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ABSTRACT: We present a rigorous strategy, based on Stieltjes series and Padé
approximants, to obtain suitable bounds for extrapolation of the quantum chemical
correlation energy. Computational tests are performed for the second-order Møller–Plesset
(MP2) correlation energy, and the bounds obtained are tight enough for practical
calculational purposes: The associated error in most cases is much less than 1 kcal/mol.
The bounds presented here are also shown to be rigorous for functional forms that
represent a wide variety of methods in quantum chemistry and hence may be used in
extrapolating a wide range of expressions, some of them yielding significant
computational advantages compared to traditional techniques. c© 2000 John Wiley &
Sons, Inc. Int J Quantum Chem 79: 222–234, 2000
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Introduction

R ecently, a number of efficient computational
strategies have been developed to carry out

calculations for the second-order Møller–Plesset
(MP2) correlation energy [1 – 6]. One of these meth-
ods, Laplace–MP2 [1, 2, 5, 6] is based on the Laplace
transform of the energy-dependent denominator in
the MP2 correlation energy expression. The inte-
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grand in this Laplace transform consists of two-
electron integrals involving exponentially damped
molecular orbitals [1, 5, 6], with the damping factor
being proportional to the energy difference between
the Fock eigenvalue of the respective (occupied or
virtual) molecular orbital and the Fermi level. As
a result of the exponential damping factor, when
suitable quadrature schemes [7, 8] are adopted to
approximate the Laplace transform by numerical
integration, significant computational gains are ob-
tained for large molecular systems [2, 5, 7, 9].

As an alternative to the quadrature scheme in
Laplace–MP2 [1, 2], Ayala, Scuseria, and Savin [6]
have recently proposed a rational polynomial ex-
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trapolation method to calculate the MP2 correlation
energy. They have shown that any “smooth func-
tion” that tends to the exact MP2 correlation energy
in one of its limits may be used in a scheme to
extrapolate the same. The values of the “smooth
function” at various points away from the physi-
cal limit are used to obtain (by extrapolation) the
function value in the said limit, which yields the
correct MP2 correlation energy. In particular, they
calculate the uniform and nonuniform gap-shifted [6]
MP2 correlation energy for various (artificial) gap
shifts and extrapolate to the correct MP2 correlation
energy where the artificial gap shift is zero. The test
calculations [6] have shown this method to be both
robust and accurate.

In this work, further influenced by the close con-
nection between quadrature and extrapolation [10],
we take another step toward making extrapolation
a robust computational tool. We note that there
exist two different, but related, strategies to per-
form an extrapolation [11 – 13]. In the first case, the
function is calculated at various values of the in-
dependent variable to produce a fit, which may be
extrapolated. This is the procedure used in Ref. [6].
Alternatively, the knowledge of the function and its
derivatives at any one point in space may be used in
extrapolating the function elsewhere. In this study,
we investigate the use of the second procedure.

Furthermore, as we will see later, a variety of
expressions in quantum chemistry may be writ-
ten as a series of Stieltjes [14 – 18]. This allows the
use of extremely powerful mathematical theorems
that state that Padé approximants∗ provide upper
and lower bounds to an extrapolation of functions
expressed as a series of Stieltjes. These concepts
allow us to not only develop a method to extrap-
olate the MP2 correlation energy with proper error
bounds but also suggest alternative computational
schemes, based on extrapolation, to calculate vari-
ous other expressions in quantum chemistry such
as MP3 or MP4, various noniterative perturbational
corrections [26, 27] to the coupled-cluster expres-
sions, and energy expressions from Görling–Levy
perturbation theory [28], among others.

Finally, we would like to point out that the ex-
trapolation schemes discussed here bear no connec-
tions to other methods that extrapolate the correla-
tion energy at the basis set limit using a series of
calculations.†

∗Padé approximants and continued fractions have been used
in a variety of ways in quantum chemistry. See, for example, Refs.
[10, 19 – 25].

†See, for example, Ref. [29].

This paper is organized as follows. In the follow-
ing section, we first review the concept of a series of
Stieltjes and then show how a variety of expressions
in quantum chemistry have this form. Subsequently,
upper and lower bounds to a series of Stieltjes are
introduced and used to devise methods to extrap-
olate, with bounds, various expressions in quantum
chemistry. In the third section, we evaluate the effec-
tiveness of the upper and lower bounds introduced
in the theory section, by performing gap-shifted
MP2 correlation energy calculations [6]. Here, the
highest occupied and lowest unoccupied molecu-
lar orbital (HOMO–LUMO) gap of the molecule is
substantially increased, and the MP2 energy along
with derivatives (with respect to the chosen gap)
are calculated at this large gap value. These results
are then used in the expressions provided in the
theory section, to obtain rigorous bounds to the
physically correct MP2 energy (i.e., without the arti-
ficial gap). This extrapolation procedure may yield
a convenient practical tool for calculating the MP2
correlation energy since in large-gap systems, the
correlation energy is more efficiently calculated than
in small-gap systems. The computational advan-
tage of the extrapolation technique is particularly
clear when viewed from the Laplace transform for-
malism [7], as will be discussed here. The method
presented in the following section is completely
general and may be used, in a similar fashion, for
extrapolating a variety of expressions in quantum
chemistry. In the third section we present the results
of our MP2 calculations and in the final section we
present our conclusions.

Theory

BOUNDS TO SERIES OF STIELTJES

Following the ideas discussed in Refs. [15 – 18],
we present here some definitions and discuss some
concepts, which are used later to obtain suitable
bounds to the correlation energy. In all our discus-
sions below, we assume that the variable z could lie
anywhere on the complex plane, whereas variables
x, x1, x0, and u are always real.

