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Challenge of creating accurate and effective kinetic-energy functionals
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The accuracy and effectiveness of various kinetic-energy functionals in providing total noninteracting ki-
netic energies, atomization kinetic energies, and equilibrium properties is evaluated. Employing converged
Kohn-Sham densities, we assess various kinetic-energy functionals in a non-self-consistent manner. It is found
that the gradient expansion, the Pearson-Gordon local truncation scheme, and the@4/3#-Padéapproximant of
DePristo and Kress provide reliable estimates for the total noninteracting kinetic energy. The estimates for the
atomization kinetic energy and equilibrium geometries are, however, far from being reliable for chemical
applications
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I. INTRODUCTION

Density-functional theory~DFT! is one of the most pow-
erful and commonly used tools to calculate equilibrium pro
erties of atoms, molecules, and solids@1–4#. The formal
framework of DFT is provided by the Hohenberg-Koh
theorems@5#, that prove the existence of a one-to-one ma
ping between the ground-state electron densityr(rW) and ex-
ternal local potentialv(rW) that differ by more than a con
stant. As a consequence, a variational expression for
ground-state energy in terms of the electron density is
tained. Modern implementations of DFT are, however, ba
on the Kohn-Sham method@6#. Here, a major portion of the
kinetic energy~the noninteracting kinetic energyTS) @1,2# is
calculated in terms of the Kohn-Sham orbitals and not a
functional of the density. It is only the exchange-correlati
energyEXC , a functional of the electron density, that has
be approximated. The constrained minimization of ene
with respect to the Kohn-Sham orbitals yields the grou
state energy of the system.

The search for an accurate density-functional approxim
tion to TS remains an unsolved problem. Such a functio
would facilitate the direct minimization of the ground-sta
energy with respect to the electron density, and hence
calculation of Kohn-Sham orbitals would not be require
This would reduce the computational complexity of DF
calculations immensely.

Efforts to obtain a simple and accurate expression for
noninteracting kinetic energy in terms ofr(rW) may be traced
back to Thomas@7# and Fermi@8#. In the Thomas-Ferm
approximation, the noninteracting kinetic energy (TS) is
written as

TS5c0E d3rr5/3~rW !, ~1!

wherec05(3/10)(3p2)2/3 ~in atomic units!. Some of the sub-
sequent improvements of this idea are, for instance, the
dient expansion@2# and partial resummations@2,1# of the
gradient expansion. However, the search for an approxim
noninteracting kinetic energy functional, which provides
sults accurate enough for chemical applications, is still o
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In this paper, we evaluate the merits of various kinet
energy functionals. Previous tests of kinetic-energy functi
als focused primarily on the ability of approximate functio
als to reproduce the total noninteracting kinetic energy
atoms @9–15# and extended systems@12,13,16,17#. Excep-
tions are Ref.@18#, where the second-order gradient appro
mation has been tested for atomization processes, and
@19#, where atomization energies have been studied using
gradient expansion up to fourth order. In this work, we foc
on the ability of various approximate kinetic-energy fun
tionals to describe chemical transformations such as ato
zations and changes in the bond lengths, in addition to ev
ating the accuracy when the total noninteracting kine
energy is calculated.

In Sec. II, we introduce various functionals proposed
the literature and discuss modifications thereof. Our test
culations, in Sec. III, include determining total kinetic ene
gies and atomization kinetic energiesDTS5Tatoms

2Tmoleculeas well as evaluatingTS as a function of the bond
length for various molecules belonging to the G2 set@20#. In
Sec. IV, we present our conclusions.

II. KINETIC-ENERGY FUNCTIONALS

The Thomas-Fermi approximation to the noninteract
kinetic energy can be systematically refined by utilizing n
only the local density but also spatial derivatives of the lo
density. The resulting partially integrated gradient expans
~simplified using Green’s theorem under the assumption
r(rW)→0 asurWu→` on an appropriate surface! is @1,2#

TS@r#5E d3r @ tS
(0)~rW !1tS

(2)~rW !1tS
(4)~rW !1•••#, ~2!

where

tS
(0)~rW ![c0r5/3, ~3!

tS
(2)~rW ![c2

u¹W ru2

r
, ~4!
©2001 The American Physical Society08-1
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tS
(4)~rW ![c4r1/3F S ¹W 2r

r
D 2

2
9

8

¹W 2r

r
S ¹W r

r
D 2

1
1

3
S ¹W r

r
D 4G .

