
Abstract. A method for estimating the bounds for the
highest and lowest eigenvalues of a ®nite-dimensional
matrix is presented. The method is tested for the
Hamiltonian matrix for several particle-in-a-box-like
systems. We also provide results for the well-studied
benchmark case of the ro-vibrational states of H�3 , and
consider bounds obtained for a completely random non
symmetric matrix. Finally, we discuss how the error in a
Chebychev expansion solution of quantum scattering
depends on the error made in estimating the highest
eigenvalue of the Hamiltonian matrix.

Key words: Chebychev expansion of Green's
functions ± Normalizing matrices ± Upper bounds of
eigenvalues ± Truncation errors

1 Introduction

Normalizing a matrix so that it has eigenvalues only on
the range �ÿ1;�1� is required in a number of areas of
physical sciences [1±16]. In quantum mechanics, wave-
packet propagation using the Chebychev polynomial
expansion for Green's function [11, 12, 17], the spectral
density operator [4, 5] or the evolution operator requires
a normalized Hamiltonian matrix [1±3]; therefore, it is of
interest to obtain good estimates of the upper and lower
bounds of the eigenvalue spectrum of the Hamiltonian
matrix. For example, one expects the quality of this
estimation to a�ect the convergence properties of
Chebychev expansions, with a ``tighter'' bound leading
to faster convergence. Direct methods for solving
eigenvalue problems and linear systems of equations,

such as QR factorization, are also sensitive to the range
of the eigenvalue spectrum.

This paper is organized as follows. In Sects. 2 and 3,
we review the concept of norms and how the upper
bound for the L2 norm can be used to obtain an upper
bound for the highest eigenvalue and a lower bound for
the lowest eigenvalue in the spectrum of any matrix. In
Sect. 4, we present analytical expressions showing how
the remainder from the truncation of the Chebychev
expansion depends on the error in estimating the Ham-
iltonian matrix upper bound and brie¯y discuss the
computational scaling of the algorithm. In Sect. 5, we
present some calculations done using the results from
Sects. 2 and 3 and compare these results with those
obtained from a widely used, existing approach. We
present our conclusions in Sect. 6.

2 Norm basics

Following the ideas discussed in Ref. [18], we present
here some de®nitions which are used in Sect. 3 to obtain
estimates for the upper and lower bounds for the
eigenvalue spectrum of any matrix.

The Lp norm of a vector, x, is de®ned to be

kxkp �
Xn

i�1
jxijp

" #1
p

; �1�

where n is the dimensionality of the vector. Speci®cally,
the L1, L2 and L1 norms of a vector x are given
respectively by

kxk1 �
Xn

i�1
jxij

" #
; �2�

kxk2 �
Xn

i�1
jxij2

" #1
2

�3�

and
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kxk1 � max
1�i�n

jxij : �4�

The Lp norm of an m� n rectangular (complex) matrix,
A, is de®ned to be the Lp norm of the vector, having the
largest Lp norm, that is obtained by applying A to
vectors, x, with unit Lp norm, i.e.,

kAkp � max
kxkp�1

kAxkp : �5�

Using these relations it can be shown that the L1 and L1
norms of the m� n matrix A are

kAk1 � max
1�j�n

Xm

i�1
jAijj �6�

and

kAk1 � max
1�i�m

Xn

j�1
jAijj : �7�

Equations (6) and (7) are derived in Appendix 1.
Consider, now, the n� n Hermitian matrix AyA.

Since �xyAyAx� � 0 for any vector x, it follows that
the eigenvalues of AyA are non negative. Further, from
Eqs. (3) and (5), it follows that

kAk2 � max
kxk2�1

kAxk2 � max
kxk2�1

��������������������
�xyAyAx�

q
; �8�

and hence that the square root of the largest eigenvalue

of AyA is the L2 norm of A. That is,

AyAz � jlj2z ; �9�
where jlj is the L2 norm (and the largest absolute
eigenvalue) of A and z is the corresponding eigenvector

of AyA.
An upper bound for the L2 norm of A can be

obtained from

kAk2 �
�����������������������
kAk1 kAk1

q
: �10�

(A proof of this expression, together with other relations
involving the various norms is given in Appendix 2.)
Since the L1 norm and the L1 norm just correspond to
maximum sums of columns and rows respectively, an
upper bound for the L2 norm, i.e., an upper bound for
the maximum absolute eigenvalue of the matrix A is
quite easy to calculate from Eq. (10), as will be seen in
the next section.

3 Estimating the bounds of a matrix

As discussed in the introductory section, it is useful in a
number of situations to have bounds for the spectrum of
a matrix, and as is to be anticipated, in virtually every
application, the ``tighter'' these bounds can be deter-
mined, the better. A number of ways to estimate such
bounds exists [19±26]. In this section we explore a
method based on the relations of the L2 norm to the
upper and lower bounds of the eigenvalue spectrum of
any matrix.

Consider a ®nite matrix, H, for which we wish to
obtain spectral bounds. We begin by ®rst constructing

the matrix A of Sect. 1 as a function of H i.e., A � A�H�,
in such a way that the norm of A is simply related to the
spectrum of H. An example which we will examine in
some detail is

A � Hÿ cI ; �11�
where I is the unit matrix and c is an arbitrary scalar
constant. A more general version may be obtained by
replacing cI in Eq. (11) by any matrix, B, so that

A � Hÿ B ; �12�
where the commutator �H;B� � 0. In the case of Eq. (11)
eigenvalues of A and H are, of course, simply related by
the additive constant, c. From Sect. 2, we know that the
L2 norm of A is the largest absolute eigenvalue of A and
hence that

ÿkAk2 � c � E�H� � kAk2 � c ; �13�
where E�H� is the spectrum of H. Clearly, for
c � kmax�kmin

2 the lower bound is exact, and for

c � kmax�kmin

2 the upper bound is exact (kmax and kmin

being the unknown maximum and minimum eigenvalues
ofH, respectively). Using Eq. (10) it immediately follows
that

cÿ
�����������������������
kAk1 kAk1

q
� E�H� � c�

�����������������������
kAk1 kAk1

q
: �14�

For a value of c su�ciently above the midpoint of the
spectrum we expect the lower bound estimate to be
``tighter'' and vice versa for c su�ciently below the
midpoint.