A function f (z), with a formal expansion f (z) =∑∞
j = 0 fj(−z)j, may be considered a series of Stieltjes

if and only if there exists a bounded, nondecreasing
function, φ(u), taking on infinitely many values in
0 ≤ u <∞, such that

f (z) =
∫ ∞

0

dφ(u)
1+ zu

, (1)
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and f (z) has real-valued moments given by

fj =
∫ ∞

0
uj dφ(u), (2)

which are the coefficients of the formal expansion.
From Eq. (1), it is clear that f (z) may have poles on
the negative real axis (i.e., for Re(z) < 0) and is hence
said to be defined on the cut-complex plane [15],
with cut along the negative real axis.

The above definition may be generalized to func-
tions having poles for Re(z) < (−R), i.e., when the
poles of the function are further shifted away from
the origin by a negative real quantity equal to (−R)
and the associated series expansion about the point
x0 has a radius of convergence [30] equal to R. This
is done by simply replacing the upper limit in Eq. (1)
from∞ to 1/R [15]. It is clear that as R tends to zero,
the upper limit tends to infinity and we regain the
definitions above. In Appendix A we further discuss
a series of Stieltjes and present a computationally
convenient, but equivalent [15], method to test if a
function is a series of Stieltjes.

Padé approximants provide rigorous upper and
lower bounds to values of functions that are series
of Stieltjes [15 – 17]. For this reason, Padé approx-
imants may be used to extrapolate, with suitable
error bounds, functions that are known to be series
of Stieltjes. A brief description of Padé approxi-
mants may be found in Appendix B.

If the value of the function and its first 2N deriv-
atives are known at some point x0 on the real axis,
it is possible to construct Padé approximants, [N, N]
and [N, N − 1] [11, 15] as outlined in Appendix B.
In this case, it is known [15, 16] that the value of
the function at any real x1 > x0, is bounded by the
[N, N] and [N, N − 1] Padé approximants at x1 − x0,
i.e.,

[N, N](x1 − x0) ≥ f (x1) ≥ [N, N − 1](x1 − x0), (3)

where [N, N](x1 − x0) and [N, N − 1](x1 − x0) sig-
nify that the Padé approximants are calculated at
(x1 − x0). If, however, bounds are desired on the left
side of the origin (x0), i.e., when x1 < x0, the sharp
inequalities derived by Gilewicz and Magnus [17],

0 ≥ f (x1)− [N + 1, N + k](x1 − x0)

≥ x0 − x1

R

{
f (x1)− [N, N+ k](x1 − x0)

}
, k ≥ 0 (4)

may be used where the function, f (x), has poles on
the real axis for (x1 − x0) < −R, as outlined in the
paragraph following Eq. (2). Further, the left-hand
inequality in Eq. (4) may be used to obtain a lower
bound to the value of the function at x1, satisfying

0 > (x1 − x0) > −R, as

f (x1) ≥ [N + 1, N + k](x1 − x0), (5)

while the right-hand inequality may be used to ob-
tain an upper bound

f (x1) ≤ R
R− (x0 − x1)

{
[N + 1, N + k](x1 − x0)

− x0 − x1

R
[N, N+ k](x1 − x0)

}
. (6)

Equations (5) and (6) represent a family of lower and
upper bounds for k ≥ 0. Further, given the value
of the function at x0 and an even number of deriv-
atives, it is shown [18] that the best lower bound
to f (x1), from the family of bounds represented by
Eq. (5), is the Padé approximant with equal polyno-
mial order in numerator and denominator [which
is obtained by setting k = 1 in Eq. (5)]. Similarly,
given an odd number of derivatives and f (x0), the
best lower bound is obtained by setting k = 0
in Eq. (5) [18]. Furthermore, for fixed k the lower
bounds in Eq. (5) form a monotonically convergent
sequence, converging to f (x1) [18]. The behavior of
the expression for upper bound in Eq. (6) will be an-
alyzed in a later section.

Another set of rigorous upper bounds to f (x1), for
x1 < x0, may be obtained from Ref. [18]. The author
defines

f (z) = f0R
R+ z

+ z
[
zK′(z)+ K(z)

]
(7)

where K(z) is a new function, also a series of Stieltjes.
The series expansion for K(z) is defined as

K(z) =
∞∑

i = 0

ki(−z)i =
∞∑

i= 0

1
i+ 1

[
f0

Ri+1 − fi+1

]
(−z)i. (8)

Using this series expansion, the author [18] obtains
[N, M] Padé approximants to K(z), which when used
in Eq. (7), provide the new (N, M) approximants to
f (z). In this case, K′(z) in Eq. (7) represents the deriv-
ative of the [N, M] Padé approximant to K(z). It is
rigorously shown [18] that the (N, M) approximants
form monotonically converging upper bounds to
f (x1), for x1 < x0. It is also shown [18] that when
an even number of derivatives of f at x0 are used,
the best upper bound using Eq. (7) is obtained when
M = N − 1, i.e.,

f (x1) ≤ (N, N− 1)(x1 − x0)

= f0R
R+ (x1 − x0)

+ (x1 − x0)

× [(x1 − x0)[N, N− 1]K′(x1 − x0)
+ [N, N− 1]K(x1 − x0)

]
, (9)
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where [N, N − 1]K(x1 − x0) signifies that the Padé
approximant corresponds to the function K(x1− x0).
Similarly, it is also shown [18] that when an odd
number of derivatives of f at x0 are used, the best
upper bound using Eq. (7) is obtained by setting
M = N, i.e.,

f (x1) ≤ (N, N)(x1 − x0)

