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1. INTRODUCTION

The hydroxyl (OH) and peroxy radicals (HO2 and RO2) play
a central role in the chemistry of the atmosphere. Through the
oxidation of volatile organic compounds (VOCs), the OH radical
initiates reactions that lead to the production of ozone and secondary
aerosols in the atmosphere. Most of these reactions convert OH to
both HO2 and organic peroxy radicals (RO2), which in the presence
of nitrogen oxides (NOx) typically found in urban areas are converted
back to OH, resulting in a fast cycling of radicals that leads to the
formation of ozone, the primary component of photochemical smog:

OH þ VOC f R þ H2O ð1aÞ

R þ O2 f RO2 ð1bÞ

RO2 þ NO f RO þ NO2 ð1cÞ

RO2 þ NO f RONO2 ð1dÞ

HO2 þ NO f OH þ NO2 ð1eÞ

NO2 þ hν f
O2

NO þ O3 ð1fÞ

The situation is different on the regional scale, where ozone produc-
tion tends to be limited by the lower concentration ofNOx,

1 resulting
in self and cross reactions of peroxy radicals competing with reaction
with NO, thus, terminating the radical chain according to

RO2 þ RO2 f 2RO þ O2 ð2aÞ

f ROH þ R0ðOÞ þ O2 ð2bÞ

HO2 þ RO2 f ROOH þ O2 ð2cÞ
Measurements of OH and HO2 can provide a critical test of our
understanding of the fast photochemistry of these regions of the
atmosphere.2 However, many of these measurements show serious
discrepancies with modeled concentrations of OH and HO2, espe-
cially in forest environments dominated by isoprene emissions,
bringing into question our understanding of the fast photochemistry
of the troposphere and, specifically, the atmospheric chemistry of
isoprene.2�5 Unlike the OH-initiated oxidation of alkanes (reaction
1a), theOH-initiated reactions of unsaturatedVOCs such as isoprene
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ABSTRACT: The effect of water on the stability and vibrational states of a hydroxy-isoprene adduct
is probed through the introduction of 1�15 water molecules. It is found that when a static nuclear
harmonic approximation is invoked there is a substantial red-shift of the alcohol O�H stretch (of the
order of 800 cm�1) as a result of introduction of water. When potential energy surface sampling and
associated anharmonicities are introduced through finite temperature ab initio dynamics, this
hydroxy-isoprene OH stretch strongly couples with all the water vibrational modes as well as the
hydroxy-isoprene OH bend modes. A new computational technique is introduced to probe the
coupling between these modes. The method involves a two-dimensional, time-frequency analysis of
the finite temperature vibrational properties. Such an analysis not only provides information about
the modes that are coupled as a result of finite-temperature analysis, but also the temporal evolution
of such coupling.
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involve OH addition to one of the carbon�carbon double bonds,
resulting in the formation of hydroxy peroxy radicals:

OH þ VOC f R0OHðadductÞ ð3aÞ

R0OH þ O2 f HOR0O2 ð3bÞ

HOR0O2 þ NO f HOR0O þ NO2 ð3cÞ
To improve our understanding of the chemical mechanism of

the OH-initiated oxidation of isoprene and other unsaturated
VOCs, there have been several experimental measurements on
the kinetics and mechanism of the OH-initiated oxidation of unsa-
turatedVOCs such as isoprene and butadiene.6 For such cases, it has
recently been proposed7 that several hydrogen-bonded peroxyl
radicals could be formed as intermediates in the OH-initiated oxida-
tion of isoprene. Furthermore, rearrangements of these peroxy
radicals, through hydride, proton, or hydrogen atom shifts, followed
by unimolecular decomposition or reaction with HO2 can give rise
to additional products, including HOx radicals, aldehydes, and
peroxols. Factors that govern the stability of such hydrogen-bonded
systems may include enthalpic as well as entropic contributions,
because some of these involve the formation of six- and eight-
membered hydrogen-bonded rings.