To explore the structure of the bounds in Eq. (14),
consider the quantityX

i

jAijj � jHjj ÿ cj �
X
i6�j

jHijj �15�

as a function of c for ®xed j. It consists of two line
segments, one with slope�1 and the other with slopeÿ1.
These lines intersect at c � Hjj, at which point the

function has the values
P

i6�j jHijj. For values of c greater

than all the diagonal elements ofH, the quantity
P

i jAijj,
for all possible values of j, is a set of parallel lines of slope
�1. Likewise, for values of c less than all the diagonal
elements ofH, the quantity

P
i jAijj, for all j, comprises a

set of lines with slope ÿ1. Let jR label the highest lying
line for large c and jL label the highest lying line for large
negative c. These lines intersect at c � a, where

aÿ HjRjR �
X
i6�jR

jHijR j � HjLjL ÿ a�
X
i 6�jL

jHijL j ; �16�

or

a � 1

2
HjRjR � HjLjL �

X
i6�jL

jHijL j ÿ
X
i 6�jR

jHijR j
" #

: �17�

The value of the lines at this intersection,

b � 1

2
HjLjL ÿ HjRjR �

X
i 6�jL

jHijL j �
X
i6�jR

jHijR j
" #

; �18�

is clearly a positive quantity since HjLjL � HjRjR . The L1

norm of A as a function of c then is of the form
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kAk1 � jcÿ aj � b ; �19�
since it is impossible for

P
i jAijj to intersect this curve

for any j other than jR and jL, if these indices
correspond to the highest lying lines as previously
discussed. Precisely the same argument holds for kAk1,
except in this case the sum is over the columns of H
rather than the rows.

From this analysis it is seen that the upper and lower
bounds in Eq. (14) assume the form

c�
����������������������
kAk1kAk1

q
� c�

����������������������������������������������������������
�jcÿ a1j � b1��jcÿ a2j � b2�

p
;

�20�
where a1, b1 are the constants corresponding to kAk1 and
a2, b2 correspond to kAk1 or vice versa. If, for the sake
of concreteness, we assume a2 � a1, the explicit upper
and lower bounds are then given by

c�
�����������������������������������������������������
�a1 ÿ c� b1��a2 ÿ c� b2�

p
; c � a1 ; �21�

c�
�����������������������������������������������������
�cÿ a1 � b1��a2 ÿ c� b2�

p
; a1 < c < a2 ; �22�

and

c�
�����������������������������������������������������
�cÿ a1 � b1��cÿ a2 � b2�

p
; c � a2 : �23�

For a self-adjoint (Hermitian) matrix, H, a1 � a2 (since,
in this case kAk1 � kAk1), and the region given by
Eq. (22) collapses to a point leaving only two possible
regions. Furthermore, at c � a1, the expressions in Eqs.
(21) and (22) are equal, and similarly at c � a2, the
expressions in Eqs. (22) and (23) are equal. Hence the
upper and lower bounds in Eq. (14) are continuous
functions of c.

By considering the slopes of the upper and lower
bounds in the three regions previously described, it is
easily shown that the greatest lower bound and the least
upper bound can be obtained either at c � a1 or at
c � a2. (A proof of this may be found in Appendix 3.)

For the self-adjoint case, as already shown, the cen-
tral region collapses to a point, and both bounds occur
at c � a1 � a2. In this case the greatest lower bound is

Hj0j0 ÿ
Xn

i�1
i6�j0

jHij0 j ; �24�

where j0 labels the column for which this expression is a
minimum. Similarly, the least upper bound for this case
is

Hj00j00 �
Xn

i�1
i6�j00

jHij00 j ; �25�

where now j00 is the index for which the expression is a
maximum. It should be noted that Eqs. (24) and (25)
have the exact same form as the upper and lower bounds
obtained from Gerschgorin's disk theorem [27, 28]1. For
non-Hermitian matrices, however, one obtains expres-
sions that are di�erent from those due to Gerschgorin's
disk theorem, as seen from the discussion in this section.

It is interesting to compare these results with the
c � 0 case (i.e., A � H), for which the upper and lower
bounds are given by

� jHj000j000 j �
Xn

i�1
i6�j000

jHij000 j

0B@
1CA : �26�

Equations (24)±(26) are, of course, similar in form and,
depending on the diagonal elements, can be the same;
however, for any value of j the sequence of inequalities

ÿjHjjj ÿ
Xn

i�1
i6�j

jHijj

0B@
1CA � Hjj ÿ

Xn

i�1
i6�j

jHijj

0B@
1CA

� Hjj �
Xn

i�1
i6�j

jHijj

0B@
1CA � jHjjj �

Xn

i�1
i6�j

jHijj

0B@
1CA �27�

holds. They show explicitly that the upper and lower
bounds of the expression in Eq. (26) are, at best, only as
good as and never better than those of Eqs. (24) and
(25), respectively (which, of course, must be the case
from our more general considerations).

