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ABSTRACT: We discuss a multiconfigurational treatment of
the “on-the-fly” electronic structure within the quantum
wavepacket ab initio molecular dynamics (QWAIMD) method
for coupled treatment of quantum nuclear effects with
electronic structural effects. Here, multiple single-particle
electronic density matrices are simultaneously propagated
with a quantum nuclear wavepacket and other classical nuclear
degrees of freedom. The multiple density matrices are coupled
through a nonorthogonal configuration interaction (NOCI)
procedure to construct the instantaneous potential surface. An
adaptive-mesh-guided set of basis functions composed of
Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-
centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis
functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the
quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This
reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual
density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated
at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum
nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference
electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current
development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems:
FHF−, ClHCl−, BrHBr−, and BrHCl−. We find that the donor−acceptor structural features are in good agreement with
experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational
fundamentals and combination bands. These agree well with experiments and other theories.

I. INTRODUCTION

Quantum nuclear effects have a critical role in several systems.
These include many hydrogen transfer reactions occurring inside
enzyme complexes1 and classic cases of hydrogen transfer known
in physical organic chemistry.2,3 In addition, hydrogen-bonded
clusters may display quantum nuclear effects that govern the
vibrational properties of the shared hydrogen atom.4−9 To
compute these important effects, we introduced an approach
called quantum wavepacket ab initio molecular dynamics
(QWAIMD).4,10−19 The goal of QWAIMD is to study the
quantum dynamical effects in a subsystem, such as the shared
proton in a hydrogen-bonded system,4,15 or the transferring
hydrogen atom in a reaction,17,20,21 while simultaneously treating
the dynamics of the surrounding particles along with the coupled
changes in electronic structure. The approach is quantum-
classical22−33 and involves the synergy between a time-
dependent quantum wavepacket description and ab initio
molecular dynamics. Because the quantum dynamics within

QWAIMD is generally performed on a grid, the predominant
bottleneck is the calculation of the grid-based, time-dependent
electronic structure potential and gradients generated from the
motion of the classical particles. In refs 4, 12, and 16, this
limitation was handled through introduction of an adaptive,
space−time-dependent, mesh refinement scheme called the
time-dependent deterministic sampling (TDDS),4,12 which
shares common features with the h-type mesh refinement
procedure known in computational fluid dynamics.34 The TDDS
method when combined with numerical techniques such as an
efficient wavelet compression scheme35−42 and low-pass filtered
Lagrange interpolation, provides computational gains of several
orders of magnitude. The QWAIMD approach has been used to
study vibrational properties in hydrogen-bonded clusters
inclusive of quantum nuclear effects,4 hydrogen tunneling in
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enzyme active sites17 and quantum nuclear effects in solid state
protonic conductors.15 The quantum dynamics scheme in
QWAIMD has also been adopted to develop a technique
known as multistage ab initio wavepacket dynamics
(MSAIWD)18,19 to treat the electronic structure and dynamics
in open, nonequilibrium systems such as those encountered in
molecular wires.
In ref 14, a multiconfigurational generalization to QWAIMD

was presented to accurately depict the coupling between
quantum nuclear degrees of freedom and the electronic
structure. In this publication, we benchmark the multiconfigura-
tional QWAIMD approach. For notational simplicity, the
multiconfigurational generalization to QWAIMD is referred to
as MC-QWAIMD and the previous implementation discussed in
ref 4 is called adiabatic QWAIMD or a-QWAIMD. The specific
systems studied here are hydrogen-bonded clusters that are
represented as XHY−1, where the atoms X and Y are both
halogen atoms. These systems contain a shared proton
undergoing excursions along the donor−acceptor axis. The
motion of the proton is (a) coupled to the two peripheral atoms,
and (b) dictated by the highly anharmonic nature of the potential
surfaces.4 In fact, as noted in ref 4, the anharmonic contributions
are significant for ClHCl−, and borrowing the standard diatomic
molecular spectroscopy notation,44 the first-order anharmonic
constant, wexe, is negative because the spacing between adjacent
vibrational levels increases, implying quartic and higher order
contributions to the surface. (See Table 5 in ref 4.) Furthermore,
there is substantial red shift in the proton stretch frequency when
the coupled motion of the peripheral atoms is included. These
aspects make the problem challenging not only for the
commonly utilized harmonic analysis constructed at optimized
geometries but also for many state-of-art methods such as the
nuclear electronic orbital approach constructed at the MP2
level,5 and the CC-VSCF-MP25,45−48 method. In our previous
work, we showed that the vibrational density of states obtained
from a-QWAIMD,4 obtained using a velocity-wavepacket-flux

autocorrelation function, is able to provide quantitative agree-
ment with experimental results (Table 1). As a result, in an effort
to benchmark the multiconfigurational generalization to
QWAIMD, we compare our energetic and dynamical features
obtained from MC-QWAIMD simulations with those obtained
from the a-QWAIMD as well as those obtained from gas-phase
spectroscopy experiments43,49−58 and other theories.5,59

Salient features of MC-QWAIMD are as follows: Multiple
single-particle electronic density matrices are simultaneously
propagated along with the quantum nuclear wavepacket. The
multiple density matrices are chosen such that the corresponding
electronic wave functions have minimal dependence on the
quantum nuclear coordinates, and hence these are akin to
diabatic states.60−67 These states are then used within non-
orthogonal configuration interaction (NOCI)14,68−76 to con-
struct on-the-fly, adiabatic, potential surfaces that may be valid
beyond the single particle approximation, depending on the
choice of the single particle functions. In addition, the “on-the-
fly” potential surface calculations differ from those standardly
used in quantum chemistry because a combination of atom-
centered Gaussians and an adaptive-mesh-guided set of Gaussian
basis functions are used here. Specifically, the atom-centered
Gaussian basis functions that depend on the quantum-nuclear
coordinates are eliminated in favor of a set of Gaussian basis
functions that are placed on a three-dimensional adaptive mesh.
The mesh itself adapts to the position of the other classically
treated nuclei. This allows us to eliminate the two-electron
integral dependence on the quantum nuclear degrees of freedom
thus making them reusable over the entire quantum nuclear grid
to reduce computational cost.
The paper is organized as follows: In section II, the MC-

QWAIMD method is briefly summarized, with some technical
details provided in Appendices A and B. Results from
calculations on the chosen hydrogen-bonded systems are
discussed in section III with conclusions in section IV.

Table 1. Vibrational Frequencies for Cl−H−Cl− (ν3 = Shared Proton Stretch)

level of theory ν1 (cm
−1) ν2 (cm

−1) ν3 (cm
−1)

harmonic approximation B3LYP/6-31+G(d,p) 328 834a 849b 560a 949b

MP2/6-31+G(d,p) 353 893a 907b 98a 865b

B3LYP/aug-cc-pVTZ 324 818a 829b 582a 952b

MP2/aug-cc-pVTZ 345 847a 863b 637a 974b

CCSD/aug-cc-pVTZ 181 828a 874b 833a 764b

CCSD(T)/aug-cc-pVTZ 340 842a 325a

1D a-QWAIMDc B3LYP/6-31+G(d,p)d 301 988
B3LYP/6-31+G(d,p)e 297 900
MP2/6-31+G(d,p)f 313 879
MP2/6-31+G(d,p)g 304 746

3D a-QWAIMDc B3LYP/6-31+G*h 300 857 806
B3LYP/6-31+G*i 254 863 723

experiment [ref 43] 318 792 ± 9 723
NEO-MP2(ee+ep) [ref 5] 334
CC-VSCF-MP2 [ref 5] 327 811 925

aHarmonic frequencies corresponding to the optimized geometry. bObtained from three-dimensional 0 → 1 eigenstate transitions. The potential
energy surface for the eigenstates is obtained from a full-scan of the quantum proton, with the chlorine atoms fixed at optimized geometry positions.
Hence, the eigenstates here are corrected for the true anharmonicity at that geometry but do not include coupling with the chlorine atom
distribution, which would dynamically perturb the anharmonicity. Note the large changes already present though. For example, see MP2/6-
31+G(d,p) in comparison with the v3 frequency at the optimized geometry.