~5!

c0 , c2, andc4 are known constants~see, e.g.,@2#!. Although
the gradient expansion can, in principle, be derived up
arbitrary high orders@21,22#, this does not imply that the
calculated noninteracting kinetic energies can be system
cally improved. In fact, all sixth- and higher-order terms
the gradient expansion diverge for atoms and molecule
r→` @23,2#. Here,r is the distance from the center of ma
of the molecule. One way around this divergence problem
the gradient expansion, for exponentially decreasing de
ties, is provided by the local truncation scheme of Pear
and Gordon@9#, where the kinetic-energy functional is wri
ten as

TS
PG@r#5E d3r F S (

l 50

l max21

tS
(2l )~rW !D 1

1

2
tS
(2l max)~rW !G . ~6!

l max[ l max(rW) is determined such thattS
(2l max)(rW) is the small-

est~in absolute value! term of the gradient expansion at poi
rW. We have also tried other truncation criteria but found
above criterion to be quite effective, as will be shown in t
Results section.

A conceptually elegant kinetic-energy functional was o
tained by Baltin@24#. In this author’s work, a partial resum
mation of the gradient expansion including all the terms
volving powers of¹W r leads to an approximation that is exa
if the external potential is a linear function.

Another important kinetic-energy functional, the vo
Weizsäcker kinetic-energy functional@25#,

TS
vW5 1

8E d3r
u¹W r~r !u2

r~r !
, ~7!

is considered exact@1,2,26–28# in the limit of rapidly vary-
ing electron densities. This functional is simply nine tim
the second-order term in Eq.~4! and gives the exact kineti
energy for one electron systems. It provides a rigorous lo
bound to thetrue kinetic energy@2#. It may be noted that the
sum of the Thomas-Fermi and the von Weizsa¨cker term pro-
vides a rigorous upper bound to the total kinetic energy
noninteracting particles in one dimension@2#.

The gradient expansion becomes exact in the slowly va
ing limit where s is small @s[u¹W ru/2kFr, kF[(3p2r)1/3]
and the von Weizsa¨cker functional is exact@1,2,26–28# in
the limit of rapidly varying electron densities with larges
values. Taking these limits into account, DePristo and Kr
@11# constructed a smooth@4/3#-Padéapproximant@29#,

tS
@4/3#~rW !5tS

(0)~rW !
110.95x1a2x21a3x319b3x4

120.05x1b2x21b3x3
, ~8!

wherex5tS
(2)/tS

(0) , and tS
(0) and tS

(2) are defined in Eqs.~3!
and ~4!. Of the eight parameters in the Pade´ approximant
above, four were determined from physical limits. The oth
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four parameters (a2 , a3 , b2, and b3) were determined by
fitting the functional to the total kinetic energies of inert g
elements@11#. ~The fitted parameters obtained in Ref.@11#
are a2514.281 11,a35219.579 62,b259.998 02, andb3
52.960 85.! This method, along with the local truncatio
scheme described above, provides the best results@2# for the
noninteracting kinetic energy of atomic systems.

Another class of functionals, based on the linear-respo
theory, has been actively studied by many grou
@12,13,16,17#. These functionals depend on averaged val
of the density of the system, which are significant for cert
metallic and extended systems. However, an average de
has little physical significance@12# for molecular systems
due to the rapidly varying nature of the electron density
molecules. As a result, this method has found application
metallic and extended systems@17#. In this paper, we study
molecular systems and hence do not discuss the merit
these functionals.

