fig. 5 the average potential energy of the system,
kxstduEshRC ,PCj ,RQMduxstdl, is shown for different values of
the DAF parameters for ADMP and BO dynamics. The in-
stantaneous fluctuations are generally of the order of
1 kcal/mol. In addition, the average potential energy of the

sampled dynamics is in reasonable agreement between the
ADMP and Born–Oppenheimer trajectories. This is impor-
tant since the ADMP approach is computationally less de-
manding as compared to the Born–Oppenheimer approach,
since the former does not require the solution to be a matrix
eigenvalue problem. Based on the results presented in Table
II and Fig. 5 and similar results for other starting geometries,
we conclude that the path error between ADMP and Born–
Oppenheimer subdynamics is small andM =20 is an accept-
able truncation of the DAF propagator expansion given in
Eq. s10d.

C. Phenol-amine system: Scattering amplitudes
from the wave packet ADMP procedure

To further illustrate the scalability of the approach with
system size, we have carried out calculations on the proton
transfer in phenol-trimethylamine. This system has been con-
sidered prototypical for condensed phase proton transfer.40 In
addition, similar systems have been recently studied to un-
derstand the quantum nuclear effects involved in the slow
deprotonation step of weak acid-base chemistry.68 These
studies68 have, however, used Marcus’ theory131 to obtain
quantum corrections on the proton transfer process. Here we
aim to demonstrate the power of the current approach in
contributing significantly to such studies by treating the elec-
tronic effects accurately within hybrid DFT; in addition full
quantum dynamical effects of the hopping proton are accu-
rately treated within the wave packet formalism. As outlined
previously, these quantum effects may include zero-point ef-
fects, tunneling, as well as over-barrier reflection. Our ap-
proach is capable of handling all three effects.

The chosen system, phenol-trimethylaminessee Fig. 6d,
can exhibit tunneling and zero-point effects and hence a
quantum treatment of at least the shared proton is essential.
Furthermore, delocalized electrons in the phenol ring and
polarizability of the amino group require the electrons to be
treated accurately. Hence this is a classic case where the loss
of the proton from the phenol may be stabilized by the de-
localization of electrons in the ring, depending upon the sur-
rounding environment. The electronic structure is treated
here within the level of DFT, using B3LYP and BLYP den-
sity functionals for comparison. From our study we obtain
the change in scattering matrix elementssfor the proton
transferd with respect to initial wave packet energy for both

TABLE II. Comparison of wave packet Born–OppenheimersWP-BOd and wave packet ADMPsWP-ADMPd
schemes.

Method M ss0d kx̂la kp̂lb kp̂l2/2mc Dxd Dpe DEf

WP-BO 20 1.574 … … … 0.373 4.626 7.7
WP-ADMP 20 1.574 0.128 1.099 0.206 0.356 4.377 17.1
WP-ADMP 30 1.880 0.128 1.099 0.206 0.356 4.377 16.0
WP-ADMP 40 2.139 0.128 1.099 0.206 0.356 4.377 16.0

arms deviation of the wave packet center,kxstdux̂uxstdl, sin angstromsd.
brms deviation of the wave packet momentum,kxstdup̂uxstdl, sin a.u.d.
cIn kcal/mol.
drms of wave packet coordinate dispersion,Îkx̂2l−kx̂l2 sin angstromsd.
erms of Wave packet momentum dispersion,Îkp̂2l−kp̂l2 sin a.u.d.
frms deviation in total energy during dynamicssin microhartreed.