= f0R
R+ (x1 − x0)

+ (x1 − x0)

× [(x1 − x0)[N, N]K′(x1 − x0)
+ [N, N]K(x1 − x0)

]
. (10)

SERIES OF STIELTJES IN
QUANTUM CHEMISTRY

Consider an expression of the form

EG = −
∑
o,v

Vo,v

εo,v + G
, (11)

where Vo,v and εo,v are both positive. It is clear that
when Vo,v represents the two-electron integrals be-
tween occupied (o) and virtual (v) orbitals, and εo,v
represents the corresponding energy difference, this
expression yields the gap-shifted MP2 correlation
energy [6]. However, there are a variety of other
expressions in quantum chemistry that are related
to the functional form in Eq. (11). For example,
from the expressions in Refs. [26, 27], the iterative
perturbational triples energy correction to coupled
cluster singles and doubles (CCSD) may also be
presented in a gap-shifted form yielding an expres-
sion identical to Eq. (11). Alternately, second-order
contributions from Görling–Levy perturbation the-
ory in density functional theory [28] may also be
expressed in a form similar to Eq. (11). Energy ex-
pressions from higher order perturbation theories
may be expressed as products of functions similar
to those in Eq. (11) [31].

In this section, we study the properties of such
functions and show that the quantity {−EG} is a se-
ries of Stieltjes.

We, first, note that

EG = −
∑
o,v

Vo,v

εo,v

1
1+ G/εo,v

= −
∞∑

j= 0

{∑
o,v

Vo,v

εo,v
ε
−j
o,v

}
(−G)j

= −
∞∑

j= 0

fj(−G)j, (12)

where we have expanded 1/(1+ G/εo,v) in a Taylor
series and defined the quantity in curly brackets (in

the second equality) as fj. The convergence of this
formal Taylor expansion, however, depends on the
magnitude of G/εo,v and the Taylor expansion may
diverge for ∣∣∣∣ G

mino,v εo,v

∣∣∣∣ ≥ 1.

Regardless of its convergence properties, though,
we may write fj as the jth moment of a bounded,
nondecreasing function since

fj =
∑
o,v

Vo,v

εo,v
ε
−j
o,v

=
∫ ∞

0
uj
[∑

o,v

Vo,v

εo,v
δ

(
u− 1

εo,v

)
du
]

=
∫ ∞

0
uj dφ(u), (13)

where

φ(u) =
∫ u

0

∑
o,v

Vo,v

εo,v
δ

(
u′ − 1

εo,v

)
du′, (14)

which is clearly bounded and nondecreasing. Fur-
thermore,

f (G) ≡
∫ ∞

0

dφ(u)
1+ Gu

=
∫ ∞

0

∑
o,v(Vo,v/εo,v)δ(u− 1/εo,v) du

1+ Gu

=
∑
o,v

Vo,v

εo,v

1
1+ G/εo,v

= −EG. (15)

Therefore, {−EG} (as a function of G) satisfies all
the requirements placed by Eqs. (1) and (2). Hence,
{−EG}, as a function of G, is a series of Stieltjes and
the bounds introduced above may be used for EG.
As noted earlier in this section, a variety of expres-
sions in quantum chemistry may be written as in
Eq. (11); consequently the bounds introduced in the
previous section may be used for all these expres-
sions. Moreover, two-electron integrals in quantum
chemistry may be written using a short-range, ex-
ponentially damped kernel, exp(−αr12/r12)/r12, and
we have recently shown [32] that such short-range
two-electron integrals have the same form as in
Eq. (1), with respect to the damping parameter α.

RIGOROUS BOUNDS TO THE
EXTRAPOLATION OF EG

In this section, we show how the information
given above can be used to obtain rigorous upper
and lower bounds to an extrapolation of EG.
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Suppose we are given the values of the function
{−EG} and its derivatives at some large, positive
value of G = G0 and are required to extrapolate the
value of the function at G = 0, i.e., EG= 0. Clearly
upper and lower bounds to the extrapolation could
be obtained using the expressions presented above.
Further, for G0 > 0, the upper bound to {−EG= 0}
may be obtained either by using Eq. (6) or by us-
ing Eq. (9) or (10) depending on whether an even
or odd number of derivatives of {−EG} are known
at G = G0. Similarly, a rigorous lower bound to
{−EG= 0} may be obtained from Eq. (5). Therefore
(since −EG is a series of Stieltjes) by substituting
G0 for x0 and 0 for x1 in Eqs. (5) and (6) we obtain
bounds to EG= 0 as

R
R− G0

{
[N + 1, N+ k](−G0)− G0

R
[N, N + k](−G0)

}
≥ {−EG= 0} ≥ [N + 1, N+ k](−G0), (16)

where

0 < (R− G0) ≤ min
o,v

εo,v. (17)

From the discussion following Eq. (4), we note that
the poles of EG should occur for (G − G0) < −R.
Further, from Eq. (11), it follows that the first pole on
the negative real axis is at G = −mino,v εo,v; hence,
we have chosen R according to Eq. (17) for use in
Eq. (16). (Note that for the MP2 energy, mino,v εo,v

is twice the difference between the HOMO and the
LUMO.) Further, since [N + 1, N + k](−G0) ≥ [N,
N + k](−G0) [18], the upper bound in Eq. (16), i.e.,

gN(R) = R
R− G0

{
[N + 1, N+ k](−G0)

− G0

R
[N, N+ k](−G0)

}
, (18)

always has a negative derivative with respect to
R (for positive values of G0); hence gN(R) is a
monotonic decreasing function of R. Therefore, the
least upper bound to {−EG= 0}, consistent with
Eq. (17), may be found at

R = RUB ≡ G0 +min
o,v

εo,v (19)

(i.e., R = RUB ≡ 2[EHOMO − ELUMO] for the MP2
energy). The upper bound thus obtained is signified
by gN(RUB).