The importance of these proposed peroxy radical reactions in
the atmosphere depends on the rate of these peroxy radical iso-
merization reactions relative to the self- and cross-reactions of
these peroxy radicals. Facilitating rate constants calculation studies
for such complex systems are generally performed using the Rice�
Ramsperger�Kassel�Marcus (RRKM) theory to compute un-
imolecular reaction rates. Computations on the vibrational parti-
tion function that appear in these rate equations are generally
performed within the Harmonic approximation, where harmonic
frequencies at optimized nuclear configurations or transition
states lead to the appropriate density of states. This approach is,
however, not adequate for systems that demonstrate soft modes,
such as hydrogen bonds.6,8�16 When hydrogen bonds facilitate
reactions, shifts in transition states have been noted,17 and these
shifts are absent when the energies are computed within the
harmonic approximation. These contributions are in addition to
any anharmonicity contributions that may arise as a result of the
floppy hydrogen-bond modes. For the atmospheric systems
treated here, these effects will be explored in future publications.
Through recent studies8�14,18 the use of ab initio molecular
dynamics (AIMD) to accurately represent vibrational properties
of similar, soft-mode, hydrogen-bonded systems, in agreement
with experiment, has been demonstrated (see, also, Appendix A).
Some of these studies have included a detailed examination of H/D
isotope effects, including their dependence on temperature.6,12,13

In ref 19, the role of anharmonicity and energy redistribution on
the vibrational states has been examined using similar approaches
as those described in refs 6 and 9�13.

Furthermore, the influence of water on the stability and vibra-
tional energy distribution in hydrogen-bonded reaction inter-
mediates and transition states may be critical.11,20�24 In this
publication, we utilize ab initio molecular dynamics to assess the
effect of water on the vibrational properties. Several reactions in
the atmosphere occur in the presence of water, which may have
rather substantial implications on rates and branching ratios in
many instances. The catalytic effects of organic reactions occur-
ring on a water surface have been shown to increase rate con-
stants by stabilizing reaction intermediates through the enhanced

availability of hydrogen bonding on the surface of water
droplets.25 High stereo- and regioselectivity has also been
observed with on-water reactions.25 Implications on atmospheric
reaction rates and branching ratios are apparent. Stratospheric
ice, for example, catalyzes the reaction of HCl and ClONO2 to
form Cl2 and HNO3.

26 Another example, relevant to tropo-
spheric chemistry, is that the decomposition of a isoprene
ozonolysis product has been theoretically shown to have
enhanced reaction rates in the presence of a single water
molecule.27 [The calculations in ref 27, however, involve harmo-
nic analysis of hydrogen-bonded intermediates, which has a
restricted influence as we will show in this paper (and as already
noted in refs 9�14).] In a review concerning tropospheric ozone,
Jacob iterates the need for data concerning atmospheric aerosols
and various reactive surfactants, such as hydroxyl peroxy radicals
from isoprene oxidation.28 Because the major interaction be-
tween aerosols and surfactants is through hydrogen bonding, it is
useful to examine the behavior of the hydrogen-bonded atoms.
Therefore, it is of interest to understand the interaction of the
reactive species and intermediates, such as the hydroxyl peroxy-
isoprene radical, and the water molecules that might result in the
formation of an aerosol. Work presented in refs 6 and 9�15
indicates that hydrogen bonding affects both the vibrational
density of states as well as vibrational energy redistribution and
stabilization. In the case of hydroxyl peroxy-isoprene radicals on
the surface of an atmospheric aerosol, this interaction will be
predominantly comprised of the hydroxyl group hydrogen
bonding to the adjacent waters in the aerosol. To probe the
effect that this hydrogen bonding may have on the reactivity and
stability of hydroxyl peroxy-isoprene, here we investigate the
enthalpic and entropic stability of hydroxy-isoprene as well as the
influence on its OH stretch and bend modes in the presence of
water. Both electronic structure as well as AIMD simulations are
used. Although the atmospheric fate of hydroxyl-isoprene alkyl
radicals is predominately the reaction with O2 to form peroxy
radicals, understanding the influence of water on the stability and
vibrational energy distribution of the OH-isoprene adducts is of
interest theoretically. The results of this study will be useful to
compare to studies of the impact of water on the stability and
vibrational energy distribution of isoprene-based peroxy radicals,
which will be a topic of a future publication.