III. RESULTS AND DISCUSSION

To study the effectiveness of the functionals discussed
the preceding section, we perform Kohn-Sham calculati
on a number of small molecules selected from the G2
@20#, using uncontracted 623111G(3d f ,2p) basis sets. We
obtain the electron densities and the associated ‘‘exact’’ n
interacting kinetic energies from the Kohn-Sham orbita
The self-consistent densities are then used to calculate
proximate kinetic energies with the above-described fu
tionals. In all cases, the Kohn-Sham calculations are p
formed with the Becke 1988 exchange@30# functional and
the Perdew-Wang 1991~PW91! correlation@31# functional.
Our implementation of the approximate kinetic-energy fun
tionals is based on a development version of theGAUSSIAN

@32# suite of programs.
The functionals depending on the Laplacian of the el

tron density sometimes yield slowly decaying and oscillat
approximations to the noninteracting kinetic-energy dens
In these cases, it is necessary to employ large grids in o
to integrate the kinetic energy density accurately. A 40
point Euler-Macloren quadrature for the radial integrati
@33,34# and 5000-point Gauss-Legendre quadrature@35# for
the angular integration were used in our work. This g
results in integrations precise to within 1 mHartree.

A. Total noninteracting kinetic energies

In Tables I and II, we present results for the total non
teracting kinetic energy. In Table I, we see that while t
Thomas-Fermi functional yields large errors for molecu
and atoms, these results are improved by the inclusion of
second- and fourth-order gradient corrections. From Tabl
it is also clear that thenth-order local truncation schem
interpolates between the gradient expansions up tonth-order.
As a consequence, this functional provides improved res
at the fourth-order level compared toTS

(024) .
Table II shows that the von Weizsa¨cker functional always

yields a lower bound to the total noninteracting kinetic e
ergy, which is consistent with the discussion in Ref.@2#.
8-2
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TABLE I. Exact noninteracting kinetic energies and errors in approximate kinetic energies. In all c
lations, converged Kohn-Sham orbitals and densities obtained within the Becke88-PW91 approximat
employed.

Exact TS
(0)a TS

(02)b TS
(024)c TS

PG02
d

TS
PG024

e

H 0.500 20.044 0.011 0.032 20.019 0.015
B 24.548 22.506 20.058 0.476 21.287 20.093
C 37.714 23.731 20.154 0.600 21.949 20.064
N 54.428 24.993 20.097 0.904 22.554 0.193
O 74.867 26.990 20.546 0.765 23.778 20.772
F 99.485 29.093 20.933 0.659 25.025 20.464
H2 1.151 20.142 20.014 0.033 20.084 20.006
HF 100.169 29.016 20.920 0.639 24.979 20.456
H2O 76.171 27.074 20.692 0.565 23.893 20.317
CH4 40.317 23.773 20.140 0.619 21.967 0.086
NH3 56.326 25.292 20.400 0.587 22.856 20.106
BF3 323.678 229.052 22.641 2.454 215.869 21.114
CN 92.573 28.940 20.687 0.978 24.823 20.181
CO 112.877 210.694 20.911 1.036 25.813 20.322
F2 199.023 218.367 22.201 0.925 210.301 21.259
HCN 92.982 28.925 20.658 1.008 24.802 20.150
N2 109.013 210.487 20.916 0.999 25.711 20.333
NO 129.563 212.342 21.240 0.962 26.803 20.574
O2 149.834 214.186 21.527 0.965 27.870 20.772
O3 224.697 221.636 22.699 1.028 212.183 21.500
Ave. Abs.f 9.364 0.872 0.812 5.128 0.439

aThomas-Fermi approximation.
bSecond-order gradient approximation.
cFourth-order gradient approximation.
dSecond-order locally truncated scheme.
eFourth-order locally truncated scheme.
fAverage of the absolute errors.
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However, a comparison of the results obtained using the
Weizsäcker functional with those obtained using th
Thomas-Fermi functional~in Table I! leads to the conclusion
that while the von Weizsa¨cker functional is more accurat
for systems with a smaller numbers of electrons,
Thomas-Fermi functional is more accurate for atomic s
tems with larger numbers of electrons. This is consist
with the discussion in Ref.@37# where it is shown that the
Thomas-Fermi functional is exact for atoms in the limit
large atomic numbers. Furthermore, for all the cases stu
here, the sum of Thomas-Fermi and von Weizsa¨cker func-
tionals, i.e.,TS