cCalculated using the flux/velocity correlation function introduced in ref
4 and presented here in eq 8. The trajectories are computed using a-QWAIMD. dAverage internal kinetic energy corresponding to a temperature of
133.76 K. eAverage internal kinetic energy corresponding to a temperature of 271.14 K. fAverage internal kinetic energy corresponding to a
temperature of 127.26 K. gAverage internal kinetic energy corresponding to a temperature of 290.17 K. hAverage internal kinetic energy
corresponding to a temperature of 323.50 K. iAverage internal kinetic energy corresponding to a temperature of 714.45 K.
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II. MULTICONFIGURATIONAL EXTENSIONS TO THE
ON-THE-FLY ELECTRONIC STRUCTURE TREATMENT
IN QWAIMD

A. Summary of MC-QWAIMD. The quantum nuclear
dynamical procedure used in QWAIMD has been well-reviewed
in several publications.10,11,15,18 Here, we summarize the
multiconfigurational approach to determine the on-the-fly
adiabatic electronic surface used for quantum nuclear dynamics.
The adiabatic electronic structure, Ψel

(n), is written as a
multiconfigurational expansion of local, single particle state
functions, {ΦI

(diab)}, as

∑
Ψ

= Φ
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Here, the quantities RQM, RC, and rel are the quantized nuclear
coordinates, the classically treated nuclear degrees of freedom
and electronic coordinates, respectively. As explicitly noted, the
multiconfigurational coefficients cI

(n) depend on both the
quantum nuclear degrees of freedom, RQM, and the classical
nuclear positions, RC. The state functions, {ΦI

(diab)}, in turn
depend parametrically on the classical nuclear positions RC and
are chosen to have no explicit dependence on the quantum
nuclear degrees of freedom. In this sense, {ΦI

(diab)}, may be
interpreted as diabatic functions,60−67 i.e., states with zero
velocity coupling through the quantum nuclear momentum
operator and ⟨ΦI

(diab)|∇RQM
|ΦJ

(diab)⟩ = 0. That is, the momentum
coupling is zero with respect to the quantum nuclear degrees of
freedom.70,71,73,77−81Hence, {ΦI

(diab)} are subspace-diabatic, where
the diabaticity is only limited to a subset of nuclear degrees of f reedom
depicted byRQM and not with respect toRC. We further require that
each ΦI

(diab) represent the local electronic structure within the
quantum nuclear basis domain. That is,ΦI

(diab) is to represent the
electronic structure for nuclear configurations in the neighbor-
hood of {RQM

I* ; RC}.
14 Here, RQM

I* is a position on the quantum
grid that uniquely determines ΦI

(diab). [In Appendix B1, we
provide a deterministic sampling algorithm that allows us to
obtain RQM

I* at the initial step.] Hence, the states, ΦI
(diab), are akin

to “valence-bond” states.77−81 A family of such states, {ΦI
(diab)},

are then used to expand the electronic wavefunction as indicated
in eq 1.

A given diabatic state function, ΦI
(diab), is expressed as a Slater

determinant composed of one electron functions {|χi
I⟩}. These

one-electron functions are in general nonorthogonal and hence
the Slater determinants are nonorthogonal according to

⟨Φ |Φ ⟩ = =S sdet[ ]I J I J
I J(diab) (diab)
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is a nonsymmetric matrix. The locality of the electronic structure
functions, {ΦI

(diab)}, in the RQM domain, is depicted through
illustration of the overlap, eq 2, in Figure 1.
The time dependence of the diabatic states, {ΦI

(diab)}, is
approximated as follows: The functions {|χi

I⟩} are used to
construct the single electron density matrices, {PI}, which, along
with the classical nuclear degrees of freedom RC, are propagated
using the multiple diabatic state extended Lagrangian,

∑

∑

μ μ

Λ

= +

− − −E

V M V W

R P R P P

1
2

Tr[ ]
1
2

Tr[( ) ]

( , { }, ) Tr[ ( )]I I I I

I

N

I I

I

N

C
T

C C I

C QM

1/4 1/4 2

2

DM

DM

(4)

Here, MC and VC are the classical nuclear masses and velocities
respectively, whereas WI and μI are the diabatic density matrix
velocity and tensorial fictitious mass, respectively. The scalar
quantity, NDM, represents the number of density matrices (or
diabatic states). Equation 4 is an extension of the classical
Lagrangian used in atom-centered density matrix propagation
(ADMP)82−85 but differs through (a) the use of multiple single
particle density matrix trajectories and (b) the energy E(RC,
{PI},RQM), which, as noted, depends on multiple electronic
density matrices and hence is not derived f rom a single particle
formalism. It is critical to emphasize that the states {PI} in eq 4 are
not adiabatic but are, in fact, a basis about which the adiabatic
state is instantaneously represented, as discussed in Appendix A.
It is possible to write down Euler−Lagrange equations of

motion resulting from eq 4 for both RC and {PI}. The

Figure 1.Morphology of the overlap matrix in eq 2. The horizontal and vertical axes in each case indicate progress along the quantum nuclear grid. The
grid points that are in close proximity register a greater overlap for the quantity in eq 2 as indicated by the darker regions close to the diagonal. This figure
also demonstrates the “local” nature of the diabatic states in the quantum nuclear representation. That is, the diabatic statesΦI

(diab), which are uniquely
determined at the nuclear configuration {RC; RQM

I* }, are similar when the respective RQM
I* values are close. (a) represents the continuous case, where an

extremely large number of diabatic states have been used, equal to the number of quantum nuclear grid points, whereas (b) is the case for nine diabatic
states. (The respective RQM

I* positions are shown using gray dotted lines in (b).) For reference, when the overlap is 0.9, the hyper-angle in Hilbert space
between the two vectorsΦI

(diab) andΦJ
(diab) is 25.8°. Similarly, when the overlap is 0.7, the hyper-angle is 45.6°. Hence these diabatic states are dissimilar

and are used here as reference states for the electronic wave function at each quantum nuclear grid point.
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propagation for the classical nuclear degrees of freedom, RC, is
based on the velocity Verlet86 scheme arising from these Euler−
Lagrange equations.
With respect to the propagation of PI, there are two variants

available that are described below in algorithmic form:

• Diabatic Algorithm 1: If the extended Lagrangian in eq 4 is
directly used to compute the time-dependent diabatic
states, the Euler−Lagrange equations derived from eq 4
propagate PI,WI in a fashion similar to that for the classical
nuclear degrees of freedom. This approach is analogous to
the atom-centered density matrix propagation
(ADMP)42,82−85 equations but differs through the use of
multiple single particle state functions.

• Diabatic Algorithm 2: A “self-consistent” approximations
to the diabatic states: As noted from refs 84 and 85, Born−
Oppenheimer molecular dynamics (BOMD) differs from
ADMP through convergence, rather than propagation, of
the density matrices. Hence, it is also possible to compute
{PI} through SCF convergence, which is the μI → 0 limit
of the extended Lagrangian above.85 But one must keep in
mind that the diabatic states thus obtained differ from
those in standard BOMD in that they only provide the
local electronic properties, where the word “local” is to be
interpreted with reference to the classical nuclear
framework, RC and the coordinate representation for the
quantum dynamical degrees of freedom, RQM, which is in
the vicinity of the nuclear configuration {RC; RQM

I* }. Thus,
PI ≡ PI(RC;RQM

I* ) and Diabatic Algorithm 2 represents a
diabatic implementation of BOMD, where the word
diabatic is with reference to the nuclear subspace RQM.