In ref 11, Iyengar carried out AIMD and electronic structure
studies on hydroperoxyl water clusters. It was found that (a) the
thermally averaged electronic energy gap between the highest
occupied molecular orbital and the lowest unoccupied molecular
orbital monotonically decreases as the number of water mol-
ecules is increased in a hydroperoxyl water cluster system and (b)
structural analysis from the dynamics simulation indicated that
the oxygen�oxygen distance in a solvated hydroperoxyl�water
cluster is very similar to that found in protonated water clusters
(Zundel: H5O2

+) in spite of the fact that the latter possesses a
positive charge and the hydroperoxyl�water cluster does not.
Thus, strong “hydrogen-like” bonds may prevail in such systems,
and these aspects are also noted for the hydroxy isoprene system
studied here.

This paper is organized as follows: In section 2, the simulation
strategies are described and the results are provided in sections
3 and 4. Specifically, in section 3 we probe (a) the stability
of interactions between a cluster of water molecules (in the
range of 1�15 water molecules) and a hydroxy-isoprene,
adduct 1 molecule,6 and (b) the influence on the vibrational
density of states, computed within the harmonic approximation.
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In section 4, we further investigate these results by including the effect
of anharmonicity as available through potential energy sampling
within an AIMD calculation. Conclusions are given in section 5.

2. THEORETICAL METHODS

The ab intio molecular dynamics (AIMD) simulations involve
performing quantum chemical calculations “on-the-fly” to obtain
the potential energy and nuclear forces.29�38 The simula-
tions conducted here are similar to those discussed in refs 6,
9�13,15, and 39. The atom-centered density matrix propagation
(ADMP),14,15,18,34,40�44 AIMD technique, as implemented with-
in the Gaussian series of electronic structure codes,45 has been
employed in these studies. This method is briefly reviewed in
Appendix A. Further details on the methodological aspects can be
found in refs 34, 40�44 and 46 with applications in refs 6, 9�11,
14, 15, 18, 39, 41, 46, and 47.

All systems considered here are treated as gas-phase clusters to
remain consistent with the experimental work.6 A fictitious mass-
tensor scaling value of 0.1 amu 3 bohr

2 (≈180 a.u.) and a time-
step of 0.25 fs was used for ADMP. The AIMD simulations
conducted here are microcanonical (NVE), with acceptable
fluctuations in the internal temperature. All nuclei are treated
classically. Because time-correlation functions involving nuclear
velocities andmolecular dipoles (see below) are utilized to obtain
vibrational energy distributions, a constant energy simulation
with an associated conservative Hamiltonian corresponding to
the real system is critical. (These constant energy simulations
however also have approximately fixed temperatures, with ac-
ceptable fluctuations.) The total energy in these simulations was
well conserved in our simulations. The total angular momentum
of the classical nuclear system was also well-conserved (with
initial conditions corresponding to J = 0) and residual angular
forces, resulting from finite numerical precision, were projected
out during the dynamics process.13 A body-fixed 3N-dimensional
Cartesian coordinate system positioned at the center-of-mass,
conserved all through the dynamics, was used to represent
nuclear positions and momenta.

The dynamically averaged vibrational properties were com-
puted by using Fourier-transform of the nuclear velocity auto-
correlation function (FT-VAC):