The discussion following Eq. (7) provides us an
alternative approach to obtain upper bounds to
{−EG= 0}. Using Eqs. (9) and (10), it is clear that
when an even number of derivatives of EG are

known at G = G0, we have

{−EG= 0} ≤ (N, N− 1)(−G0)

= f0R
R− G0

− G0
[
(−G0)[N, N− 1]K′(−G0)

+ [N, N− 1]K(−G0)
]
, (20)

where the zeroth-order coefficient for the series ex-
pansion of EG (i.e., f0 in the above expression) is
defined by Eq. (13). Similarly, for a given odd num-
ber of derivatives of EG at G = G0

{−EG= 0} ≤ (N, N)(−G0)

= f0R
R− G0

− G0
[
(−G0)[N, N]K′(−G0)

+ [N, N]K(−G0)
]
. (21)

Since the right-hand sides of Eqs. (20) and (21) form
a monotonic decreasing sequence with increasing N
(converging to {−EG= 0}), the best upper bound for
both bounds above may be obtained for the value of
R given in Eq. (19), i.e., R = RUB.

Equations (16), (19), (20), and (21) provide a set
of rigorous bounds to EG= 0. These bounds may
be directly used in an extrapolation calculation.
The effectiveness of these bounds will be discussed
later.

In some cases, as will be seen in the Results sec-
tion, the bounds obtained by using Eqs. (16), (19),
(20), and (21) may not be “tight,” thus reducing their
computational effectiveness. In the next section, we
introduce a new set of tight estimates that become
bounds in the asymptotic limit of large N (i.e., when
large number of Padé approximants are used).

“TIGHTER” NONRIGOROUS ESTIMATES
TO BOUNDS

It is interesting to note the behavior of gN(R), in
Eq. (18), when the restriction on the range of R in
Eq. (17) is lifted. As shown in the discussion be-
fore Eq. (18), the derivative of gN(R) with respect
to R is always negative (for positive G0) and hence
gN(R) is monotonically decreasing for increasing
R ∈ [G0,∞). A typical case of the behavior of gN(R)
with respect to R is shown in Figure 1. Further, as
R → ∞, gN(R) → [N + 1, N + k](−G0), the lower
bound in Eq. (16). Hence, while gN(R) is an upper
bound for smaller values of R satisfying Eq. (17), it
is a lower bound to {−EG= 0} as R→∞.

Now consider the behavior of gN(R), for fixed R,
as N → ∞. Clearly as N → ∞, [N, N + k](−G0) →
[N + 1, N + k](−G0) and hence gN(R = G0)→ [N +
1, N + k](−G0), the lower bound in Eq. (16). There-
fore, as N → ∞, both the upper and lower bounds

226 VOL. 79, NO. 4



BOUNDING THE EXTRAPOLATED CORRELATION ENERGY

FIGURE 1. Behavior of gN(R) as a function of R. Case
shown is for N2, artificial gap shift = 10.0 a.u., and
number of Padé approximants, N = 3. The quantity
{−EG= 0} represents the negative correlation energy as
in the text. UB is the upper bound to {−EG= 0} from
Eqs. (16) and (19) and LB is the lower bound to
{−EG= 0} from Eq. (16).

given by Eq. (16) converge to the same value, which
should be {−EG= 0}, since we know from the dis-
cussion following Eq. (6) that the lower bound in
Eq. (16) converges monotonically to {−EG= 0} with
increasing N. Therefore, we conclude that gN(R) (for
all R ∈ [G0,∞)) converges to {−EG= 0} as N→∞.
While this convergence is monotonic for values of
R → ∞, the convergence may or may not be
monotonic for small [given by Eq. (17)] and inter-
mediate values of R. In the rest of this section we
evaluate the possibility of using intermediate val-
ues of R ∈ [G0,∞) to obtain “tighter” estimates to
bounds.

From the above discussion, it follows that if there
exists an Rmin ≥ RUB [see Eq. (19) for definition of
RUB] such that gN(Rmin) is monotonically decreasing
with increasing N, then gN(Rmin) is an upper bound
to {−EG= 0} [since as N → ∞, gN(R) → {−EG= 0},
for all R]. Further, gN(Rmin) is at least as tight an
upper bound as the one obtained from Eqs. (16)
and (19) [i.e., gN(RUB)], since gN(R) is a monotoni-
cally decreasing function of R. Similarly, it is clear
that if there exists an Rmax ≥ Rmin ≥ RUB, such that
gN(Rmax) is monotonically increasing with increas-
ing N, then gN(Rmax) is a lower bound to {−EG= 0}.

Again, from the above discussion, we may conclude
that gN(Rmin) and gN(Rmax) converge to {−EG= 0}
as N → ∞. It may also be noted that if Rmin

and Rmax exist, then an intermediate value may be
used to provide an approximation for {−EG= 0}with
very clear error estimates. Further, the convergence
of a sequence of such approximations to {−EG= 0}
may be accelerated by use of a method similar to
Aitkin’s 12 method [15] or the Shanks’ extrapola-
tion method [33].