FIG. 5. Time evolution of the change in average potential energy
kxstduEshRC ,PCj ,RQMduxstdl for BO and ADMP wave packet simulations of
the Cl2

2−H+ system. The legend admpM indicates the value ofM used in the
DAF propagator while treating the chloride atoms with ADMP. The data for
M =20, M =30, andM =40, in the ADMP wave packet simulations are not
distinguishable and are seen as a single solid line. The average potential
energies over the entire simulation for the ADMP trajectories are approxi-
mately 0.5 kcal/mol relative to the initial potential energy. The average
potential energies over the entire simulation for the BO trajectories are ap-
proximately 0.025 kcal/mol.
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B3LYP and BLYP treatment of electronic degrees of free-
dom. This aspect is further discussed in the following. The
phenol-trimethylamine system has been previously studied40

in a methanol solvent, however, solvent molecules are ex-
cluded from the current study, to simplify the problem. Fu-
ture studies will involve the treatment of a major portion of
the surrounding methanol molecules using molecular me-
chanics along with a QM/MM implementation of the proce-
dure illustrated here.

In Fig. 7 we present a comparison of the velocity–
velocity autocorrelation function obtained fromsad classical
treatment of all nuclei, andsbd quantum wave packet treat-
ment of the shared proton. For the latter case, a wave packet
centroid is extracted usingkxux̂uxl and its velocity is deter-
mined via finite difference. The differences between the two
correlation functions are significant. Since the wave packet
does not split during the simulation time studied heresunlike
the Cl2

2−H+ case treated in the previous sectionsd, using the
wave packet center velocity in Fig. 7 is physically meaning-
ful. However, when this is not the casesi.e., when the quan-
tum wave packet does splitd it is necessary to analyze the full
quantum wave packet instead. It must also be noted here that

the full quantum nature of the propagation scheme described
in Eq. s10d allows for an automatic treatment of such split-
ting, as seen in the previous sections.

In Fig. 8 we provide the wave packet survival time in the
reactant channel,kx0uxstdl and its half Fourier transform:

E
0

`

dt exphiEt/"jkx0uxstdl

; lim
e→0
Kx0U − i"

E − H + ie
Ux0L = kx0uG+sEdux0l. s39d

The operatorG+sEd;flime→0−i"sE−H+ied−1g is the causal
Green’s function. It has been shown12,54that such a half Fou-
rier transform is directly proportional to the scattering matrix
element obtained from theS-matrix Kohn variational
principle.61 Figure 8 reveals marked differences between
S-matrix element obtained from B3LYP and BLYP function-
als, especially for intermediate scattering energies. For ex-
ample, theS-matrix element at an energy of approximately
2000 cm−1 is three times as much for BLYP as it is for
B3LYP. Important differences are also seen in the survival
time in the intermediate time region. In this region of inter-
mediate time, the proton is partially bound to both phenol
and amine and in such situations B3LYP and BLYP have
been previously noted66,117 to provide significantly different

FIG. 6. The phenol-amine system. The shared proton, the oxygen of the
phenol, and the nitrogen in the amine are marked. The shared proton is
studied using wave packet dynamics and the rest of the system is treated
using ADMP.

FIG. 7. Comparison of the velocity–velocity autocorrelation function for
wave packet center and classical proton using BLYP/6-31+G** to describe
the electronic structure. The autocorrelation function for the wave packet
center is obtained from finite difference. Note the high correlation exhibited
by the quantum wave packet which coincides with its initial delocalization
seen in Fig. 6. Similar results are also seen at the B3LYP/6-31+G** level.

FIG. 8. The quantitykx0uxstdl as a function of simulation time insad deter-
mines the survival of the wave packet in the reactant channel. The half-
Fourier transform ofkx0uxstdl in sbd is directly proportional to the scattering
matrix elements obtained fromS-matrix Kohn variational principlesRef.
55d. The inset insbd indicates the behavior for low scattering energies.
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results.sSee Refs. 66 and 117 where B3LYP and BLYP pro-
vide different hopping rates for proton translocation across a
water wire in a Gramicidin A ion channel and in medium
sized protonated water clusters.d From our treatment, we see
that these differences in the intermediate time region lead
directly to a discrepancy in theS-matrix obtained from the
two functionals. Dynamical quantities such as transition
probabilities and scattering matrix elements could, thus, be
substantially different between the hybrid B3LYP and pure
BLYP functionals when nuclear quantization is fully ex-
ploited. Thus accurate treatment of the surrounding electrons
could be critical when treating proton transfer problems such
as the ones discussed here. A more detailed analysis of such
problems using the current methodology is one of our future
goals. Importantly the current approach allows accurate treat-
ment by employing hybrid functionals thus facilitating in-
depth analysis based on such comparisons.