The results of the preceding discussion lead im-
mediately to an algorithm for obtaining upper and
lower bounds for the spectrum of H. For a self-adjoint
matrix, the lower and upper bounds are given by

min

j
Hjj ÿ

X
i6�j

jHijj
" #

and
max

j
Hjj �

X
i6�j

jHijj
" #

, respec-

tively, whereas for a non-self-adjoint matrix, they are to
be determined at values of c equal to a1 and a2.

Another set of bounds on the spectrum of H can al-
ways be obtained by writing the matrix as a sum of two
(or more) other matrices, for example, for the Hamilto-
nian, H � T� V, where T is the kinetic energy (KE) and

V is the potential. It is clear that �xyTx�, for any (L2)
normalized vector x, must be less than or equal to the
largest eigenvalue of T, and similarly for V. Hence, the
sum of the largest eigenvalues of T and ofVmust provide
an upper bound for the spectrum of H. Similarly, the
sum of the two lowest eigenvalues of T and V must
provide a lower bound for the spectrum of H. (The
quality of these bounds will, of course, depend on the
``size'' of the commutator T;V� �.) This observation can
be useful if T and V are each either diagonalized easily or
bounds to their respective spectra are obtained easily.
For a matrix representing the Hamiltonian operator,
typically bounds of this kind are easily obtained and are
often employed in quantum mechanical calculations [7,
9, 17]. The KE operator is often represented either by a
®nite circulant matrix or a particle-in-a-box matrix, and
the (local) potential energy (PE) operator by a diagonal
matrix, and the spectral bounds are trivially obtained in
either case. For the Hamiltonian matrix, the lower bound
established in this manner is better than the upper bound
because there is a physical lower bound to the spectrum
of the operators corresponding to these ®nite matrices
(i.e., zero in the case of the KE operator and the mini-
mum on the PE surface in the case of the PE operator).1 We thank Stephan Grey for bringing this to our attention

509



In cases where the spectral bounds for T are not easily
obtained, an approximation to highest (lowest) eigen-
value of T summed with the maximum (minimum) value
of the local potential on a grid may be used as an upper
bound (lower bound) for the eigenvalue spectrum of H.

Another method is to accurately determine the
highest and lowest eigenvalues of H using a Lanczos or
Arnoldi procedure [18, 29±31]. In both methods, repeti-
tive application of the matrix,H, to an initial (sometimes
random) vector produces a Krylov basis set [18]; the
representation of the original matrix in this new basis set
leads to a Hessenberg form if the matrix H is non-Her-
mitian and to a tridiagonal form if the matrix H is
Hermitian [18], both of which can be easily diagonalized.
This method is known to converge rapidly to the exter-
nal (i.e., largest and smallest) eigenvalues [18].

4 E�ect of error in and computational cost
of the upper bound estimate

It is of some interest and importance to know the
manner in which the convergence of the Chebychev
expansion of Green's function, the time evolution
operator, or the Dirac delta function depends on the
accuracy of the upper bound estimate. In fact, this can
be determined using an expression derived for the
truncation error presented in our earlier work [16]:

Rm�E� � DH
2

Tm�Enorm�Tm�1�Hnorm��
ÿTm�1�Enorm�Tm�Hnorm��v�0� ; �28�

where the series is truncated at the mth Chebychev, Enorm

and Hnorm are the normalized collision energy and
Hamiltonian matrix, given by

Enorm � �Eÿ H�=2 ; �29�
Hnorm � �Hÿ H�=2 ; �30�
and the exact spectral range, DH , and the arithmetic
average of the highest and lowest eigenvalues, H , are
respectively

DH � �Emax ÿ Emin�=2 ; �31�
H � �Emax � Emin�=2 ; �32�
and Emax�Emin� is the exact maximum (minimum) eigen-
value of the Hamiltonian matrix. The quantity v�0� is the
initial wavepacket associated with the experiment of
interest, so Rm�E� is a state vector which in the coordinate
representation depends on both the scattering and
internal variables. It is convenient to expand v�0� in the
basis of eigenstates of the matrix Hamiltonian,

Hwk � Ekwk ; �33�
so that

v�0� �
X

k

Akwk : �34�

Then the truncation error at the mth Chebychev term,
projected onto the kth eigenstate, with exactly normal-
ized arguments is

Rm�E�� �k �
DHAk

2
Tm�Enorm�Tm�1�Ek;norm�
�
ÿTm�1�Enorm�Tm�Ek;norm�

�
; �35�

where Ek;norm � �Ek ÿ H�=DH . We focus on the e�ect of
the upper bound estimate and assume the lower bound is
exactly zero. The upper bound is estimated as Emax � g,
where we assume that g is positive (an estimate of the
upper bound that is less than the true upper bound leads
to divergence of the Chebychev expansion). Then we
denote the truncation remainder, when the upper bound
is in error by g, by

~Rm�E�
� �

k �
~DHAk

2
Tm� ~Enorm�Tm�1� ~Ek;norm�
�
ÿTm�1� ~Enorm�Tm� ~Ek;norm�

�
;

�36�

where

~H � ~DH � �Emax � g�=2 ; �37�
and

~Enorm � 2E ÿ �Emax � g�
�Emax � g� ; �38�

~Ek;norm � 2Ek ÿ �Emax � g�
�Emax � g� : �39�

Then the error, at the same level of truncation of the
Chebychev series, is given by