TFW in Table II, yields an upper bound to th
noninteracting kinetic energy. While it is rigorously show
@2# that this is true in one dimension, our results seem
indicate that it may be true for Coulomb systems in th
dimensions as well. Furthermore, the functionalTS

vW1C(N)TF

@2,14,15# interpolates between the von Weizsa¨cker func-
tional and theTS

TFW functional. The interpolation is don
using a particle-number-dependent functionC(N) which is
obtained@2,14# by modifying the derivation of the Thomas
Fermi functional to account for a finite number of particle
This yields@14#

C~N!5S 12
2

ND F12
ao

N1/3
1

a1

N2/3G , ~9!
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with ao51.314 anda150.0021@14#. It is clear from Table II
that whileTS

vW1C(N)TF is reasonably accurate for atoms a
singly bonded molecules, the errors encountered for F2 , BF3,
and for multiply-bonded systems are, however, very larg

In Table II, we also present results obtained from t
Baltin functional@24#. This functional has been the object o
great interest@10,12,13#; however, to the best of our knowl
edge, this is the first paper in which the Baltin functional h
been applied to molecules. For all the cases studied, the
tin functional has always overshot the exactTS ~see Table
II !.

The @4/3#-Padéapproximant, which interpolates betwee
the second-order gradient expansion and the von Weizsa¨cker
functional, yields noninteracting kinetic energies with an a
curacy similar to that of the second-order gradient expans
~Table II!. Hence, it may be concluded that most of thes
values sampled during a total noninteracting kinetic ene
calculation for atoms and molecules are not, in fact, with
the large-s region where the von Weizsa¨cker functional is
considered accurate.

It is interesting to discuss the differences between
@4/3#-Padéapproximant and the Baltin functional. Both func
tionals have the correct behavior for large and for zeros
@11,24#. However, Table II indicates that the Pade´ approxi-
8-3
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TABLE II. Exact noninteracting kinetic energies and errors in approximate kinetic energies. In al
culations, converged Kohn-Sham orbitals and densities obtained within the Becke88-PW91 approx
are employed.

Exact TS
vW a

TS
TFWb

TS
vW1C(N)TFc

TS
B d

TS
[4/3] e

H 0.500 20.000 0.456 0.142 0.527 0.012
B 24.548 22.521 19.521 0.551 22.487 20.361
C 37.714 25.517 28.465 0.770 32.536 20.483
N 54.428 210.364 39.070 0.711 44.181 20.399
O 74.867 216.872 51.005 0.617 57.332 20.717
F 99.485 226.043 64.349 20.116 71.673 20.843
H2 1.151 20.000 1.009 0.000 1.182 20.017
HF 100.169 227.301 63.852 1.179 70.906 20.733
H2O 76.171 218.731 50.367 2.858 56.394 20.707
CH4 40.317 27.615 28.929 3.803 32.847 20.345
NH3 56.326 212.302 38.731 3.643 43.688 20.548
BF3 323.678 285.981 208.645 75.968 232.094 22.280
CN 92.573 218.298 65.335 12.949 74.104 21.100
CO 112.877 224.825 77.358 15.041 87.205 21.201
F2 199.023 253.527 127.129 26.591 141.419 21.907
HCN 92.982 218.583 65.474 14.211 74.223 21.047
N2 109.013 222.879 75.647 15.560 85.583 21.282
NO 129.563 229.646 87.574 17.852 98.577 21.484
O2 149.834 235.906 99.741 20.932 111.915 21.697
O3 224.697 254.268 148.794 47.125 167.004 22.884
Ave. Abs.f 23.559 67.073 13.031 75.294 1.002

avon Weizsa¨cker.
bThomas-Fermi plus von Weizsa¨cker.
cvon Weizsa¨cker plus particle-number-dependent parameter times Thomas-Fermi. See text for details
dBaltin’s functional.
e@4/3#-Padéapproximant.
fAverage of the absolute errors.
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mant provides significantly better results. This would in
cate that the Pade´ approximant, for most systems consider
here, models the intermediates behavior better than the Ba
tin functional. A plausible explanation for this may be foun
in Fig. 1, where we study the enhancement factorF„s(rW)… of
various functionals as a function ofs. F„s(rW)… is defined by
the relation

TS
app@r#5E d3rt S

(0)~rW !Fapp
„s~rW !…. ~10!