IVðωÞ ¼ lim
T f ∞

Z t¼T

t¼ 0
dt expð�iωtÞÆVð0Þ 3VðtÞæ

¼ lim
T f ∞ ∑

Natoms

i¼ 1
∑
3

j¼ 1

Z t¼T

t¼ 0
dt expð�iωtÞ

�
Z t

0 ¼T

t0 ¼ 0
dt

0
Vi, jðt0 ÞVi, jðt0 þ tÞ

¼ lim
T f ∞ ∑

Natoms

i¼ 1
∑
3

j¼ 1

�����
Z t¼T

t¼ 0
dt expð�iωtÞVi, jðtÞ

�����
2

ð4Þ
where the term Æ 3 3 3 æ, in the first equation, indicates ensemble
average and is equal to the t0-integral (enclosed within square-
brackets) in the second equation under the ergodicity condition.
The quantity Vi,j(t) is the velocity along the j-th component
for the i-th atom. We have used the convolution theorem48 to
reduce the second equation to the third equation. In Appendix B
we also construct the quantum-mechanical analogue of eq 4,

using the flux operator, and demostrate that vibrational states
are obtained from such a formalism with intensities proportional
to kinetic energy. See discussion below and also refs 6, 8�16,
and 39.

During the dynamical process, the molecular structure evolves,
which brings about a change in the electronic structure of the
molecule and, hence, change in dipole of the system. The Fourier
transform of the dipole�dipole autocorrelation function (FT-DAC)
gives the IR spectrum for these clusters and is given by

αQC
μ ðωÞ � ω

1� expð�βpωÞ ω½1� expð�βpωÞ��
� lim

T f ∞

Z t¼T

t¼ 0
dt expð�iωtÞÆμð0Þ 3μðtÞæ

o
ð5Þ

The terms inside the curly brackets ({ 3 3 3 }) represents the power
normalized absorption cross-section.49,50 The prefactor, (ω)/(1 �
exp(�βpω)), is a quantum-nuclear correction51�53 obtained based
on the harmonic approximation. Utilizing the convolution theorem48

as above, eq 5 may be rewritten as

αQC
μ ðωÞ � ω2 lim

T f ∞ ∑
3

i¼ 1

�����
Z t¼T

t¼ 0
dt expð �iωtÞμiðtÞ

�����
2

ð6Þ

In this work, eq 4 is used to analyze vibrational energy density and
eq 6 is used for comparison.
2.1. Tools for Analysis of Vibrational EnergyDensity. 2.1.1.

Formal Analyses and Extensions Based on eq 4. How does the
above formalism relate to standard approaches for computing
vibrational energy density? One of the most commonly used
techniques to estimate vibrational density of states as well as to
compute infrared spectra through ab initio electronic structure
calculations invokes the harmonic approximation. Here a set of
normal modes, {HBi}, that are eigenstates of the mass-weighted
Hessian matrix and force constants, {ki}, that are eigenvalues of
the mass-weighted Hessian are used to estimate the vibrational
density of states. Other methods applicable to smaller gas-phase
systems include full quantum nuclear or semiclassical treatment.
The systems treated here, however, are large water clusters that
range in size from 54 to 180 degrees of freedom, where full
quantum nuclear treatment is prohibitive.
How can the velocity vectors introduced in eq 4 be related to

the normal modes, {HBi}? To understand this, we first introduce
the mass-weighted velocity vector, V (t), with components

V i, jðtÞ � ffiffiffiffiffi
Mi

p
Vi, jðtÞ ð7Þ

and the associated Fourier transform vector, V
∼ t0(ω,t), defined

inside a given time-window, [t,t0], with components,

V
∼

t0
j, kðω, tÞ ¼

Z T

0
dt exp½�iωt00�wðt00; t, t0ÞV j, kðt00Þ ð8Þ

Here, w(t00;t,t0) is a suitably chosen window function. Windowed
Fourier transforms or short-time Fourier transforms54�57 are
used to construct a local frequency analysis and determine the
sinusoidal frequency and phase content of local sections of a
signal as it changes over time. These have been previously used in
chemical physics58�60 and other areas61 to study time-dependent
behavior. For example, finite Fourier transforms have been used
in ref 59 to derive new forms of the time-dependent Schr€odinger
equation. The associated time-frequency distribution is called a
spectrogram and is used in our study to understand energy
redistribution. In the studies presented here, w(t00;t,t0) has been