Our aim here is to devise an algorithm to ob-
tain approximations to the largest Rmin and smallest
Rmax (that satisfy the above monotonicity criteria).
Given 2N derivatives of the function, we may obtain
the set {g1(R), g2(R), . . . , gN−1(R)} for any R. To obtain
an approximation to the largest Rmin, one may start
with R = RUB and check the monotonicity of the
sequence gi(R) for i = 1, . . . , N− 1. If the sequence is
not monotonic decreasing, Rmin does not exist in the
region R ≥ RUB and gN(RUB) provides the best upper
bound to {−EG= 0}. But, if the sequence is monotonic
decreasing, the value of R is raised till the maximum
value of R is found for which the set of gi(R) are still
monotonic decreasing for i = 1, . . . , N− 1. (The pre-
cise algorithm may be similar in form to the ones
used to find the maximum/minimum values of a
function [11].) This yields an approximation to Rmin

(within the 2N derivatives used). To obtain a cor-
responding estimate for the upper bound, one may
use any gi(Rmin) for i = 1, . . . , N − 1. In the results
provided, we have chosen to use gN−2(Rmin) for this
purpose.

From our discussion earlier in this section, it is
clear that any gi(Rmin) is a rigorous upper bound
to {−EG= 0} if and only if, gi(Rmin) is monotonic de-
creasing with increasing i, for all i. But, in the present
algorithm we consider only a finite N, and hence
the gi(Rmin) obtained from here is not a rigorous upper
bound to {−EG= 0}. It is only the best approximation
within the number of derivatives provided (2N in
this case). However, this approximation may be ex-
pected to provide accurate bounds when a larger
number of derivatives are included. This aspect is
considered in the results section. An approximation
to Rmax and gN(Rmax) may be obtained in a similar
fashion.

As is evident from the above discussion, there are
two conditions that may affect the results when the
above algorithm is used. The first condition is the
existence of Rmin and Rmax. It is easily shown that
Rmax exists since, as seen above, the lower bound
in Eq. (16) is monotonic increasing with respect
to N. The existence of Rmin can also be proved if the
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upper bound, gN(RUB), converges monotonically to
{−EG= 0}. But if this condition is not satisfied, Rmin

may still exist, but Rmin < RUB, and is not practi-
cally relevant since it will not provide a better upper
bound than gN(RUB). In any case, if Rmin exists, it will
be found when the algorithm presented in the pre-
vious paragraph is implemented.

Secondly, as discussed above, the choice of a
finite N affects the rigorousness of the estimates ob-
tained from the algorithm, for use as bounds. But,
including additional higher order derivatives may
result in these estimates providing good approxima-
tions to bounds.

To briefly summarize, we look for approxima-
tions to Rmin and Rmax such that gi(Rmin) is monoton-
ically decreasing with increasing i and gi(Rmax) is
monotonically increasing with increasing i, for all i.
Since, gi(R) for all R converges to {−EG= 0} as i→∞,
gi(Rmin) and gi(Rmax) form upper and lower bounds
to {−EG= 0}. In order to implement this concept, we
construct approximations to Rmin and Rmax based on
a finite number of derivatives. Clearly, for a small
number of derivatives the approximation to Rmin

and Rmax may be poor, and this would lead only
to estimates and not rigorous bounds. However,
as the number of derivatives included increases,
these estimates may be expected to become rigorous
bounds.

Another set of (empirical) bounds may be ob-
tained by considering the arithmetic, geometric, and
harmonic means of the upper and lower bounds in
Eqs. (16), (19), (20), and (21). These bounds will be
discussed in greater detail in the results section.

Results

To test the effectiveness of the rigorous bounds
[i.e., bounds given by Eqs. (16), (19), (20), and (21)]
and estimates (i.e., as introduced in the discussion
of tighter nonrigorous estimates), we perform gap-
shifted MP2 correlation energy calculations [6] for a
subset of molecules in the G2 set [34].

The canonical MP2 correlation energy for closed-
shell systems has the form

EMP2 = −
O∑
ij

V∑
ab

(ia|jb)[2(ia|jb)− (ib|ja)]
εa + εb − εi − εj

, (22)

where, as usual, i and j denote occupied (O) mole-
cular orbitals, a and b denote virtual (V) molecu-
lar orbitals and ε denotes the corresponding Fock
eigenvalue. If, now, the virtual orbitals are shifted

by the amount G (i.e., if we introduce an artificial
gap shift), then the gap shifted MP2 correlation en-
ergy for closed-shell systems may be written as

EG
MP2 = −

O∑
ij

V∑
ab

(ia|jb)[2(ia|jb)− (ib|ja)]
1ijab + G

, (23)

where 1ijab = εa + εb − εi − εj. We note that Eq. (23)
has the exact same form as chosen in Ref. [6] for uni-
form shift of the virtual orbital energies. Clearly Eq. (23),
as a function of G, is a series of Stieltjes since it has
a form similar to Eq. (11). (It may also be noted here
that the nonuniform shift of virtual energy levels intro-
duced in Ref. [6] is also a series of Stieltjes.) Hence,
we may use the value of EG

MP2 at arbitrary (large
and positive) gap, G, along with derivatives of EG

MP2
with respect to G (obtained analytically) to produce
bounds to the correct MP2 correlation energy [i.e.,
EG

MP2 at G = 0, as in Eq. (22)] using the expressions
introduced in the previous section. (A brief account
of how the Padé approximants may be determined
is presented in Appendix B.) The effectiveness of
these bounds may then be evaluated by compari-
son with the actual MP2 correlation energy, which is
easily calculated. Our implementation of the upper
and lower bounds and the estimates to MP2 corre-
lation energy is based on a development version of
the Gaussian [35] suite of programs.