In this equation,TS
app stands for the particular functional o

interest. Note that in general the enhancement factor ma
a function of other variables, such as the reduced Lapla
of the density, in addition to being a function ofs. The Baltin
enhancement factor is oscillatory for small values ofs
(,0.25), but ass increases, it very quickly approaches t
enhancement factor of the von Weizsa¨cker functional. The
enhancement factor of the Pade´ approximant, on the othe
hand, remains close to the enhancement factor of the sec
order gradient expansion and in fact shows a dip in
physically important range ofs @36#. The functional
TS

vW1C(N)TF ~plotted setting the number of electrons atN
515) approaches the von Weizsa¨cker functional for larges.
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However, it does not yield the correct Thomas-Fermi lim
for small s. The Pade´ approximant remains close to the gr
dient expansion for a larger range ofs values compared to
the other functionals in the figure, and this is the reason
the greater accuracy of the Pade´ approximant. Although, it is
not obvious from the figure, the@4/3#-Padéapproximant does
approach the von Weizsa¨cker results ass→`. This, of
course, is not the case for thenth-order gradient expansion

To summarize, the best results for the total noninteract
kinetic energy are obtained from the locally truncated four
order gradient approximation, the second-order and
fourth-order gradient expansions, and the@4/3#-Padéapprox-
imant. Note that a finite-order gradient expansion has
incorrect asymptotic behavior for larges, since it does not
approach the von Weizsa¨cker functional in this limit. The
success of the gradient expansion, however, indicates
the larges behavior may have little or no consequence in t
calculation of total noninteracting kinetic energies. T
@4/3#-Padé approximant also provides results that are
similar accuracy as those obtained from the gradient exp
sions and the local truncation scheme. Another interes
fact to be noted from Tables I and II is that the partic
number-dependent functionalTS

vW1C(N)TF provides better re-
sults for total noninteracting kinetic energies than the cor
8-4
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FIG. 1. Enhancement factors for variou
kinetic-energy functionals.
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sponding functionals that are independent of particle num
~i.e., TS

TFW). The particle-number-dependent functiona
however, often have the big disadvantage of being size
consistent~as is the case forTS

vW1C(N)TF), i.e., the noninter-
acting kinetic energy of two isolated subsystemsA and B
depends on whether one calculation is performed forA1B
or two calculations are performed forA andB separately.

It is important to note that the above results are obtai
when accurate, converged densities are inserted into
functionals. This does not imply that the functionals the
selves yield satisfactory results when used in a s
consistent manner.

B. Atomization energies

In applications, the calculation of energy changes up
chemical transformations is of great importance. Therefo
we use approximate and exact noninteracting kinetic e
gies to study noninteracting kinetic-energy contributions
atomization energies.

Unlike in the case of total kinetic energies, the addition
gradient corrections to the Thomas-Fermi ansatz did not
prove the results for atomization energies. In fact, in m
cases inclusion of even the second-order gradient correc
worsens the results compared to the Thomas-Fermi fu
tional ~Table III!. The second-order local truncation schem
though, improves on the full second-order~i.e., TS

(02)) result.
Similarly, inclusion of the fourth-order terms with local trun
cation criterion is found to improve on the full fourth-ord
expansion~i.e., TS

(024)). The local truncation scheme interpo
lates between the Thomas-Fermi and correspond
nth-order gradient expansion~as in the case of total ene
gies!. The gradient expansion itself yields progressive
poorer results. These findings are to be contrasted with
culations performed for slowly varying systems@38,39#
where gradient expansions of increasing order systematic
improve the results.

The von Weizsa¨cker functional does not yield a lowe
bound to the change in the noninteracting kinetic ene
upon atomization~as it did for the total noninteracting ki
05250
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netic energies!, and theTS
TFW functional does not provide an

upper bound. Further, theTS
vW1C(N)TF functional does not

interpolate between the von Weizsa¨cker andTS
TFW results

and provides results that are worse than those obtained
TS

vW or from. TS
TFW An explanation for this might be that th

particle-number-dependent factor,C(N) in TS
vW1C(N)TF , was

originally derived for atomic systems@14#. The Baltin func-
tional provides results that were comparable to those p
vided by the von Weizsa¨cker andTS

TFW functionals. The
@4/3#-Padé approximant yields results comparable to t
Thomas-Fermi and local truncation schemes. As in the c
of the noninteracting kinetic energy, our calculations indic
that the values ofs sampled during the atomization energ
calculation are outside the region where the von Weizsa¨cker
functional is considered accurate.