In ref 14, it has been shown thatDiabatic Algorithm 2 above leads
to an accurate set of trajectories, with minimal loss in
computational efficiency with respect to Diabatic Algorithm 1.
Hence Diabatic Algorithm 2 is used in the current publication.
Once the diabatic state density matrices, {PI}, are computed at

each time-step, the corresponding diabatic wave functions,
{ΦI

(diab)}, are used within a nonorthogonal CI formalism to
compute the quantity, E(RC,{PI},RQM), that is, the adiabatic
potential surface, and gradients with respect to the classical
nuclear coordinates. The critical features of the method are as
follows: (a) A singular value decomposition of the single particle
overlap in eq 3 yields the so-called “corresponding orbitals”.87−89

This simplifies calculation of the nonorthogonal CI Hamiltonian
matrix elements. (b) The algorithm is further simplified through
introduction of a combination of atom-centered and grid-
centered basis functions, as outlined in Appendix B2. The
quantum nuclear coordinate dependence of the electronic
structure basis is eliminated through introduction of an adaptive
set of grid-localized Gaussian basis functions that replace the
atom-centered functions situated on the quantum nuclear
degrees of freedom. These functions adapt to the position of
the classical nuclear degrees of freedom. Because these functions
are spread over the quantum nuclear grid, they span the
electronic basis space as well and this aspect has been gauged in
ref 16. The introduction of these functions allows the reuse of
two-electron integrals when the CI Hamiltonian is recomputed
at subsequent grid points and greatly reduces the computational
effort.
In the above discussion, we have not distinguished between

the cases where the entire family of diabatic Slater determinants
{|ΦI

(diab)⟩} constructed from the density matrices, {PI}, is a totally
nonorthogonal set or if this set is composed of sub-

nonorthogonal sets such as {..., {|(diab)ΦiM−1
M−1⟩}, {|(diab)ΦiM

M⟩}, ...},

where each subset {|(diab)ΦiM
M⟩} is internally orthogonal. This

would, for example, be the case when a set of reference
determinants, {..., {|(diab)ΦiM−1=0

M−1 ⟩, |(diab)ΦiM=0
M ⟩, ...}, are excited to

produce the configurations {..., {|(diab)ΦiM−1≠0
M−1 ⟩}, {|(diab)ΦiM≠0

M ⟩},
...}, as is done in multireference CI calculations.68 Although this
distinction is not present in our theoretical development above,
the numerical implementation does not include the presence of
excited state determinants and hence for all test cases provided,
{|ΦI

(diab)⟩} are indeed nonorthogonal, barring uncertainties
arising from numerical precision. Numerical treatments
including a complete multireference study will be considered
in future publications.

B. The Algorithm. Using the initial structure, the quantum
nuclear grid is parametrized and an initial guess for quantum
nuclear wavepacket is determined. The major components of the
MC-QWAIMD approach are discussed below. The computa-
tional bottlenecks are noted in Figure 2. The adiabatic-
QWAIMD approach is discussed following MC-QWAIMD.

•Step i: Computing diabatic density matrices and associated
diabatic surfaces:

(a) Step i(a): At the initial time-step of dynamics, the
positions {RQM

I* ; RC} are to be obtained on the basis of the
Shannon entropy sampling function. (See Appendix B1.)
This leads to the diabatic states PI(RC;RQM

I* ) through SCF
calculations at nuclear geometries, {RQM

I* ; RC}. See top-
right panel of Figure 3 for an illustration of this step.

(b) Step i(b): At later dynamics steps, the diabatic states are
obtained either through propagation (Diabatic Algorithm
1) or through SCF convergence at the time-dependent
geometries: {RQM

I* ; RC (t)} (Diabatic Algorithm 2).
(c) Step i(c): Using the {ΦI

(diab)} computed in steps i(a) and
i(b), we obtain the diagonal elements for the non-
orthogonal CI matrix and gradients for all quantum
nuclear grid points. First, a (small) fraction of grid points is
chosen using a variant of the TDDS algorithm,4,12,16 with
measure function:

Figure 2. Fraction of CPU time spent in each portion of the MC-
QWAIMD algorithm. See section IIB and Figure 3 for a detailed
description of the various steps. Also see Figure 4 for computational
complexity with dimensionality and system size. The CPU times here
are obtained from the calculations described in the results section.
Parallelization greatly reduces the overhead in steps i and ii as shown in
Figure 4.
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Here, the local Shannon entropy function of the nuclear
wavepacket, S[ρ(RQM)] ≡ − ρ log(ρ), is a function of the
wavepacket density: ρ(RQM) ≡ χ*(RQM) χ(RQM).
Similarly, {Hi,i} are the diagonal elements of the
nonorthogonal CI matrix. Furthermore, S ̃ and H̃i,i are

normalized to have values in [0, 1], so as to have similar
contributions toward the overall sampling function. The
unit shifts in the numerator and denominator of eq 5 retain
numerical stability. This portion of the algorithm is critical
in multiple dimensions, because TDDS reduces the
number of calculations required by several orders of
magnitude.4 Once the diagonal elements of the CI matrix,
and its gradients, are obtained over the fraction of grid
points determined using TDDS, an interpolation is

Figure 3. The algorithm. See section IIB for details.

Figure 4. Computational complexity for potential energy and gradient calculations during each QWAIMD step. (a) All calculations include a one-
dimensional treatment of the quantized proton in ClHCl−. For MC-QWAIMD, data for 5, 7, and 9 diabatic states are presented, whereas for adiabatic-
QWAIMD, 15 TDDS points as well as the full grid calculation are shown. (b) One-dimensional and three-dimensional treatment for the phenol−amine
system. The quantized proton is shown in magenta. For three-dimensional simulations, the numbers in parentheses are the number of TDDS points
where the CI matrix is computed. See eqs 5 and 6. Clearly, parallelism and TDDS greatly reduce the complexity of the problem. (For reference, on the
shown scale, the full-grid calculation in three-dimensions, for adiabatic-QWAIMD, is 108 CPU units.)
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constructed to obtain the same over the entire quantum
nuclear grid. This yields the diabatic state surfaces and is
illustrated through the top-left panel of Figure 3.

•Step ii: The off-diagonal elements of the nonorthogonal CI
matrix are computed using transition density matrices,14,90,91

obtained using orbital coefficients (eqs 19 and 20 in ref 14). Here
again, a TDDS measure function is used to compress the
quantum nuclear grid regions where these calculations are to be
performed according to

ω
ρ

∝
̃ +

̃ +
R

S R

H
( )

[ ( )] 1

1i j
i j

, QM
QM

, (6)

The {Hi,j} are the off-diagonal elements of the CI matrix, and
again H̃i,j are bounded by unity. As in step i(c), once the off-
diagonal elements of the NOCI matrix, and gradients, are
obtained over the TDDS points, an interpolation is conducted to
obtain the same over the entire quantum nuclear grid. At the end
of this step, we have the CI matrix elements and gradients of the
individual CI Hamiltonian matrix elements at every quantum
nuclear grid point. (See bottom left panel of Figure 3.) Figure 4b
demonstrates the power of this sampling algorithm. As the
dimensionality of the quantum nuclear problem increases,
TDDS and parallelism are both critical with respect to
algorithmic efficiency.
•Step iii: The next step is to perform the nonorthogonal CI

calculation. This step provides the adiabatic surface for quantum
dynamics. (See bottom right panel of Figure 3.) This calculation
is currently performed at every individual grid point, in parallel.
However, a sampling approach here should further reduce the
computational overhead when a larger number of quantum
nuclear degrees of freedom are treated. These aspects will be
further evaluated in future publications.
•Step iv: The quantum-nuclear-grid-dependent gradients

obtained in steps i and ii are then used to compute gradients
for classical nuclear propagation; the surface obtained in step iii
leads to propagation of the quantum nuclear wavepacket.
The adiabatic-QWAIMDmethod differs fromMC-QWAIMD

in steps i−iii above. Here, the adiabatic surface is computed by
locating a “special” set of nuclear configurations where the
electronic structure and nuclear gradients are to be computed.
This “special” set of nuclear configurations is obtained using the
TDDS algorithm.4,12,16 Following this, an interpolation
procedure yields both the adiabatic surface and classical nuclear
gradients,4 leading to dynamics of the classical and quantum
nuclei.