DRm�E�� � � ~Rm�E�
� �

kÿ Rm�E�� �k : �40�
Clearly, substituting for the two remainders leads to very
messy algebra. A better way to proceed is to use the
expression for �~R�E��k to derive a di�erential equation
for the rate of change of the remainder with the upper
bound error, g. This is, in fact, easily done and we simply
quote the result:

d�~Rm�E��k
dg

� �~Rm�E��k
�Emax � g� � q�g� ; �41�

where

q�g� � �Emax � g�Ak

8

�
ÿ mE

E�Emax � g� ÿ E2

� �
� Tmÿ1� ~Enorm� ÿ Tm� ~Enorm�
� �

Tm�1� ~Ek;norm�

ÿ Ek�m� 1�
Ek�Emax � g� ÿ E2

� �
� Tm� ~Ek;norm� ÿ Tm�1� ~Ek;norm�
� �

Tm� ~Enorm�

� E�m� 1�
E�Emax � g� ÿ E2

� �
� Tm� ~Enorm� ÿ Tm�1� ~Enorm�
� �

Tm� ~Ek;norm�

� Ekm
Ek�Emax � g� ÿ E2

k

� �
� Tmÿ1� ~Ek;norm� ÿ Tm� ~Ek;norm�
� �

Tm�1� ~Enorm�
�
:

�42�
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(The derivation of the above result involves use of the
chain rule for ordinary derivatives and the recursion
expressing the derivative of a Chebychev polynomial in
terms of a di�erence of these polynomials.)

There are several special cases of interest. The ®rst
is when the energy E � Ek, in which case the in-
homogeneity q�g� is identically zero and the solution of
the resulting ®rst-order, linear homogeneous ordinary
di�erential equation is

�~Rm�Ek��k � �Rm�Ek��k 1� g
Emax

� �
: �43�

One also obtains the same result when E � Emax, since
this is simply the largest of the eigenvalues of the matrix
H. In these cases, the error in the kth component of the
remainder due to overestimating Emax by g is linear in
g=Emax. Of course, the error for the components other
than the kth will involve contributions from the
inhomogeneity, q�g�, and these are, in general, nonlinear
in g. The most general case is very messy and we have
evaluated it only for some special values of m. The
results indicate that the leading nonlinear term depends
on g=Emax logarithmically. As a result, the dominant
term appears to be the linear one.

Finally, we brie¯y discuss the computational scaling
for the bound calculation outlined in Sect. 3. For the
case of a self-adjoint matrix, the greatest lower bound is

given by
min

j
Hjj ÿ

X
i6�j

jHijj
" #

and the least upper bound

is given by
max

j
Hjj �

X
i 6�j

jHijj
" #

. Calculating each of

these for an N � N matrix requires N�N ÿ 1� additions,
�N ÿ 1� comparisons and no multiplications. Hence, the
computational time required to perform this calculation
is roughly proportional to N2 additions (for large N ).
For the non-self-adjoint case, it is ®rst necessary to ob-
tain jR and jL (in Eqs. 16±18), which are used to get a1,
a2, b1 and b2. Following this, one may obtain the upper
and lower bounds, as outlined. To calculate jR and jL
requires 2N�N ÿ 1� additions, �N ÿ 1� comparisons and
no multiplications. a1, a2, b1 and b2 can then be calcu-
lated using 8N additions. The calculation of the bounds
can be achieved with another four multiplications, four
additions, four square-root operations and two com-
parisons (i.e., the number of multiplications and square-
root operations are independent of N ). Thus a total of
�2N 2 � 6N � 4� additions, �N � 1� comparisons, four
multiplications and four square-root operations are re-
quired, which roughly scales as N2 additions for large N .

It is interesting to compare these results with those for
the Lanczos method where the highest and lowest ei-
genvalues are accurately determined, as outlined in Sect.
3. The computational bottleneck in this algorithm is the
matrix±vector multiplication (which scales as N 2 multi-
plications) if the number of Krylov vectors is small
compared to the size of the matrix. This results in a larger
prefactor (as this method scales as N2 multiplications as
opposed to the N 2 additions for the method outlined in
this paper) in scaling but yields exact eigenvalues as

opposed to bounds. It should be noted that the discus-
sion here is for full matrices and that both methods dis-
play linear scaling for sparse matrices; the prefactor,
however, remains the same as previously discussed.

5 Results

We now illustrate the results of Sect. 3 by ®rst
considering several particle-in-a-box-like systems,
namely

1. An Eckart barrier in a one-dimensional box.
2. A Henon±Heiles well in a one-dimensional box.
3. A two-dimensional box with a two-dimensional

Henon±Heiles well.

We next consider the well-studied problem of the
ro-vibrational bound states of the H�3 molecular ion
[32±36], and conclude this section with a study of a
completely random, nonsymmetric matrix.

For the three particle-in-a-box-like systems, the KE
part of the Hamiltonian was evaluated in the coordinate
representation using the Hermite-distributed approx-
imating functional (DAF) [37]. The (local) PE function
was chosen to be positive semide®nite and it was
added to the KE matrix to form the full (symmetric and
positive de®nite) Hamiltonian matrix.

The eigenvalue bounds were calculated using Eqs.
(24) and (25), and the results were compared with the
exact eigenvalues obtained from direct diagonalization
[38] of the Hamiltonian matrix. The eigenvalue bounds
from Eqs. (24) and (25) were also compared (see Tables
1, 2) with

1. The bounds obtained from summing the separate
maximum (or minimum) eigenvalues of the KE and
PE matrices (the maximum and minimum eigenvalues
of the KE matrix were obtained from direct
diagonalization as seen in Tables 1 and 2 and the
maximum and minimum eigenvalues of the PE were
simply taken to be its maximum and minimum
values, respectively, on the grid).

2. An estimate to the maximum (or minimum) eigenva-
lue of the KE (which was obtained using the solution
to the particle-in-a-box problem) summed with the
maximum (or minimum) PE on the grid.