402 dx.doi.org/10.1021/jp204511v |J. Phys. Chem. A 2012, 116, 399–414

The Journal of Physical Chemistry A ARTICLE

chosen as a step function that is equal to one inside [t,t0] and zero
otherwise. Choosing a time-window allows one to monitor the
transient behavior. For example, the Fourier transform in eq 8
may be monitored as a function of t, for a given window (t0 � t).
This is particularly critical to the analysis AIMD trajectories
presented here. For fluxional systems, such as the water clusters
treated here, the system may sample multiple regions of config-
urational space during a dynamics trajectory. As a result, eq 8
allows us to probe the periodic orbits of frequency ω that
may be critical at time t. The time-dependence in the quantity,
V
∼ t 0(ω,t), then probes how the critical frequency contributions
vary as the system passes from one region in configurational
space to another. We also note that when the window function
in eq 8 is chosen to enclose the full timewindow, that is,w(t00;t = 0,
t0 = T), the left-hand side becomes the usual Fourier transform of
V
∼ t 0(ω,t). In that case, transient behavior is not present in eq 8, and
we simplify the notation as V

∼
t 0= T(ω,t = 0) � V

∼
(ω).

If we now utilize the definitions in eqs 7 and 8, wemay simplify
eq 4 as

IVðωÞ ¼ lim
T f ∞ ∑

Natoms

i¼ 1

1
Mi
∑
3

j¼ 1

�����
Z t¼T

t¼ 0
dt expð�iωtÞV i, jðtÞ

�����
2

¼ ∑
Natoms

i¼ 1
∑
3

j¼ 1

1
Mi

jV∼i, jðωÞj2 ð9Þ

or when the transient quantities are used:

IVðω; t0, tÞ ¼ ∑
Natoms

i¼ 1
∑
3

j¼ 1

1
Mi

jV t
i, j

∼
ðω, tÞj2 ð10Þ

Furthermore, the numerators on the right side of eqs 9 and 10 are
mass-weighted velocities.
The physical interpretation for IV(ω) is as follows. Integrating

both sides of eq 9with respect toω and using Parsevaal’s theorem,48

one obtains

1
T

Z
dωIVðωÞ ¼ ∑

Natoms

i¼ 1
∑
3

j¼ 1

1
TMi

Z
dωjV∼i, jðωÞj2

¼ ∑
Natoms

i¼ 1
∑
3

j¼ 1

1
TMi

Z
dtjV i, jðtÞj2

¼ ∑
Natoms

i¼ 1

1
TMi

Z
dt½∑

3

j¼ 1
jV i, jðtÞj2�

¼ ∑
Natoms

i¼ 1

1
TMi

ÆV i 3V iæ

¼ 2 ∑
Natoms

i¼ 1
ÆK iæ ¼ 2ÆK æ ð11Þ

whereV i andK i signify the velocity and kinetic energy for the i-th
atom.ThequantityK represents the total kinetic energy and Æ 3 3 3 æ
is its ensemble averaged expectation value. Thus, the quantity IV(ω)
is proportional to a kinetic energy density at frequencyω or energy,
pω. Furthermore, using the Virial theorem62,63 (where for a poten-
tial with polynomial dependenceV(x) =αxn, the expectation values for
potential and kinetic energies are related by ÆK æ = nÆV æ), the right
side of eq 11 is also proportional to the average potential energy of the
system.Thus, IV(ω) is alsoproportional to apotential energydensity at
frequencyω or energy, pω. When IV(ω) is normalized, it represents a
density of kinetic energy (or potential energy) at frequency ω.
The quantity IV(ω) has been used in several recent publications

to compute the vibrational density of states.6,9�16,39 In Appendix B,
we present a formal analysis that derives the relations between the
quantum density of states and the quantity IV(ω).
2.1.2. Decomposition of IV(ω;t0,t) in Terms of a Complete Set

of Vectors To Analyze Energy Redistribution. We next note
that the normal mode vectors, {HBi}, form a complete orthonor-
mal set in 3N-space since these are eigenstates of a Hermitian
Hessian matrix [In ref 13, the set {HBi} has also been found to be
numerically complete during the dynamics in the 3N-6 internal
space for a short-strong hydrogen-bonded system. Furthermore,
while the discussion below assumes that {HBi} are eigenstates
of the Hessian matrix, in fact, {HBi} can be any complete,
orthonormal set of vectors about which the dynamics is to be
inspected.] Because the vectors,V