To summarize, the results, shown in Table III, are not
encouraging as those for the total noninteracting kinetic
ergies in Tables I and II. None of the methods tested
accurate enough for chemical applications. The best res
are obtained with the Thomas-Fermi functional, the@4/3#-
Padéapproximant, and the locally truncated second-or
expansion. For ‘‘noncongested’’@40# molecules such as HF
H2O, and CH4, the Thomas-Fermi or the locally truncate
gradient expansions provided encouraging results. In th
systems the orbital nodality problem@40#, which causes den
sity functionals to fail badly, is less severe compared to ty
cal multiply bonded systems.

C. Equilibrium properties and behavior with change
in bond length

To illustrate the behavior of the various kinetic-ener
functionals upon changes in bond length, we calculated
proximate and exact kinetic energies using the conver
Kohn-Sham densities at various bond lengths. In Fig. 2,
present results for N2. ~A similar behavior was found for
other multiply bonded molecules, such as NO, hence only2
is presented.! Note that all the curves are shifted such th
they have the same kinetic energy at the equilibrium bo
8-5



rgies.
ation.

IYENGAR, ERNZERHOF, MAXIMOFF, AND SCUSERIA PHYSICAL REVIEW A63 052508
TABLE III. Exact atomization kinetic energies and errors in approximate atomization kinetic ene
All calculations use converged Kohn-Sham orbitals and densities within the Becke88-PW91 approxim
Abbreviations as in Tables I and II.

Exact TS
(0) TS

(02) TS
(024) TS

PG02 TS
PG024

H2 20.150 0.053 0.036 0.031 0.046 0.036
HF 20.183 20.121 20.002 0.052 20.065 0.011
H2O 20.304 20.004 0.168 0.264 0.077 0.183
CH4 20.602 20.136 0.031 0.109 20.058 0.043
NH3 20.397 0.166 0.337 0.413 0.245 0.350
BF3 20.674 20.733 20.216 20.001 20.493 20.171
CN 20.431 0.216 0.436 0.526 0.320 0.447
CO 20.297 20.027 0.211 0.468 0.086 0.227
F2 20.053 0.181 0.336 0.393 0.251 0.340
HCN 20.340 0.156 0.419 0.528 0.280 0.433
N2 20.157 0.501 0.723 0.809 0.604 0.731
NO 20.268 0.360 0.598 0.707 0.472 0.608
O2 20.100 0.206 0.436 0.565 0.314 0.444
O3 20.097 0.667 1.062 1.267 0.850 1.076
Ave. Abs. 0.252 0.358 0.442 0.297 0.364

Exact Ts
vW TS

TFW TS
vW1C(N)TF TS

B TS
[4/3]

H2 20.150 0.000 20.097 0.284 20.128 0.041
HF 20.183 1.258 0.953 21.153 1.294 20.098
H2O 20.304 1.859 1.551 21.957 1.991 0.015
CH4 20.602 2.098 1.360 22.464 1.796 20.089
NH3 20.397 1.938 1.707 22.504 2.073 0.185
BF3 20.674 5.330 3.923 275.766 5.412 20.610
CN 20.431 2.416 2.201 211.468 2.613 0.217
CO 20.297 2.436 2.112 213.655 2.663 0.001
F2 20.053 1.440 1.568 226.824 1.927 0.222
HCN 20.340 2.701 2.518 212.588 3.021 0.177
N2 20.157 2.150 2.493 214.138 2.778 0.483
NO 20.268 2.410 2.502 216.524 2.935 0.368
O2 20.100 2.163 2.269 219.698 2.749 0.263
O3 20.097 3.653 4.222 245.276 4.991 0.733
Ave. Abs. 2.275 2.105 17.449 2.597 0.250
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length ~which is the point where all the curves in the figu
intersect!. The gradient approximations~including the local
truncation schemes! appear to reproduce the general beh
ior of the exact curve to a reasonable degree. The slope
these approximate curves at equilibrium, are, however,
by at least 25%.