In Tables 1 and 2, we also provide the maximum
(minimum) PE on the grid, the maximum (minimum)
element in the Hamiltonian matrix, and the Frobenius
norm [18] along with a comparison of the upper and
lower bound estimates obtained. The Frobenius norm
and the maximum and minimum elements of the
Hamiltonian are included simply because they have
been used in the past to estimate spectral bounds.
Clearly, they are not useful and are not recommended.

It is clear from Table 1 that the upper bound estimate
from Eq. (25) is better than the estimated max(KE) +
max(PE) for all the cases studied. The max(KE) +
max(PE) (obtained using the actual maximum eigenva-
lue for the KE matrix from direct diagonalization),
however, is better in the case of box 1, where the max-
imum value of the potential is much smaller than the
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maximum KE (Table 1). In boxes 2 and 3, where the
maximum values of the PE and KE are comparable (and
the KE and PE commutator is larger than for box 1),
max(KE) + max(PE) does not give as good an
upper bound as Eq. (25) does. From Table 2, clearly,
both estimated min(KE) + min(PE) and min(KE) +
min(PE) provide better lower bounds than Eq. (24). The
behavior of the upper and lower bounds as functions
of c for the one-dimensional Henon±Heiles problem
is shown in Fig. 1.

For the ro-vibrational bound states of the well-
studied H�3 molecular ion [33±36], the KE part of the
Hamiltonian was written in the Adiabatically Adjusting
Principal Axis Hyperspherical (APH) [39] coordinate
system to utilize the full symmetry of the potential, and
was represented using symmetry-adapted DAFs (SA-
DAFs) [40]. The PE part of the Hamiltonian was chosen

to be the Meyer, Botschwina and Burton potential [32].
Details regarding the SADAF representation and a
discussion of the eigenvalues for H�3 obtained from this
new approach, compared to previous work done on this
benchmark system [33±36], can be found elsewhere [40].
Here we only consider the bounds on the eigenspectrum.

The SADAF representation of the APH KE operator
is a nonsymmetric matrix [40]; however, the values of jL
and jR in Eqs. (16)±(18) are the same for both kAk1 andkAk1, which forces a1 to be equal to a2 in this case. As a
result, there are only two regions in this case (which is
clear from Fig. 2) despite the Hamiltonian matrix being
nonsymmetric. The behavior of the upper and lower
bounds as a function of c is presented in Fig. 3. This
behavior agrees with the analytical expressions in Eqs.
(21)±(23). (The two seemingly ¯at regions in Fig. 3,
namely, the upper bound for small c and the lower

Table 1. Upper bounds for the particle-in-a-box-like (self-adjoint) cases. The kinetic energy is represented by KE and the potential energy
by PE

Box 1f Box 2g Box 3h

EN
a 30.065462 111.390079 235.143910

Max
j

h
Hjj �

P
i 6�j
jHijj

ib
30.093964 117.899710 241.760585

Estimated Max(KE) + Max(PE)c 30.870730 130.933006 261.866012
Max(KE) + Max(PE)d 30.092883 129.382049 258.764098
Max(PE) 0.028215 76.101868 152.203735
Max

i;j
Hij 10.512628 94.740825 189.481651�����������������������Pm

i�1

Pn
j�1
jHijj2

s e

548.100455 337.523545 5183.023934

aMaximum eigenvalue as obtained from direct diagonalization of the discrete Hamiltonian matrix
b Least upper bound from Eq. (25)
c Estimated max(KE) obtained using the particle-in-a-box energy by setting the maximum quantum number as the number of grid points,

i.e., estimated max(KE) � h2p2

2lDx2, for boxes 1 and 2 and estimated max(KE) � h2p2

2lDx2 � h2p2

2lDy2 for box 3. Max(PE) � Vmax, the maximum value

of the potential on the grid. Dx � 0:30 a.u. for boxes 2 and 3, Dy � Dx for box 3 and Dx � 0:40 a.u. for box 1. l � 1 a.u. for all cases
dMax(KE) is obtained by actual diagonalization of the KE matrix. Max(PE) � Vmax
e Frobenius norm in Eq. (A10)
f Eckart potential: V0

cosh2 xÿxv
a� � where V0 � 0:028215 a.u., xv � 25:0 a.u. and a � 5 a.u. Number of grid points = 1500. Grid range: )381±

218.6 a.u
gOne-dimensional Henon±Heiles potential: 1

2 x2 ÿ k
3 x3, where k � ��������������

0:0125
p

. Number of grid points = 64
hTwo-dimensional Henon±Heiles potential: 1

2 �x2 � y2� � k�xy2 ÿ 1
3 x3� where k � ��������������

0:0125
p

. Number of grid points = 64 ´ 64

Table 2. Lower bounds for the particle-in-a-box-like (self-adjoint) cases

Box 1e Box 2e Box 3e

E1
a 0.0000296 0.498061 0.718253

Min
j

h
Hjj ÿ

P
i 6�j
jHijj

ib
)9.096922 )16.161182 )32.322364

Estimated Min(KE) + Min(PE)c 0.0000137 0.024939 0.031043
Min(KE) + Min(PE)d 0.0000137 0.0242001 0.0484003
Min(PE) 0 0.011124f 0.022248f

Min
i;j

Hij )6.437512 )11.444467 )11.444467

aMinimum eigenvalue as obtained from direct diagonalization of the discrete Hamiltonian matrix
bGreatest lower bound from Eq. (24)
c Estimated, per dimension, using estimated min(KE) � h2p2