III. RESULTS AND DISCUSSION
The benchmark systems used here are the bihalide clusters:
FHF−, ClHCl−, BrHBr−, and BrHCl−. We first analyze the
accuracy of potential surfaces computed using diabatic states.

The RQM
I* dependence of diabatic states is computed from the

Shannon-entropy-based sampling function discussed in Appen-
dix B1. The potential surface analysis is performed at classically
optimized nuclear geometries, that is, using the gradient and
Hessian optimization procedures well-known in quantum
chemistry. The associated results are discussed in section IIIA.
This analysis is followed by a study of QWAIMD trajectories in
sections IIIB, IIIC, and IIID. All the calculations are performed
using locally built modifications to a development version of the
Gaussian series of electronic structure programs.

A. Adiabatic Potential Surfaces from the Diabatic State
Representation. In this section we discuss the accuracy of the
potential surfaces computed using the diabatic states discussed
earlier. The initial structures for all the four hydrogen-bonded
systems are obtained from a geometry optimization at the
B3LYP/6-31+G(d,p) level of theory. For simplicity in gauging
the errors introduced in MC-QWAIMD, a globally fixed
Cartesian grid is employed to describe the quantum nuclear
degrees of freedom. Both one-dimensional and three-dimen-
sional grid calculations have been performed as part of our study.
The potential energy surface analysis here is, however, presented
along the donor−acceptor axis. The associated quantum nuclear
grid parameters are given in Table 2. For these cases, a
comparison of results obtained from the chosen grid size and
those from a larger grid yield consistent results. For the potential
energy surface calculations, the diabatic electronic structure, or
the reference states, are obtained at the Hartree−Fock and DFT
levels. These diabatic functions are then used within our
multireference treatment presented here. The electronic basis
functions include, a set of 6-31+G(d,p) Gaussian basis functions
localized on the classical atoms and 11 or 33 STO-3G Gaussian
basis functions distributed uniformly along the quantum nuclear
grid as noted in Table 2. At the starting geometry, the grid-based
basis functions are placed symmetrically and equally spaced, with
reference to the quantum nuclear grid, with a grid spacing of 0.2
Å. This basis-set spacing reduces linear dependency as seen in ref
16. This choice has also been shown to have accuracy comparable
to that of atom-centered aug-cc-pVTZ basis functions. (See
Table 2 in ref 16.) The grid-based basis function positions adapt
relative to the donor and acceptor atomic positions, as discussed
in Appendix B2. Specifically, the locations of the basis functions
expand and contract along with donor−acceptor distance.
In this subsection, we evaluate the use of diabatic states within

the NOCI algorithm toward computing the adiabatic potential
surface. In Figures 5 and 6, we provide an illustration of the
potential surfaces constructed from the NOCI algorithm at
equilibrium geometries obtained from gradient minimization.
These are constructed using the diabatic states for the chosen set
of bihalide systems where the quantum nuclear dependence of
the diabatic states, that is the positions, RQM

I* , are determined as
outlined in Appendix B1. The Shannon-entropy-based sampling
function described in Appendix B1 provides a higher weight at

Table 2. Quantum Nuclear Grid and Mesh-Guided Basis Details

one-dimensional representation of the
quantized hydrogen three-dimensional representation of the quantized hydrogen

quantum nuclear grid parameters grid size = 1.4 Åb Ngrid
a = 101 grid size = 1.4 Å × 0.8 Å × 0.8 Åc Ngrid

a = 97 × 49 × 49
adaptive electronic, (STO-3G) mesh mesh size = 2 Å Nbasis

d = 11 mesh sizee = 1.6 Å × 0.4 Å × 0.4 Åc Nbasis
d = 33

aNumber of quantum nuclear grid points. bGrid oriented along the donor−acceptor axis. cThe leading dimension is oriented along the donor−
acceptor axis. dNumber of basis functions. eThe basis set mesh contains two parts: The inner portion of the mesh, close to the classical optimized
structure, contains basis functions localized on a cubic lattice. The grid spacing for this lattice is 0.2 Å in all three dimensions and includes 27 basis
functions. There is a further set of six Gaussian basis functions placed along the donor−acceptor axes, three on either side of the aforementioned
cubic lattice.
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the classically allowed, low potential regions, as well as near the
classical turning points regions that are critical for quantum
nuclear effects.14,16 To further improve the sampling at the truly
high potential regions as well, two diabatic states are placed at the
edge of the grid. The NOCI potential surfaces are in good
agreement with adiabatic surfaces obtained from scanning the
quantum mechanical degrees of freedom for these set of
geometries. (Also see Figure 1 which depicts the overlap
between the diabatic states. The chosen states are linearly
independent and help expand the size of the n-particle Hilbert
space.)

In Table 3, errors are computed in comparison with the
adiabatic surfaces using

∫
∫

η

η
Δ =

− − −
ηV

x V x V V x V x

x x

d [( ( ) ) ( ( ) )] ( )

d ( )
NOCI NOCI

min
adiab adiab

min 2

(7)

Here, VNOCI(x) is obtained using the on-the-fly nonorthogonal
CI approach for determining the surface in QWAIMD, and
Vadiab(x) is a ground state adiabatic potential surface obtained
using a nuclear position scan. In addition, VNOCI

min and Vadiab
min are the

minimum values on the grid for VNOCI(x) and Vadiab(x),
respectively. Thus, (VNOCI(x) − VNOCI

min ) and (Vadiab(x) − Vadiab
min )

are shifted potentials that are used to gauge the relative error.
To analyze the accuracy of the potential surfaces, various

choices of η were considered:

(a) A choice of η1(x) = 1maintains equal importance at all grid
points and is used to gauge the full grid potential error.

(b) To gauge the error closer to the center of the grid where
the quantum nuclear wavepacket may be expected to be
localized, η2(x) is a step function chosen to be equal to 1
near the center of the grid (0.84 Å in spread) and zero
outside this region.

(c) Because Gaussian wavepackets and ground states obtained
from the potential are commonly chosen initial wave-
packets, we have two additional forms for this weighting
function. The function η3(x) is a Gaussian symmetrically
centered on the grid, with the exponent chosen such that
the weighting function has a value of 10−3 at the edges of
the grid.

(d) η4(x) is chosen to be the ground state wavepacket density
for Vadiab.

As shown in Table 3, the surfaces constructed from 7 and 9
diabatic states reproduce the relative potential with high
accuracy.

B. MC-QWAIMD Simulation Details. The initial wave-
packets for the QWAIMD simulations are chosen as ground
states obtained by diagonalization of the quantum nuclear
Hamiltonian in the coordinate representation. Here, the
potential surface is obtained on-the-fly using the NOCI
algorithm demonstrated in the previous section, whereas the
kinetic energy operator is represented using “distributed
approximating functionals” (DAF).10,11,92,93

All simulations use a 0.25 fs time step for classical nuclear
propagation, and 0.05 fs time step for quantum nuclear
propagation. Fifteen TDDS points are used in all adiabatic
QWAIMD simulations to construct the potential surface. A
number of trajectories with a varying number of diabatic states
have been examined in our study in an effort to gauge the
accuracy of MC-QWAIMD. The choice of initial diabatic state
positions is crucial in MC-QWAIMD and we use the Shannon-
entropy-based sampling functions in eq B1 to locate regions of
diverse electronic structure along the quantum grid as explained
in Section B1.
Energy conservation properties for all simulations are

provided in Table 4. These parameters are well within the
acceptable (subkcal/mol) range as compared to our previous
AIMD94−102 and QWAIMD4,14,15 studies. The computational
scaling of the algorithm is compared with a-QWAIMD in Figure
4.