As noted above, we could have used expressions
from a number of quantum chemical methods to
test the bounds obtained here. We, however, chose
to study the MP2 energy due to its appealing sim-
plicity and the fact that many reliable models in
chemistry are based on MP2. Moreover, as noted in
the introductory section, the MP2 correlation energy
has been the subject of a number of recent stud-
ies [1 – 6].

It is interesting to consider the practicality of
calculating the gap-shifted MP2 correlation energy
from Eq. (23). The direct calculation of Eq. (23) for
any value of G requires the same amount of CPU
time. However, if we invoke the idea of Laplace
transforms, we may write

(ia|jb)[2(ia|jb)− (ib|ja)]
1ijab + G

=
∫ ∞

0

{
(ia|jb)

[
2(ia|jb)− (ib|ja)

]}
× exp

[−t(1ijab + G)
]

dt, (24)

and when the exponential damping factor (which is
now a function of the artificial gap, G) is absorbed
into the occupied and virtual molecular orbitals, we
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obtain damped molecular orbitals (MOs) that decay
exponentially just as seen in Refs. [7] and [5]. How-
ever, in this case each MO is damped to an even
greater extent due to the artificial gap, G. Follow-
ing the arguments of Ref. [5], it may then be proved
that the CPU time required to evaluate the expres-
sion in Eq. (24) reduces as the value of G increases.
The same set of arguments hold for the derivatives
of EG

MP2, with respect to G. In this study, however, we
obtain the value of EG

MP2 and its derivatives directly
by using Eq. (23). This is done so we could exactly
evaluate the effectiveness of the bounds obtained in
the theory section.

Although a number of molecules and a great va-
riety of different values of G [the artificial gap in
Eq. (23)] were considered in our study, for the sake
of brevity, we present results here only for four
molecules, N2, F2, O3, and ClO, and two different
values of G, namely, 10.0 and 2.0 a.u. The results for
the rigorous bounds may be found in Tables I and II,
whereas the results for the nonrigorous bounds es-
timates may be found in Tables III and IV. In each

case the basis set chosen is 6-31G∗. It may be noted
here that while the bounds provided in Eqs. (16),
(19), (20), and (21) are for {−EG= 0} (i.e., the negative
of the correlation energy), the bounds provided in
the tables are for EG= 0, i.e., the actual MP2 correla-
tion energy itself.

It was found that both upper and lower rigorous
bounds to EG= 0 [obtained using Eqs. (16), (19), (20),
and (21)] became increasingly tight with the inclu-
sion of higher order Padé approximants (as seen in
Tables I and II). But in all cases, the upper bound to
EG= 0 was always tighter than the lower bound to
EG= 0. Hence, arithmetic, geometric, and harmonic
means of the upper and lower bounds were found
to be lower bounds. In Tables III and IV, however,
we present only the harmonic means. Since the mag-
nitudes of the geometric and arithmetic means of
any two numbers is always greater than (or equal
to) the magnitude of the harmonic mean, the qual-
ity of the geometric and arithmetic mean as lower
bounds is never better than the lower bounds pro-
duced by the harmonic mean. Further, it was also

TABLE I
Relative errors for the rigorous upper bound (UB) and the rigorous lower bound (LB) with respect to the exact
MP2 correlation energy (Exact) at gap shift = 10.0 a.u. and a 6-31G∗ basis set.a

N2 F2 O3 ClO

Exact (Eh) −0.326173 −0.365996 −0.638686 −0.286574

Nb UB LB UB LB UB LB UB LB

3 +1.680 −21.756 +1.163 −10.799 +6.775 −73.937 +0.986 −16.034
−8.128 −12.470 −120.773 −25.582

4 +0.375 −4.766 +0.201 −3.550 +2.186 −32.220 +0.276 −2.815
−1.917 −3.286 −45.757 −8.288

5 +0.054 −1.003 +0.042 −0.373 +0.796 −7.148 +0.068 −0.721
−0.409 −0.736 −14.972 −2.561

6 +0.006 −0.191 +0.003 −0.130 +0.190 −4.313 +0.018 −0.165
−0.086 −0.167 −4.997 −0.765

7 +0.001 −0.017 +0.000 −0.011 +0.045 −1.089 +0.004 −0.040
−0.018 −0.035 −1.574 −0.224

8 +0.000 −0.003 +0.000 −0.000 +0.014 −0.171 +0.000 −0.012
−0.003 −0.008 −0.505 −0.063

9 +0.000 −0.000 +0.000 −0.000 +0.003 −0.069 +0.000 −0.002
−0.000 −0.002 −0.160 −0.018

a The relative error (in millihartrees) for the upper bound (UB) is obtained by subtracting the upper bound to EG= 0 in Eq. (16) and
the exact MP2 correlation energy. The relative error (in millihartrees) for the lower bounds are obtained by subtracting the exact MP2
correlation energy from the lower bound to EG= 0 in Eqs. (16) and (19) (upper entry) and Eq. (20) (lower entry).
b Reflects maximum order of Padé used, as outlined in text.
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TABLE II
Relative errors for the rigorous upper bound (UB) and the rigorous lower bound (LB) with respect to the exact
MP2 correlation energy (Exact) at gap shift = 2.0 a.u. and a 6-31G∗ basis set.a

N2 F2 O3 ClO

Exact (Eh) −0.326173 −0.365996 −0.638686 −0.286574

Nb UB LB UB LB UB LB UB LB

3 +0.0082 −0.0624 +0.0036 −0.0362 +0.1159 −0.9213 +0.0077 −0.0525
−0.0359 −0.0508 −1.4578 −0.1634

4 +0.0002 −0.0018 +0.0001 −0.0006 +0.0104 −0.0641 +0.0003 −0.0029
−0.0016 −0.0024 −0.1514 −0.0114

5 +0.0000 −0.0000 +0.0000 −0.0000 +0.0006 −0.0048 +0.0000 −0.0001
−0.0000 −0.0001 −0.0139 −0.0007

a The relative error (in millihartrees) for the upper bound (UB) is obtained by subtracting the upper bound to EG= 0 in Eq. (16) and
the exact MP2 correlation energy. The relative error (in millihartrees) for the lower bounds are obtained by subtracting the exact MP2
correlation energy from the lower bound to EG= 0 in Eqs. (16) and (19) (upper entry) and Eq. (20) (lower entry).
b Reflects maximum order of Padé used, as outlined in text.