2lL2, where L is the length of the box in the respective dimension. (Using particle-
in-a-box energy with quantum number = 1.) Min(PE) = Vmin, the minimum value of the potential on the grid
dMin(KE) is obtained by actual diagonalization of the KE matrix. Min(PE) = Vmin
e Box parameters and forms of the potential as in Table 1
f In boxes 2 and 3, there is no grid point at the potential minimum
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bound for large c, are actually not ¯at but have small
negative slopes.) The upper and lower bounds were
calculated at the point c � a1 � a2. In Table 3, we
provide results for an A1 irreducible representation
Hamiltonian [40], and we compare these bounds
with the maximum and minimum eigenvalues obtained
from direct diagonalization, bounds obtained using
Gerschgorin's disk theorem, bounds obtained using the
separate maximum and minimum eigenvalues of the KE
and PE matrices, and the estimate obtained using the
Frobenius norm. The results are shown for four di�erent
grid sizes. Clearly, min(KE)+min(PE) and max
(KE)+max(PE) provide the best estimates, as max(PE)
is small compared to max(KE) for all the cases studied
and hence the KE and PE operator commutator tends to

be small. Calculation of min(KE) and max(KE), how-
ever, is nontrivial. Although in this study we employed
the use of a direct diagonalization scheme to obtain
these values, a Lanczos/Arnoldi-type [18, 29±37] method
to obtain the outlying eigenvalues could be used here. In
any case, the method shown in this paper provides a
good upper bound at a very low computational cost, as
seen in Sect. 4, and max(KE)+max(PE) is not guaran-
teed to give the best bound, as is seen in Table 1 for cases
where the maximum value of the potential is comparable
to the maximum KE, i.e., when the PE and KE com-
mutator is not small). The next question one could raise
is how does a ``particle-in-a-box'' estimate work for H�3
using the APH Hamiltonian? Unfortunately, in this case,
it is not at all obvious how one constructs a model to
estimate the maximum KE. In our opinion, this illus-
trates why our approach is attractive and useful. It is
highly likely that di�erent types of coordinates will be
needed as one changes mass combinations and numbers
of atoms in a system, and this wouldmean having to ®nd a
suitable model each time one considered a qualitatively
di�erent system. By contrast, the present approach pro-
vides excellent rigorous upper bounds and is trivially ap-
plied to any system, without any necessary modi®cations.

Still, we have found that the following model does
provide an upper bound for the H�3 , APH Hamiltonian.
For total angular momentum J � 0, the APH Ha-
miltonian may be written as

H � ÿ �h2

2l
@2

@q2
� 15�h2

8lq2
ÿ �h2

2lq2

� 4

sin 2h
@

@h
sin 2h

@

@h
� 1

sin2 h

@2

@v2

� �
� V : �44�

One may obtain the upper bound to the eigenspectrum
of this Hamiltonian as

Fig. 1. A plot of c� �����������������������kAk1 kAk1
p

(dotted line) and
cÿ �����������������������kAk1 kAk1

p
(solid line) as a function of c for the one-

dimensional Henon±Heiles problem

Fig. 2. A plot of the L1 norm (dot-dash line), L1 norm (dotted line)
and the geometric mean of the two as per Eq. (10) (solid line),
for the matrix A � Hÿ cI as a function of c. This plot is for the
H�3 molecular ion with 900 grid points

Fig. 3. A plot of c� �����������������������kAk1 kAk1
p

(dotted line) and
cÿ �����������������������kAk1 kAk1

p
(solid line) as a function of c for the H�3 molecular

ion with 900 grid points. The two seemingly ¯at regions in the
asymptotic region of c, namely, the upper bound for small c and the
lower bound for large c, are not really ¯at but have a small negative
slope
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Hmax � Vmax �
p2N2

q

2l�qmax ÿ qmin�2
� p2

2l�qminDh�2

� p2

2l�qmin sin�hmin�Dv�2 ; �45�

where Nq is the number of grid points in q, chosen in the
range �qmin; qmax�, Dh and Dv are the grid spacings along
the h and v directions, hmin is the minimum value of h on
the grid and Vmax is the maximum value of the potential
on the grid. The model clearly employs a ``box length''
equal to qmax ÿ qmin� � for the hyperradius, a box-length
equal to qminDhNh� � (where Nh is the number of grid
points in h) for the motion along the h variable, and a
box length of qmin sin�hmin�DvNv

� �
for the motion along

the v variable, with Nv being the number of grid points in
v. While it may be easy to justify the forms of the q KE,
the h and v KEs are certainly ad hoc. Rather than use
such an expression, it seems preferable to utilize a
rigorous bound that also yields a better upper bound
than the particle-in-a-box model. The model results are
compared to our rigorous bounds in Table 4.

Non-Hermitian matrices arise in various problems in
physical sciences, for example, the use of negative ima-
ginary absorbing potentials in quantum scattering the-
ory results in a non-Hermitian Hamiltonian matrix [41],
the study of nonconservative systems often leads to a
dynamical operator that is non-Hermitian, etc. Since the
H�3 molecular ion problem, previously considered, is a
``special'' nonsymmetric matrix that exhibits only two
regions, we tested the bounds for a nonsymmetric case
whose elements were chosen randomly. The bounds for

this matrix, as seen in Figs. 4 and 5, exhibit the expected
three di�erent regions; however, the upper and lower
bounds calculated at a1 and a2 were not found to be
as ``tight'' (see Table 5) for this random case as for
the other cases studied. Unlike a quantum mechanical
Hamiltonian matrix, a random matrix is not associated
with a sum of KE and PE matrices, which have speci®c
behavior dictated by physics. It is more di�cult to esti-
mate the bounds of a random matrix accurately than it is
for the Hamiltonian matrix of a physical system. The
method described in this paper has the virtue of yielding
bounds for any matrix, random or not. Our experience is
that the quality of the bounds is best when the matrix
has a physical signi®cance.