C. Structural, Dynamical, and Vibrational Properties
Obtained from the MC-QWAIMD Simulations. In this
section, we will examine the structural and dynamical properties
of the benchmark systems as obtained from MC-QWAIMD
trajectories. A large number of simulations have been performed
for the four bihalide hydrogen-bonded systems. The initial
nuclear geometries, quantum nuclear grid definitions, grid-based
electronic basis function positions, levels of theory, and initial
wavepacket definitions are as stated in sections IIIA and IIIB. In
addition, the average values for the classical nuclear and quantum
nuclear kinetic energies are listed in Table 5. In each case the
length of simulation is 2 ps. As may be noted from Table 5, the
average or equilibrated quantum nuclear and classical nuclear
kinetic energies per degree of freedom are very different for all
systems. This is critical because equilibration between these
disparate subsystems is not desirable on account of the expected
zero point energy for the quantum nuclear degrees of freedom.
As noted from Figure 7, the kinetic energies for the quantum and

Figure 5. Accuracy of the adiabatic potential and mechanism of
computing the adiabatic potential using multiple diabatic states. The
reference states in this case are from Hartree−Fock, whereas those for
Figure 6 are from DFT/B3LYP. The five central diabatic surfaces are
shown in blue (energy axis on the right), and the resultant NOCI
surfaces are shown in red (energy axis on left) and are in good agreement
with the scanned surface shown in black. The first sets of off-diagonal CI
elements are shown in the top panel. The vertical dashed lines indicate
the position of diabatic states. For (d), bromine is on the left.
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classical degrees of freedom remain well separated. However, the
heavier systems do display classical kinetic energies with greater
magnitudes and larger spreads. Instantaneous diagonalization of
the quantized nuclear degree of freedom indicates that the
quantum wavepacket remains mostly on the ground eigenstate,
with minor excited state contribution for BrHCl−.
As part of the structural analysis we also present the radial

distribution function for the donor−acceptor distance in Figure
8; the corresponding quantum wavepacket and potential energy

surface evolution for nine diabatic states are in Figure 9 and
Figure 10. An average shared proton distribution is provided on
the top panels in Figure 9. As noted in Figure 8, there is a
significant dependence of the donor−acceptor distance on the
classical temperature. Compare Figure 8 with Table 5. As
expected, this is true to a greater extent for the lighter (FHF− and
ClHCl−) systems than for the heavier nuclear systems (BrHBr−

and BrHCl−) where a similar change in temperature has little
effect on the donor−acceptor distance distribution. In all cases

Figure 6. Adiabatic potentials computed at the B3LYP level using the MC-QWAIMD formalism.

Table 3. Error in the Potential Surface Computed at the Optimized Geometriesa

MC-QWAIMDb a-QWAIMDc

HF B3LYP HF B3LYP HF B3LYP HF HF

(5)d (5)e (7)d (7)e (9)d (9)e 9f 15f

FHF− η1 11.183 13.569 4.063 5.404 1.947 1.744 1.343 0.181
η2 5.260 5.644 0.222 0.505 0.050 0.447 0.246 0.020
η3 7.857 9.232 2.261 2.974 1.007 0.943 0.648 0.080
η4 0.281 0.638 0.013 0.139 0.032 0.145 0.133 0.009

ClHCl− η1 5.964 7.409 2.060 2.249 0.976 0.390 0.100 0.035
η2 3.270 3.849 0.183 0.133 0.018 0.043 0.053 0.007
η3 4.381 5.354 1.190 1.258 0.513 0.199 0.066 0.014
η4 0.520 0.629 0.040 0.033 0.017 0.026 0.063 0.004

BrHBr− η1 5.234 6.497 1.755 2.063 0.735 0.331 0.118 0.040
η2 2.918 3.433 0.155 0.149 0.017 0.016 0.039 0.012
η3 3.865 4.720 1.005 1.170 0.380 0.167 0.062 0.018
η4 0.562 0.658 0.051 0.027 0.019 0.012 0.049 0.008

BrHCl− η1 5.395 7.569 1.320 2.197 0.374 0.613 0.313 0.174
η2 2.465 3.731 0.160 0.253 0.030 0.143 0.331 0.179
η3 3.830 5.435 0.744 1.266 0.187 0.333 0.322 0.177
η4 0.506 0.842 0.053 0.092 0.025 0.086 0.337 0.175

aThe quantities shown are the values of Δη from eq 7 for different choices of η. The units for ΔVη are in kcal/mol.
bMulticonfigurational QWAIMD.

cAdiabatic QWAIMD using TDDS. dThe reference states are computed at the Hartree−Fock level of theory. The numbers in parentheses are the
number of diabatic states. eThe reference states are computed at the DFT/B3LYP level of theory. The numbers in parentheses are the number of
diabatic states. fNumber of TDDS points used in a-QWAIMD.
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the average values shown in the figure are about a hundredth of
an angstrom away from the respective experimental values also
noted in Figure 8. The location of the classical turning-point in
each case can be determined from the spike at the edge of the
distribution function, because the donor and acceptor atoms are
treated using classical dynamics. In Figures 9 and 10, the
quantum wavepacket motion is shown to be coupled with the
potential surface generated by the classical nuclei. As we will see
in the next section, the oscillation frequency of the wavepacket
contours roughly coincides with the donor−acceptor stretch
frequency. For the symmetric systems (FHF−, ClHCl−, and
BrHBr−), the breathing frequency of the donor−acceptor
oscillations is evident from the changes in wavepacket amplitude
at the central grid point (through the frequency of appearance of
the red-contour). However, the wavepacket appears totally
symmetric in these cases, which effectively retains the wave-
packet centroid at the central grid point all through the dynamics.
Thus, the effect of donor−acceptor oscillation is not captured in
the dynamics of the centroid, although it is present in the
wavepacket evolution for the symmetric FHF−, ClHCl−, and
BrHBr− systems. This symmetric behavior is obviously absent in
the case of BrHCl−. As a result, the wavepacket centroid is
expected to follow closely to the green contour in Figure 9d and
the dynamics of the centroid, in this case, does capture, to some
extent, the effect of donor−acceptor oscillations. These effects
due to symmetry are also confirmed upon inspection of Figure
10. The average wavepacket density on the top panels in Figure 9
indicates the extent of delocalization of the hydrogen nuclear
wave function in each case. The greater spread of the wavepacket
for ClHCl− is due to the presence of quartic and sixth-order
terms in the potential as already noted in ref 4.
D. Vibrational Analysis fromMC-QWAIMD Trajectories

Constructed Using the Unified Velocity/Flux Autocorre-
lation Function. The vibrational density of states are obtained
through the Fourier transform of a unified velocity/flux
autocorrelation function, with data computed using the MC-
QWAIMD trajectories. Here, the wavepacket flux and the
classical nuclear velocities are combined as follows:

∫= ⟨ · ⟩ + ⟨ · ⟩ω

→∞ =

=
−I t t tV V J Jlim d e { (0) ( ) (0) ( ) }

T t

t T
t

V J,
0

i
C Q

(8)

where the expectation value of wavepacket flux is J(t) = [⟨ψ(t)|
(−iℏ/m)∇|ψ(t)⟩}. Here, [···] represents the real part of the
complex number in square brackets. The symbols ⟨···⟩C and
⟨···⟩Q represent classical and quantum ensemble average. That is
the ensemble average is constructed from the classical and
quantum dynamical portions of the trajectory. The quantity V is
the 3N-dimensional nuclear velocity vector and ω is the
frequency. The two ensemble averages ⟨V(0)·V(t)⟩C and
⟨J(0)·J(t)⟩Q are calculated using convolution theorem103 in the
following manner:
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Equation 8 is to be contrasted with correlation functions used in
refs 104−107 to compute vibrational spectra from quantum-
classical trajectories. In contrast with expressions used in refs 104
and 105, the flux expression in eq 8 is computed from quantum
dynamics and hence may include contributions from more than
one excited state depending upon the temperature of the
simulation. Second, the classical degrees of freedom are, in
general, anharmonic, because the dynamics here is computed
using the potentials extracted from electronic structure
calculations. Finally, the expression in eq 8 includes the velocity
autocorrelation function and the flux autocorrelation function.
Because the latter is the quantum-mechanical analogue of
velocity, eq 8 represents a vibrational density of states. Infrared
intensities can also be included by directly computing the time-
dependent, wavepacket averaged dipoles, but these are not
considered in this publication.
The results here are presented for 5, 7, and 9 diabatic states.

These results are compared with gas-phase spectroscopy
experiments,43,49−58 with results obtained from other theories
that include quantum-nuclear treatment,5,45,46,48,59 and with the
TDDS implementation of adiabatic QWAIMD using 15 TDDS
points. In addition to the vibrational fundamentals here, the
dynamics results also provide combination bands such as those
obtained through a mixture of the donor−acceptor motion with
wavepacket motion. However, our treatment here is one-
dimensional for the quantum wavepacket, and hence we only
probe the asymmetric proton stretch, v3, and the symmetric
donor−acceptor stretch, v1. The vibrational fundamentals

Table 4. Energy Conservation Properties for the QWAIMD
Trajectoriesa

FHF− ClHCl− BrHBr− BrHCl−

MC-QWAIMD 5 diabatic states 0.249 0.057 0.114 0.193
MC-QWAIMD 7 diabatic states 0.355 0.059 0.098 0.190
MC-QWAIMD 9 diabatic states 0.392 0.060 0.091 0.190
adiabatic-QWAIMD with 15 TDDS
points

0.056 0.028 0.060 0.156

aThe quantities shown are the standard deviation in total energy
during the trajectory. Units are in kcal/mol, and all simulations are 2
ps long.

Table 5. MC-QWAIMD Average Nuclear Kinetic Energies (kcal/mol)

FHF− ClHCl− BrHBr− BrHCl−

KC
a KQ

b KC
a KQ

b KC
a KQ

b KC
a KQ

b

5c 0.331 76 1.094 75 0.083 40 0.690 20 2.676 77 1.149 28 0.668 55 1.463 92
7c 0.365 65 1.038 97 0.097 89 0.577 31 2.624 31 1.090 36 0.700 18 1.389 43
9c 0.382 22 1.029 37 0.098 71 0.569 40 2.610 13 1.085 97 0.700 43 1.373 81
15d 0.188 76 1.122 36 0.128 45 0.562 12 2.547 94 1.084 78 0.625 69 1.141 57

aAverage nuclear kinetic energy for the classical nuclear subsystem. bAverage nuclear kinetic energy for the quantum nuclear subsystem. cNumber of
diabatic states in MC-QWAIMD. dThis quantity is the number of TDDS points for the adiabatic,TDDS-based QWAIMD.
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Figure 7. Time evolution of the classical (KEC; dark blue and light blue) and quantum (KEQ; dark red and light red) nuclear kinetic energies for FHF
−

(a), ClHCl− (b), BrHBr− (c), and BrHCl− (d). In each figure the vertical axis depicts the kinetic energy in kcal/mol. The KE-9 refers to 9 diabatic states
in MC-QWAIMD, and KE-a refers to adiabatic-QWAIMD. As noted, the kinetic energies for the quantum and classical degrees of freedom remain well
separated.

Figure 8.Donor−acceptor radial distribution function for FHF− (a), ClHCl− (b), BrHBr− (c), and BrHCl− (d). Each figure contains results fromMC-
QWAIMD using 5 (red), 7 (green), and 9 (blue) diabatic states as well as adiabatic, TDDS-based QWAIMD with 15 TDDS points (magenta).
Experimental value are also quoted, where available.
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obtained from the Fourier transform of velocity/flux autocorre-
lation functions are provided in Tables 6−9 along with
comparisons to experiments. The combination bands can be
noted from the wavepacket flux spectrum presented in Figure 11.
For the case of FHF−, as the number of diabatic states is

increased, we notice a red shift in the MC-QWAIMD
frequencies, which brings these in closer agreement with
experiment. The red shift is to be expected because a small
number of diabatic states generally results in a relatively confined
potential surface to yield higher vibrational frequencies.
We also note that the best available theoretical result for v3 in

this particular system is due to Hirata and co-workers.59 In ref 59,
the authors use a time-independent formalism that is constructed
using vibrational SCF48 in conjunction with a coupled-cluster
potential. The corresponding ν3 value is 1343 cm−1. The result
from MC-QWAIMD using 9 diabatic states is 45 cm−1 higher
than the VSCF value. This is related to the one-dimensional
treatment here, because it is known from our previous adiabatic
QWAIMD studies in ref 4 (also see Table 1) that increased
dimensionality of the quantum system lowers the transition
energy through coupling of the bending and stretching modes. It
is also useful to note by comparison of Tables 1 and 6 that such
coupling is expected to be lower for FHF− than for ClHCl−. The
symmetric stretch frequency ν1 from QWAIMD (609 cm−1) and
MC-QWAIMD (616 cm−1) are in closer agreement with VSCF
(628 cm−1). A comparative study that probes the role of multiple

potentials within our dynamical treatment will be considered in a
future publication.
With regard to combination bands, we find a peak in the flux

spectrum corresponding to v3 + v1 at about 2000 cm−1. This
result is about 2.5% in error with respect to the corresponding
experimental value of 1849 cm−1 in ref 49.
In Table 7 we provide results for ClHCl−. Similar to the case of

FHF−, there is a lowering here in the v1 and v3 transition
frequencies with increasing number of diabatic states. However,
unlike in the case of FHF−, there is greater coupling between the
bending and asymmetric stretch in ClHCl−, as already noted in
ref 4. As a result, a three-dimensional QWAIMD treatment yields
both the v3 fundamental (723 cm

−1) and the v1 + v3 combination
band origin (970 cm−1) in good agreement with experiment (978
cm−1 43). By comparison, in the current one-dimensional
calculations, the first combination band origin is found to be at
≈910 cm−1.
For the case of BrHBr−, again the v3 frequencies drop as the

number of diabatic states is increased. The results from
simulations with a larger number of diabatic states are closer to
experiment, as seen in Table 8. In Figure 11, we note the
presence of a series of combination bands of the kind: v1 + nv3, for
different values of n. The heavier donor/acceptor nuclear mass
leads to a greater perturbation on the flux and as a result multiple
combination bands are seen in the spectrum.

Figure 9.Quantum wavepacket density evolution for quantized proton in the MC-QWAIMD simulation using 9 diabatic states. The black dotted lines
indicate the positions, RQM

I* , of the diabatic states. The position of the two outermost diabatic states coincide with the edge of the quantum nuclear grid.
The time-averaged wavepacket density is shown on the top panel within each figure.
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For BrHCl− again, all properties converge at 7 diabatic states; 7
diabatic states and 9 diabatic states lead to identical results. The
classical velocity spectra have good agreement between the MC-
QWAIMD and adiabatic-QWAIMD. The adiabatic-QWAIMD
spectrum is slightly blue-shifted as compared to the MC-
QWAIMD spectra.