TABLE III
Relative errors for the bound estimates to the MP2 correlation energy at gap shift = 10.0 a.u. and a 6-31G∗
basis set.

N2 F2 O3 ClO

Exact (Eh) −0.326173 −0.365996 −0.638686 −0.286574

Na UBb LBc UBb LBc UBb LBc UBb LBc

3 −1.064 −0.073 −1.309 −0.153
−9.629 −4.721 −31.158 −7.278

4 +0.009 −1.064 −0.072 −0.238 +1.309 −1.223 +0.119 −0.153
−2.174 −1.665 −14.564 −1.261

5 +0.009 −0.226 +0.022 −0.238 +0.378 −1.224 +0.119 −0.002
−0.473 −0.165 −3.152 −0.325

6 −0.004 −0.069 +0.022 −0.014 +0.378 −0.603 +0.028 −0.002
−0.092 −0.063 −2.054 −0.073

7 +0.000 −0.016 +0.000 −0.014 −0.004 −0.603 +0.008 −0.000
−0.008 −0.005 −0.522 −0.018

8 +0.000 −0.001 +0.000 −0.001 +0.008 −0.155 +0.002 −0.000
−0.001 −0.000 −0.078 −0.005

9 +0.000 −0.000 +0.000 −0.000 +0.008 −0.019 +0.000 −0.000
−0.000 −0.000 −0.033 −0.001

a Reflects maximum order of Padé used, as outlined in text.
b gN(Rmax) minus exact in millihartrees (see text for details).
c gN(Rmin) minus exact in millihartrees (upper entry). Harmonic mean of the upper and lower bounds from Eqs. (16) and (19) (lower
entry).
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TABLE IV
Relative errors for the bound estimates to the MP2 correlation energy at gap shift = 2.0 a.u. and a 6-31G∗
basis set.

N2 F2 O3 ClO

Exact (Eh) −0.326173 −0.365996 −0.638686 −0.286574

Na UBb LBc UBb LBc UBb LBc UBb LBc

3 +0.0021 −0.0006 +0.0167 +0.0018
−0.0271 −0.0163 −0.4022 −0.0024

4 +0.0021 −0.0000 +0.0006 −0.0000 +0.0168 −0.0023 +0.0019 −0.0000
−0.0007 −0.0002 −0.0268 −0.0012

5 +0.0000 −0.0000 +0.0000 −0.0000 +0.0033 −0.0001 +0.0000 −0.0000
−0.0000 −0.0000 −0.0021 −0.0000

a Reflects maximum order of Padé used, as outlined in text.
b gN(Rmax) minus exact in millihartrees (see text for details).
c gN(Rmin) minus exact in millihartrees (upper entry). Harmonic mean of the upper and lower bounds from Eqs. (16) and (19).

seen that in most cases Eqs. (16) and (19) provided
better lower bounds to EG= 0 (and hence better up-
per bounds to {−EG= 0}) than Eqs. (20) and (21). But,
in all cases both bounds were close to each other,
and hence we have maintained results for both in
our tables. The results for the harmonic mean of the
lower bound to EG= 0 in Eqs. (20) and (21) with the
upper bound to EG= 0 in Eq. (16) are not provided
here since the quality of these as lower bounds were
similar to those obtained from the harmonic mean
of the upper and lower bounds in Eqs. (16) and (19)
(which are provided in Tables III and IV as stated
above).

The nonrigorous bounds estimates introduced
above provided tight estimates in most cases. The
bounds estimates obtained by this method could be
thought of as a weighted average of the rigorous
upper and lower bound, the weights based on the
criteria provided in the previous section. (This may
be contrasted with the “fixed-weight” averages pro-
vided by the arithmetic, geometric, and harmonic
means discussed above.) In a few cases, however,
the estimates did not bracket the correct MP2 corre-
lation energy (i.e., the estimates were not bounds to
the correct MP2 correlation energy in these cases).
This occurred only for the lower order Padé ap-
proximants, as indicated above. For higher order
approximants, the estimates got tighter and became
bounds. In fact, for the molecules studied it was
possible to obtain estimates within a microhartree
(∼0.0006 kcal/mol) from the correct MP2 correla-

tion energy, with less than 10 Padé approximants,
even when the gap was 10 a.u. (Of course, as stated
in the theory section, it may be possible to further
improve this accuracy by employing convergence
accelerators such as the Aitkin’s 12 method [15] or
the Shanks’ extrapolation method [33]. We, how-
ever, have not considered this in our current study.)

A trend commonly observed for both the rig-
orous bounds and the estimates was that as the
size of the artificial gap was increased the accu-
racy at a given order of Padé approximants de-
creased. Our study at gap equal to 20 a.u. (not
shown here) showed that a greater number of Padé
approximants (greater than 10) were required for
accuracy beyond the millihartree (∼0.6 kcal/mol)
level while using both the rigorous bounds and the
estimates. (The estimates were always closer to the
correct answer.) As expected, this illustrates the fact
that it is more difficult to extrapolate from farther
out.