6 Conclusions

We have shown that the upper bound based on an
estimate for the L2 norm is computationally useful and
yields better results, for situations where the PE may
be comparable to the KE (i.e., when the respective

Table 3. The H�3 molecular ion using the symmetry-adapted distributed approximating function representation

1 2 3 4

Na 900 1200 1600 2400
E1

b )0.165848 )0.165838 )0.165838 )0.165838
LUB at c � a1 � ac2 )3.075203 )3.967688 )4.169539 )9.473521

Min
j

h
Hjj ÿ

P
i 6�j
jHijj

id
)3.353470 )4.356348 )4.578342 )10.548348

Min(KE) + Min(PE)e )0.184500 )0.184425 )0.184587 )0.184895
Min(PE) )0.184959 )0.184889 )0.185056 )0.185364
Min

i;j
Hij )3.352630 )4.304189 )4.527747 )10.175796

EN
f 10.730040 13.787633 14.571956 32.555528

GLB at c � a1 � ac2 12.418126 15.985873 16.941089 37.806993

Max
j

h
Hjj �

P
i 6�j
jHijj

id
12.696394 16.374532 17.349892 38.881821

Max(KE) + Max(PE)e 10.730067 13.787666 14.572019 32.555541

Max(PE) 0 0 0 0�����������������������Pm
i�1

Pn
j�1
jHijj2

s g

21.685648 30.142476 36.677676 80.722263

Max
i;j

Hij 4.671462 6.009092 6.385775 14.166736

aNumber of points on the three-dimensional hyperspherical grid
b Lowest eigenvalue (a.u.) of the Hamiltonian matrix, obtained by direct diagonalization
c Least upper bound (LUB) and greatest lower bound (GLB) estimates at c � a1 � a2, using the method described in Sect. 3
d Bounds from Gerschgorin disk theorem [27, 28]. (Also see Sect. 3)
eMax(KE) and min(KE) obtained from actual diagonalization of the KE matrix. Max(PE) and min(PE) are the maximum and minimum
values of the potential on grid
fHighest eigenvalue of the Hamiltonian matrix, obtained by direct diagonalization
g Frobenius norm in Eq. (A10)

Table 4. The H�3 molecular ion. Comparison of the LUB obtained
at c � a1 � a2 with upper bounds from Eq. (45)

Box size Max. eig. LUB at c � a1 � a2 Hmax of Eq. (45)

900 10.73 12.418 14.251
1200 13.787 15.985 17.622
1600 14.571 16.941 17.826
2400 32.555 37.806 39.483
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operators do not nearly commute), than that standardly
obtained from summing the maximum exact KE and the
maximum PE on the grid. When, however, the
maximum PE is small compared to the maximum KE
(i.e., when their commutator is likely to be small), the
latter method yields better bounds. In the case of a
realistic potential for the H�3 molecular ion the upper
bound obtained is seen to be tight. The lower bound, on
the other hand, obtained from summing the estimated
minimum KE and the minimum value of the potential
on the grid is found to be superior to that obtained using

the estimate based on the L2 norm. Since one is free to
use the least upper bound and the greatest the lower
bound, one can simply normalize the spectrum of the
matrix using the best of each bounds, regardless of
whether they were obtained by the same technique. The
comparisons with the eigenvalues of the KE and
potential matrices, of course, apply only to the speci®c
case of Hamiltonian matrices. However, the estimate of
bounds using the L2 norm is applicable to any matrix.
The H�3 case shows clearly that the present method is
preferable to the use of ad hoc models such as the
particle-in-a-box method, which really is useful only in
the case of Cartesian-like variables. When the coordinate
transformation complicates the KE, it seems much
better to use an approach which not only yields a
rigorous upper bound, and which is always applied in
the same manner no matter what sort of coordinates are
employed, but which also requires very little computa-
tional e�ort.

We believe this method will be useful in normalizing
the Hamiltonian matrix, as is required for use in various
Cheychev propagations and ®lter diagonalizations.
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Appendix 1. The L1 and L1 norms

Consider the L1 norm of the m� n rectangular matrix,
A. According to Eq. (4), the set of all vectors satisfying
the normalization condition kxk1 � 1 is determined by
0 � jxkj � 1 for k � 1 to n. From this it follows that

Fig. 5. A plot of c� �����������������������kAk1 kAk1
p

(dotted line) and
cÿ �����������������������kAk1 kAk1

p
(solid line) as a function of c for the random

non-self-adjoint matrix. The values for a1 and a2 were found to be
0.2187 and 0.6793, respectively

Table 5. Random (non-self-adjoint) matrix

E1
a )1.258613 (real)

GLB of c � a1 or c � ab2 )8.101976
Min

j

h
Hjj ÿ

P
i6�j
jHijj

ic
)7.97924

Min
i;j

Hij )0.956900

EN
d 2.052416

LUB of c � a1 or c � ae2 8.994284

Max
j

h
Hjj �

P
i 6�j
jHijj

ic
9.337762

Max
i;j

Hij 0.990727�����������������������Pm
i�1

Pn
j�1
jHijj2

s
8.455413

aMinimum eigenvalue
bThe greater of the two bound values calculated at a1 and a2
c Bounds from Gerschgorin disk theorem [27, 28]
dMaximum eigenvalue
e The lesser of the two bound values calculated at a1 and a2