IV. CONCLUDING REMARKS
In this paper, the multiconfigurational quantum wavepacket ab
initio molecular dynamics (MC-QWAIMD) approach is used to
study structural and vibrational properties for a set of bihalide,
hydrogen-bonded systems. The MC-QWAIMD method has the
following features: (a) The “on-the-fly” electronic structure is

computed using a nonorthogonal configurational interaction
formalism, where the individual configurations are Slater
determinants that approximate diabatic states. (b) The diabatic
states are propagated using an approximation based on an
extended Lagrangian treatment involving multiple electronic
density matrices and classically treated nuclei. (c) The diabatic
approximation for these states is further strengthened by
eliminating the quantum nuclear position dependence of the
electronic basis. Instead, adaptive-mesh-based Gaussian elec-
tronic basis functions are introduced and these encompass the
quantum nuclear grid region. This allows great simplification in
computing the “on-the-fly”, quantum-grid-dependent non-

Figure 10. Potential surface evolution for quantized proton in theMC-QWAIMD simulations using 9 diabatic states. The black dotted lines indicate the
position of diabatic states.

Table 6. Comparison of FHF−Vibrational Fundamentals with
Experiment and with Other Theories

ν1 (cm
−1) ν3 (cm

−1)

experiment gas phase49 583 1331
Ne matrix50 1379
Ar matrix50,51 1377
Ar matrix52 1364

harmonic MP2/aug-cc-pVTZ 634 1306
anharmonic VSCFa 628 1343
anharmonic VCIb 580 1313
MC-QWAIMD 9 diabatic states 616 1388

7 diabatic states 619 1400
5 diabatic states 631 1480

aFrom ref 59, where Hirata and co-workers use a time-independent
formalism that is constructed using vibrational SCF45−48 in
conjunction with a coupled-cluster potential. bFrom ref 59, where
Hirata and co-workers use a time-independent formalism that is
constructed using vibrational CI45−48 in conjunction with a coupled-
cluster potential.

Table 7. Comparison of ClHCl− Vibrational Fundamentals
with Experiment and with Other Theories

ν1 (cm
−1) ν3 (cm

−1)

experiment gas phase43 318 723
Ar matrix53−56 696
Kr matrix53 663
Xe matrix53 644

harmonic MP2/aug-cc-pVTZ 345 648
NEO-MP2(ee+ep) [ref 5] 334
CC-VSCF-MP2 [ref 5] 327 925
3D QWAIMDa B3LYP/6-31+G*b 300 806

B3LYP/6-31+G*c 254 723
MC-QWAIMD 9 diabatic states 282 626

7 diabatic states 286 639
5 diabatic states 317 800

aFrom ref 4, which also suggests that a three-dimensional treatment is
essential due to greater coupling between the asymmetric stretch and
bend modes. bInternal kinetic energy corresponding to a temperature
of 323.50 K. cInternal kinetic energy corresponding to a temperature
of 714.45 K.
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orthogonal configurational interaction formalism (with negli-
gible loss in accuracy), where the CI-matrix elements are easily
calculated through reuse of two-electron integrals as a result of
the diabatic approximation. (d) At the initial time-step, the
diabatic states are located using a Shannon-entropy-based
sampling function that facilitates the creation of localized
electronic structure groups. The sampling function depends on
the nuclear wavepacket and an approximation to the potential
surface.
The method is benchmarked for a series of bihalide systems:

FHF−, ClHCl−, BrHBr−, and BrHCl−. First, the accuracy of
Shannon-entropy-based sampling function in determining the
initial diabatic state approximations and effects of using the
adaptive-mesh-based Gaussian electronic basis functions are
probed by computing potential surfaces for the chosen systems.
The potential surfaces are found to be in good agreement with
calculations that use standard atomic scan techniques. Next,
structural distribution functions are computed from the MC-
QWAIMD trajectories. The resultant structural features such as
donor−acceptor distances are found to be in good agreement
with experiments. Finally, vibrational properties are computed
using the quantum wavepacket flux. The wavepacket flux allows

the direct computation of the spectral transition frequencies
including both vibrational fundamentals and approximations to
the combination band origins. It is found that the method
provides these spectral features in reasonable agreement with
experiments and other theories.

■ APPENDIX A: EVALUATION OF THE ENERGY
FUNCTIONAL, E(RC,{PI},RQM), USING “ON-THE-FLY”
NONORTHOGONAL CI

The multiple density matrices are coupled through the energy
function, E(RC,{PI},RQM), which is obtained using non-
orthogonal CI:
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where the electronic Hamiltonian is written in second quantized
form in some orthonormal basis, {χM}, as
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and the overlap is shown in eqs 2 and 3. To obtain the
Hamiltonian matrix elements and the overlap matrix elements in
eq A1, it is convenient to construct a singular value
decomposition (SVD)108 of sI,J in eq 3:
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or

σ= †s U V[ ] I JI J, , (A4)

where U and V contain the left and right singular vectors
obtained from SVD of sI,J, with singular values {σi

I,J}. These
transformations yield the so-called “corresponding orbi-
tals”,87−89
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that form a biorthogonal set according to
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We present a few comments with respect to the corresponding
orbital set, {{χĩ

I}; {χj̃
J}}: Because U and V are orthogonal

matrices, the individual sets {χĩ
I} and {χj̃

J} are such that each
transformed orbital from the set I is orthonormal with respect to
the transformed orbitals in set J, as seen from eq A7. Thus, the
Unitary transformations {χi

I} → {χ ̃iI} and {χj
J} → {χ ̃jJ}

orthogonalize the elements belonging to the two sets. However,
because |ΦI

(diab)⟩ is a Slater determinant comprising orbitals {χi
I},

Table 8. Comparison of BrHBr− Vibrational Fundamentals
with Experiment

ν1 (cm
−1) ν3 (cm

−1)

experiment Ar matrix57,58 164 728
Kr matrix53 687
Xe matrix53 646

harmonic MP2/aug-cc-pVTZ 210 692
MC-QWAIMD 5 diabatic states 240 855

7 diabatic states 238 794
9 diabatic states 238 776

adiabatic-QWAIMD 15 TDDS points 237 785

Table 9. BrHCl− Vibrational Fundamentals from MC-
QWAIMD and Adiabatic QWAIMD

ν1 (cm
−1) ν3 (cm

−1)

harmonic MP2/aug-cc-pVTZ 185 1531
MC-QWAIMD 5 diabatic states 292 1610

7 diabatic states 285 1498
9 diabatic states 285 1471

adiabatic-QWAIMD 15 TDDS points 274 1462

Figure 11. Fourier transform of the flux autocorrelation function from
MC-QWAIMD trajectories. All trajectories use 9 diabatic states.
Combination bands of the kind v1 + nv3 caused by perturbation from
heavy donor/acceptor nuclear motion are shown.
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the determinant remains invariant to within a phase109 when
represented in terms of the single particle functions {χĩ

I}. This is
similarly the case for |ΦJ

(diab)⟩. Thus, the overlap, I J, ≡
⟨ΦI

(diab)|ΦJ
(diab)⟩ =Det[sI,J], is simplified in the SVD set as follows:

∏ σ≡ ⟨Φ |Φ ⟩ =I J I J
i

i
I J

,
(diab) (diab) ,

(A8)

Similarly, the matrix elements for the nonorthogonal CI-
Hamiltonian in eq A1 are given by

∑ ∏ ∑ ∏χ χ σ χ χ χ χ σ= ⟨ ̃ | | ̃ ⟩ + ⟨ ̃ ̃ || ̃ ̃ ⟩
≠ ≠

H h
1
2I J
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I

j
J
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I J

i j
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j
I
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J

m i j
m
I J
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These equations can be further simplified on the basis of the level
of singularity of the overlap, sI,J, or level of noncoinci-
dence87−89,91 of the single particle vector spaces {{χĩ

I}; {χj̃
J}}.