IV. CONCLUSION

In this contribution, we have introduced an approach to
perform efficient quantum dynamics of electronic and
nuclear degrees of freedom. The salient features of the
method include formally exact, accurate, and efficient quan-
tum dynamics using an analytic banded representation for
the free propagator and efficient electronic dynamics using
ADMP or Born–Oppenheimer dynamics. The quantum dy-
namics is performed using an analytic banded distributed
approximating functional representation for the discretized
free propagator and adaptive grids are used to render an ef-
ficient implementation of wave packet dynamics. While the
quantum dynamics is currently performed using a third-order
Trotter factorization, the effect of other schemes will be stud-
ied in future publications. The electronic structure is treated
accurately using hybrid or gradient corrected density func-
tionals. State of the art, higher order density functionals88

can be easily included in the current scheme and such effects
will be investigated as part of future studies.

We have tested the methodology by comparing the quan-
tum dynamics portion of the approach with results obtained
from exact diagonalization. We find the agreement to be very
good. In addition we find similar agreement between the
various dynamical averages obtained from treating the elec-
tronic degrees of freedom either within the ADMP formalism
or within the Born–Oppenheimer formalism, in conjunction
with quantum wave packet dynamics. This is particularly
encouraging since ADMP has been shown to be computa-
tionally superior to Born–Oppenheimer dynamics. Hence we
envision that this approach will be useful to study quantum
dynamics in large systems. Future methodological improve-
ments will allow larger and more accurate simulations. The
first, critical, area where computational improvement will be
necessary is in the evaluation of the potential and forces on
the grid. This is an important bottleneck in the current algo-
rithm. Multidimensional splines along with targeted potential
sampling based on the local curvature and gradient are cur-
rently under development and will be used to enhance the
computational strategy. Other generalizations, such as inclu-

sion of QM/MM treatment is critical for proton transfer in
large systems and this is also currently under study.
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APPENDIX: COMPUTATIONAL EFFICIENCY
OF WAVE PACKET ADMP OVER WAVE PACKET
BORN–OPPENHEIMER DYNAMICS

In this section we present an explanation for the compu-
tational efficiency of ADMP over Born–Oppenheimer dy-
namics. In Born–Oppenheimer dynamics, the density matrix
elementssor the molecular orbital coefficientsd need to be
iteratively converged at every dynamics step. Assuming that
the largest possible time step is used during dynamics, this
SCF convergence requires approximately 8–12 steps.sThis,
of course, depends on the convergence threshold and difficult
systems such as transition metal complexes may require
more SCF steps.d ADMP, on the contrary, is not an iterative
method with respect to convergence of the density matrix
and requires only one SCF step per dynamics step to calcu-
late the Fock matrix needed for density matrix propagation
fsee Eqs.s22d, s23d, ands28dg. Both BOMD and ADMP need
the nuclear gradientsfEq. s27dg which requires approxi-
mately the same amount of time in both methods.

The calculation of the nuclear force per ADMP or BO
step requires approximately three times the computation time
required for a single SCF CPU cycle. This makes ADMP
faster than BOMD by slightly over a factor 4 per potential
evaluation stepsor classical ADMP/BOMD stepd of the cur-
rent wave packetab initio dynamics approach. This step is,
of course, to be repeated as many times as there are grid
points to describe the quantum wave packet in the current
scheme.

However, it has been noted63 that BOMD could allow
larger time steps, but to maintain similar energy conservation
the BOMD time step could be at most twice as large as those
in ADMP.63 This cuts into the gain in efficiency from using
ADMP by a factor of 2; the need to evaluate the potential
energy and gradients at all the grid points in the current
scheme is, however, expected to far exceed this loss of a
factor of 2 in efficiency.
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