Fig. 4. A plot of the L1 norm (dot-dash line), L1 norm (dotted line)
and the geometric mean of the two as per Eq. (10) (solid line), for
the matrix A � Hÿ cI as a function of c. This plot is for the
random non-self-adjoint matrix. The values for a1 and a2 were
found to be 0.2187 and 0.6793, respectively. The graph clearly
shows the existence of three regions: less than 0.2187, between
0.2187 and 0.6793, and greater than 0.6793
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�Ax�i �
Xn

j�1
Aijxj �

Xn

j�1
jAijj �A1�

for any vector x normalized according to Eq. (4). Since
the components of the vector x for each value of i can be

chosen arbitrarily close to
A�ij
jAijj, in which case the last

relation of Eq. (A1) becomes an equality, it follows that

kAk1 � max
1�i�m

Xn

j�1
jAijj ; �A2�

Similarly, from Eq. (2) the L1 norm of A can be obtained
from the series of relationships

kAk1 � max
kxk1�1

kAxk1 � max
kxk1�1

Xm

i�1

Xn

j�1
Aijxj

�����
�����

� max
kxk1�1

Xm

i�1

Xn

j�1
jAijjjxjj � max

kxk1�1

Xn

j�1

Xm

i�1
jAijjjxjj :

(A3)

However,

max
kxk1�1

Xn

j�1

Xm

i�1
jAijj

" #
jxjj

� max
kxk1�1

Xn

j�1

Xm

i�1
jAij�j

" #
jxjj �

Xm

i�1
jAij�j ; (A4)

where j� is the value of j that maximizes
Pm

i�1 jAij�j, and
we have made use of the fact that kxk1 � 1. Since

kAk1 �
Xm

i�1
jAij�j

for xj � djj� , it follows that

kAk1 �
Xm

i�1
jAij�j � max

1�j�n

Xm

i�1
jAijj : �A5�

Appendix 2: Relations between the L1, L1 and L2 norms

Consider the L1 norm of Eq. (9) to obtain

jlj2kzk1 � kAyAzk1 � kAyk1kAk1kzk1 ; �A6�
where we have used the Schwartz inequality [42]. From
Eqs. (6) and (7), it is clear that

kAyk1 � max
1�j�m

Xn

i�1
jAyijj � max

1�j�m

Xn

i�1
jAjij � kAk1 :

�A7�
Using this result in Eq. (A6) we obtain

jlj2kzk1 � kAk1kAk1kzk1 ; �A8�
which proves the inequality

kAk2 �
�����������������������
kAk1 kAk1

q
: �A9�

There exists a variety of other ways to estimate an upper
bound for the L2 norm of a matrix [18]. Although we
study only the expression provided in Eq. (A9), for the
sake of completeness, we also give a few of the other
expressions found in the literature.

kAk2 � kAkF �
���
n
p kAk2 �A10�

where, kAkF is the Frobenius norm given by

kAkF �
�������������������������Xm

i�1

Xn

j�1
jaijj2

vuut ,

max
i;j
jaijj � kAk2 �

������
mn
p

max
i;j
jaijj �A11�

1���
n
p kAk1 � kAk2 �

����
m
p kAk1 �A12�

1����
m
p kAk1 � kAk2 �

���
n
p kAk1 : �A13�

Appendix 3: Greatest lower bound and least upper
bound for the spectrum of H in the three regions of c

We consider the slopes of the upper and lower bounds
in the three regions described by Eqs. (21)±(23). If we

de®ne x �
��������������������������
jcÿ a2j � b2

jcÿ a1j � b1

s
, then for c � a1, Eq. (21)

yields

d

dc
c�

����������������������
kAk1kAk1

qh i
� 1� 1

2
x� 1

x

� �
�A14�

Since the quantity 1
2 x� 1

x

� � � 1 for all positive values of
x, the slope of the upper bound is either zero or negative,
and that of the lower bound is always positive in this
region. Therefore, the greatest lower bound and the least
upper bound in the region c � a1 are at c � a1. For the
special case of a self-adjoint matrix, a1 � a2 and hence
x � 1. Therefore, the slope of the upper bound, in this
case, is zero for all c � a1, and the least upper bound is
constant in this region.

For c � a2, di�erentiating Eq. (23), we obtain

d

dc
c�

����������������������
kAk1kAk1

qh i
� 1� 1

2
x� 1

x

� �
: �A15�

Following the same argument as before, we ®nd that the
slope of the upper bound is always positive, and the
slope of the lower bound is negative or zero, in this
region. Hence, the greatest lower bound and the least
upper bound here are at c � a2. For the self-adjoint case,
the slope of the lower bound is zero and hence the lower
bound is constant in this region.

For a1 < c < a2

c�
�����������������������������������������������������
�cÿ a1 � b1��a2 ÿ c� b2�

p
� c�

�������������������������������
�cÿ cl��cu ÿ c�

p
� cÿ y�cÿ cl� ;

�A16�
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where cu � a2 � b2, cl � a1 ÿ b1, y � �x and x has the
same de®nition as before. Clearly, the quantity y is
positive for the lower bound and negative for the upper
bound. Furthermore, the bound values are real when c
lies in �cl; cu�, which, by de®nition, extends outside the
region �a1; a2�. Di�erentiating the above expression, we
®nd

d

dc
c�

����������������������
kAk1kAk1

qh i
� 1ÿ 1

2
y ÿ 1

y

� �
; �A17�

which has roots at y � 1� ���
2
p

and y � 1ÿ ���
2
p

. The ®rst
root is positive and hence determines the extremum for
the lower bound, while the second root, being negative,
determines the extremum for the upper bound; however,
the root at y � 1� ���

2
p

corresponds to a minimum, and
the root at y � 1ÿ ���

2
p

corresponds to a maximum, and
hence, the behavior for the upper bound is convex
upwards and the behavior for the lower bound is convex
downwards in the region cl < c < cu. Consequently the
bound estimates in this region are never better than
those at the edges, i.e., at the points c � a1 and c � a2.
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