We then use the approximate kinetic energies calcula
above to get the approximate total energies at the respe
geometries. This is done by replacing the exact noninter
ing kinetic energies with approximate kinetic energies in
expression for the Kohn-Sham ground-state energy. I
found that the total energy calculated using the Thom
Fermi kinetic-energy functional always decreases with
creasing internuclear distances. This is consistent with
nonbinding theorem@41,42,1#. Furthermore, none of the
functionals has a local minimum at or close to the equil
rium geometry. The asymptotic behavior for large intern
clear distances is also found to be not in agreement with
exact results, which further substantiates the unsatisfac
05250
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atomization-energy results in Table III. We conclude th
equilibrium properties~such as force constants! obtained us-
ing approximate functionals may be inaccurate.

IV. CONCLUSIONS

In this paper, we examined the potential of vario
kinetic-energy functionals for providing chemically releva
results for molecular systems. Among other functionals,
have considered the gradient expansion, the Pearson-Go
local tuncation scheme, the von Weizsa¨cker functional, the
Baltin partial resummation of the gradient expansion, and
@4/3#-Padéapproximation of Ref.@11#.

We found that while the total noninteracting kinetic e
ergy of atoms and molecules may be estimated with reas
able accuracy, the differential kinetic energy of proces
such as atomization is not well approximated by curr
functionals for TS . Equilibrium properties, such as forc
constants and equilibrium geometries are far from being c
sidered chemically relevant.
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FIG. 2. Kinetic energy of N2 as a function of
the bond distance.
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For the case of the total noninteracting kinetic energy,
best results were obtained with the locally truncated fou
order gradient expansion, the second- and fourth-order
dient expansion, and the@4/3#-Padéapproximants. These re
sults indicate that the asymptotic behavior of a functional
larges is not very significant in calculating the noninterac
ing kinetic energy because on average thes values of atoms
and molecules are not very large. Hence, to further impr
the performance of these functionals~in the calculation of
total energies!, it is necessary to understand the behavior
the noninteracting kinetic energy for intermediate values
s. A good starting point for this might be the@4/3#-Padé
approximant or the local truncation scheme in which
intermediate-s behavior is determined empirically.

The best results for atomization energies were obtai
from the Thomas-Fermi functional, the@4/3#-Padéapproxi-
mant, and the second-order local truncation scheme. Ag
the similarity of the results obtained from the Thomas-Fe
functional and the@4/3#-Padéapproximant indicate that, as i
the case of the total noninteracting kinetic energy, the lar
s limit ~where the von Weizsa¨cker functional is considered
@26,2,27,28,1# exact! is not significant. Hence, further im
provement in the atomization results may be expected fro
better understanding of the behavior of the noninterac
kinetic energy for intermediate values ofs. Our calculations
have been carried out in a non-self-consistent manner. S
consistent calculations would suffer from the severe d
ciency of missing shell structure@2# and are thus likely to
produce even worse results than those reported here.
s
,
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Recently@43#, a method has been developed, in which
linear combination of a variety of functionals is consider
and the coefficients of this linear combination are optimiz
to fit a data set containing exact kinetic-energy values. T
method is interesting since a family of functionals may no
be developed in the form

Ts@r#5E drW@Q~s2s0!ts,1~rW !1Q~s02s!ts,2~rW !#, ~11!

whereQ(s2s0) is a smooth approximation to the step fun
tion. $ts,i(rW)% may be chosen such thatts,i most accurately
describes the behavior in the relevant range ofs. @For the
expression in Eq.~11!, the functionalts,1 may be considered
accurate in the regionsP@0,s0#, while the functionalts,2
may be accurate insP@s0 ,`).# This form may, of course, be
generalized to include more than two functionals. Fitti
functionals in this fashion may lead to further insight into t
correct behavior ofTs@r# for intermediates.

The accuracy of the Thomas-Fermi functional and
second-order gradient expansion in the near-homogen
limit, may allow their use in methods involving ‘‘partitioning
schemes’’ for complex systems@44,45#. Investigating the use
of the @4/3#-Padéapproximants in such partitioning method
may also lead to fruitful results.
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