This aspect is rigorously analyzed in ref 14; see section IVA.1 in
ref 14 for details. The key point to note is that when the single
particle vector spaces corresponding to |ΦI

(diab)⟩ and |ΦJ
(diab)⟩ do

not coincide, sI,J is singular and it is only the noncoincidental
subspace that appears in the one- and two-particle matrix
elements defined in eq A9. Once the Hamiltonian and overlap
are obtained as discussed above, the generalized eigenvalue
problem, eq A1, is solved to obtain the ground state that is used in
the current publication. In addition, classical nuclear gradients
are also obtained as discussed in section IVD, Appendix A, and
Appendix B in ref 14 and used in the tests provided in the current
publication.

■ APPENDIX B: COMPUTATIONAL ASPECTS
There are two critical computational aspects to the algorithm.
The first part deals with the determination of RQM

I* at time t = 0
and hence the valence-bond type diabatic functions with density
matrices PI(RC;RQM

I* ). The second aspect deals with the fact that,
in contrast to conventional electronic structure approaches, the
single-particle functions, {|χi

I⟩}, here are expressed using a
combination of atom-centered Gaussian basis functions and a set
of Gaussian basis functions the centers for which are localized on
a spatial adaptive mesh.14,16 This is important for the
computational efficiency of our algorithm. These computational
aspects are discussed in the subsections below.

1. Determination of {RQM
I* } for the Diabatic States PI(RC;RQM

I* )
The grid positions, RQM

I* , for each diabatic state are determined
from a sampling function that is derived from (a) a Shannon
entropy function16,110,111 that depends on the initial quantum
nuclear wavepacket density14 and (b) an approximation to the
potential energy surface associated with the quantummechanical
particle. Specifically, we employ the Shannon-entropy-based
sampling function introduced in ref 16:

ω ∝
̃ +
̃ +

R
S R

V R
( )

( ( ) 1)

( ( ) 1)QM
QM

QM (B1)

where S ̃ and Ṽ are normalized to have values in [0, 1]. The
Shannon entropy function corresponding to the nuclear
wavepacket, S[ρ(RQM) ] ≡ −ρ log(ρ), is a function of the
wavepacket density: ρ(RQM) ≡ χ*(RQM) χ(RQM), which may be
chosen on the basis of an estimate of the ground state from a
reduced dimensional calculation. With the normalization stated
above, S ̃[ρ(RQM)] and Ṽ(RQM) have similar contributions toward
the overall sampling function. The unit shifts in the numerator

and denominator of eq B1 retain numerical stability. The overall
sampling functions, ω(RQM), is normalized according to

∫ω ω= | | =R R R( ) ( ) d 1QM 1 QM QM (B2)

This sampling function is derived from our time-dependent
deterministic sampling (TDDS) approach4,12,16 that has been
used to improve the performance of QWAIMD calculations by
several orders of magnitude with negligible loss in accuracy.4 The
sampling function above is utilized to locate the family of points
{RQM

I* } that define PI(RC;RQM
I* ).

Once these significant points, {RQM
I* }, are determined at the

initial step of the dynamics, the quantized particle is placed on
each of these grid points to compute a family of single particle
electronic density matrices, {PI}. These, now, represent the
diabatic states discussed in the previous section. Thus, the Ith
density matrix is chosen at the initial time step to be
representative of the electronic structure at and around the
nuclear configuration denoted by RQM

I* and RC. Thus, each
density matrix represents some local electronic structure on the
quantum nuclear grid at the initial step. As the dynamics evolves
through the Euler−Lagrange equations of motion derived from
eq 4, these density matrices mix and the full potential surface is
captured through the nonorthogonal CI formalism described
above. Hence, the density matrices, PI(RC;RQM

I* ), are akin to
“valence-bond” states.77−81

2. Combination of Atom-Centered and
Adaptive-Mesh-Guided Gaussian Basis Functions To
Simplify the On-the-Fly Potential Evaluations
As noted earlier, in contrast to conventional electronic structure
approaches, the single-particle functions are expressed using a
combination of atom-centered Gaussian basis functions and a set
of Gaussians whose centers are localized on an adaptive spatial
grid. That is, the diabatic density matrices, PI(RC;RQM

I* ) are
expressed using a combination of atom-centered Gaussian basis
functions (localized on the classical nuclei) and Gaussian
primitives located on a chosen set of grid points that adapt to
classical nuclear positions. There are two reasons for this hybrid
basis choice: (a) The adaptive-mesh Gaussians are chosen to
encompass the quantum nuclear grid. This is not only to allow
accurate treatment of the delocalized electronic structure but also
to eliminate the basis function dependence on the quantum-
nuclear degrees of freedom. Thus, we retain atom-centered
Gaussians basis functions on the classical nuclear degrees of
freedom and substitute the same on the quantum nuclear
subsystem with a band of basis functions that are located on an
adaptive-mesh. This further enforces the independence of the
diabatic states from the quantum nuclear degrees of freedom. (b)
As a secondary source of computational gain, in ref 16 we have
noted that for the hydrogen-bonded systems studied, fewer grid-
based, adaptive Gaussians are required as compared to atom-
centered Gaussians, with limited loss in accuracy. (See Table 2 in
ref 16 for details.)
To determine the positions for the adaptive-mesh Gaussians,

we use the recipe prescribed in ref 16, where these basis functions
have been numerically benchmarked and found to provide
results in agreement with higher level augmented, correlation-
consistent series of atom-centered basis functions. Specifically,
for Gaussian basis functions of the kind

χ α= − − − − −x R y R z Rr r R( ) ( ) ( ) ( ) exp[ ( ) ]l m n x
l

y
m

z
nR

F, ,
2F

(B3)
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where the quantities l, m, and n are the usual orbital angular
momentum indices of the basis function and the basis function
centers,RF [≡(Rx, Ry, Rz)], are chosen to be functions of multiple
classical nuclear variables, i.e., RF = f({RC}). For the case of
hydrogen-bonded systems, we specialize our definition of RF ≡
f({RC}) to a function of the donor and acceptor coordinates. The
center for the ith Gaussian basis function is then given by

∑≡ + ⃗ = + + ⃗c a dR R v R R vi

j
ji

j
i i i iF C A D

(B4)

where RA and RD are coordinate vectors of the donor and
acceptor atoms for a hydrogen-bonded system and vi⃗ is a uniform
shift that can be used to create a three-dimensional band of
electronic basis functions. It is further important to note that the
basis functions introduced in eq B4 are functions of classical
nuclear coordinates. Hence, in a fashion similar to atom-centered
basis functions, the centers of these functions also transform
according to the classical nuclear positions. Furthermore, these
grid-based functions are spread uniformly in space. But these
functions differ from plane-waves112 through their {RF}
dependence of the Fourier transforms. The precise choice of
the variables, {ai, di, vi⃗}, is discussed in section A. It may be noted
that these grid-based Gaussian functions, when located using eq
B4, may be thought of as a generalization to the bond-centered
basis functions113−116 traditionally used in quantum chemistry
where the positions of these Gaussian basis functions are
determined using the sampling function ω discussed above.
However, in our case, we only require that RF ≡ f ({RC}).
As stated earlier, once basis functions are eliminated from

quantum mechanical degrees of freedom, the diabatic states,
{PI}, do not explicitly depend on the quantum nuclear grid
position. This reinforces the diabatic nature of the states and
leads to computational savings. Because there is no grid point
dependence on the basis function, it is found that two-electron
integrals can be reused over the entire quantum nuclear grid,
which reduces the computational complexity in determining the
diabatic state potential surfaces enormously. This approximation
has been demonstrated to be accurate in ref 14 and is further
tested in this publication.
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