Conclusions

In this study we have introduced upper and
lower bounds to the extrapolated correlation energy
using the concepts of a series of Stieltjes and Padé
approximants. The bounds introduced here are gen-
eral and apply to all expressions that can be written
as a series of Stieltjes. Such expressions include en-
ergy expressions arising from the Møller–Plesset
perturbation theory up to various levels of approxi-
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mations, perturbative corrections to coupled-cluster
approximations, energy expressions obtained from
the Görling–Levy perturbation theory in density
functional theory, and other expressions of rele-
vance in quantum chemistry.

The bounds were tested by performing calcula-
tions for the gap-shifted MP2 correlation energy for
a subset of molecules from the G2 set. Various val-
ues for the gap shift were studied and the results
analyzed. It was found that at all gap shifts, rigorous
bounds to the correct MP2 correlation energy were
obtained using the methods described here. In the
case of smaller gap shifts, the bounds were found
to be extremely tight. In fact, bounds “tighter” than
1 kcal/mol were regularly obtained even when a
relatively small number of Padé approximants and
large gap shifts were employed. This is particularly
interesting because calculations for larger HOMO–
LUMO gaps may be performed with greater com-
putational ease than those for smaller gap systems.
Hence, the extrapolation technique, with suitable er-
ror bounds, may be useful in developing a powerful
method for the evaluation of MP2 correlation en-
ergy.

A novel, interesting algorithm was developed
to produce accurate estimates. These estimates be-
come rigorous bounds as the number of Padé ap-
proximants employed increases. For relatively small
number of Padé approximants, this method pro-
vided tight estimates, accurate to beyond a fraction
of 1 kcal/mol, even when large gap shifts were em-
ployed.

We believe that the methods introduced in this
study will be very useful in performing extrapola-
tion on all functions that may be written as a series
of Stieltjes. In density functional theory we expect
this extrapolation method to be useful in the deriva-
tion of new functionals based on gap-shifted uni-
form electron gas [36, 37]. Another interesting area
where fruitful applications may be expected is the
recently developed adiabatic connection [38 – 41] in
density functional theory.

Appendix A: Computational
Determination of a Series of Stieltjes

A computationally convenient, but equiva-
lent [15], method to test if a function is a series of
Stieltjes is by the calculation of the determinants
obtained by using the coefficients of the series ex-

pansion, i.e.,

D(m, n) =

∣∣∣∣∣∣∣∣∣
fm fm+1 . . . fm+n

fm+1 fm+2 . . . fm+n+1
...

...
...

fm+n fm+n+1 . . . fm+2n

∣∣∣∣∣∣∣∣∣ . (A1)

It has been shown [15, 16] that f (z) is a series of
Stieltjes if and only if D(m, n) > 0, for all m, n ≥ 0,
provided the series expansion, f (z) = ∑∞

j= 0 fj(−z)j,
is unique.

During the MP2 calculations performed in this
study, the determinant in Eq. (A1) was evaluated
from the coefficients of the Taylor expansion, i.e.,
those given by Eq. (13). It was found that all de-
terminants were positive except the D(0, 1) deter-
minant, which was always a very small negative
number (with magnitude less that 10−6). This could
be due to round-off errors caused by the solution
to the stiff set of equations described in Appen-
dix B. The magnitude of D(0, 1) (or any other such
determinant that does not satisfy the above require-
ments) could limit the accuracy and effectiveness
of the bounds introduced here. However, since the
magnitude of such determinants are generally very
small [as found here for D(0, 1)], the effect on the
bounds may be expected to be minimal.

Appendix B: Brief Description of the
Padé Approximants

Consider the function h(x) represented by the
truncated series expansion

h(x) ≈
L∑

i = 0

ci(x− x0)i, (B1)

where the coefficients {ci}may be obtained from the
derivatives of h(x) at the point x0.

The [N, M] Padé approximant to this function is
defined as a rational polynomial, with numerator of
order M and denominator of order N, i.e.,

h(x) ≈
L∑

i= 0

ci(x− x0)i =
∑M

k= 0 ak(x− x0)k

1+∑N
k= 1 bk(x− x0)k

≡ [N, M], (B2)

where the zeroth-order coefficient in denominator
of the approximant is assumed to be 1, for unique-
ness [15]. Equation (B2) contains M + N + 1 un-
knowns (a0, . . . , aM, b1, . . . , bN) and to solve for these
we need M+N+1 equations, which may be obtained
by choosing L =M+N [i.e., M+N+ 1 coefficients,
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{ci}, which may be found using the value of the func-
tion and its first (M+N) derivatives at the point x0].
This leads to the set of equations

ai = ci +
min(N,i)∑

k= 1

ci−kbk, i ≤M, (B3)

−cM+i =
min(N,M+i)∑

k= 1

bkcM+i−k. (B4)

We may first obtain the set {bi} from Eq. (B4), which
constitutes an Ax = B type linear system of equa-
tions, but it is found [11] that the matrix A in this
case is almost singular. Hence, we follow Ref. [11]
to first perform a full LU decomposition [11, 42] of
A followed by iterative improvement of the solution
obtained [11, 42]. Once the {bi} are obtained, {ai}may
be found by using Eq. (B3).

Once the coefficients of the Padé approximants,
{ai} and {bi}, are obtained as outlined above, it may
noted that

h(x) =
∑M

k= 0 ak(x− x0)k

1+∑N
k= 1 bk(x− x0)k

+O
(
(x− x0)M+N+1).

(B5)
Hence, the Padé approximant of order [N, M] agrees
with the corresponding series expansion of the func-
tion up to order (N +M).
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