∼
(t) andV

∼ t0(ω,t) also span the
same 3N�6 space we expand these in terms of the complete
orthonormal set {HBi} as

V
∼

t 0 ðω, tÞ ¼ ∑
i
Ci, t0 ðω, tÞ HBi ð12Þ

or

Ci, t0 ðω, tÞ ¼ V
∼

t0 ðω, tÞ 3 HBi ð13Þ
Using these equations in eq 10, one obtains

IVðω; t 0 , tÞ ¼ ∑
k, k0

Ck, t0 ðω, tÞ
�
Ck0 , t0 ðω, tÞ ∑

Natoms

i¼ 1
∑
3

j¼ 1

Hi, j
kffiffiffiffiffi
Mi

p Hi, j
k0ffiffiffiffiffi
Mi

p

¼ ∑
k

jCk, t0 ðω, tÞj2
μk

ð14Þ

where Hk
i,j/(Mi)

1/2 are elements of the orthonormal normal
modes in Cartesian coordinates, with mass tensor μk. Thus,
the quantity |Ck,t0(ω,t)|

2 may be interpreted as the kinetic
energy in the mode k at frequency ω in the time-window
[t,t0]. In this publication, we utilize this quantity to inspect
the transient nature of vibrational density of states. In addi-
tion, we also probe the behavior of the same quantity in the full

Figure 1. Optimized structures for the four hydroxy isoprene adducts. Level of theory: B3LYP/6-311++G(D,P).
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time window:

CiðωÞ � Ci, t0 ¼Tðω, t ¼ 0Þ ð15Þ
It must be noted that this last quantity is identical to that used in
refs 6, 12, 13, and 19. Specifically, eq 15 has been used in refs 12
and 13 to probe energy redistribution64�76 in a short strong
hydrogen bonded system. However, the derivation above also
specifies a method to probe transient behavior. In addition, we
note that while {HBi} are chosen to be harmonic normal mode
vectors here, this is not a restriction and in principle these could
specify any complete orthonornal set.

3. STRUCTURAL AND VIBRATIONAL PROPERTIES OF
SOLVATED HYDROXY-ISOPRENE CLUSTERS WITHIN
THE HARMONIC APPROXIMATION

The systems probed in the remaining portion of this study
all include one hydroxy-isoprene molecule solvated by a water
cluster. In this study, the role of water on the vibrational density
of states of hydroxy-isoprene adduct 1 is considered. (The opti-
mized geometry for all four adducts are shown in Figure 1.) For
each of a set of clusters, properties of the HO-isoprene hydroxyl
group were computed for optimized structures. These properties
include vibrational frequencies, Mulliken charges, and cluster
binding energies and were used to estimate a small cluster size

with which to model the effects of an aerosol on the HO-
isoprene. Ab initio dynamics trajectories were then computed for
select clusters along with corresponding finite-temperature vi-
brational spectra (section 4), where dynamical averaging and
anharmonicities significantly affect the vibrational properties.

The clusters included in this study range in size from 1�15
water molecules. To build these clusters, 1�3 water molecules
were added at a time, between which the cluster structure was
optimized. Geometry optimizations were performed using the
basis set 6-31G(d). Higher order 6-31+G** basis functions were
used to qualitatively confirm the results. Clusters with up to 15
waters were optimized with the spin unrestricted hybrid density
functional, B3LYP. Second-order M€oller-Plesset perturbation
theory, MP2, was utilized for up to 8 waters.

The hydroxyl group on the HO-isoprene molecule will be
affected by the introduction of additional water molecules. To
probe the effect on the shared proton stretch, harmonic frequen-
cies were computed for all optimized clusters. In addition, the
charge separation between the oxygen and hydrogen of the
hydroxyl group was calculated as the difference between the
Mulliken charges on those two atoms. Finally, the binding energy
was computed in two different ways. In one case the cluster
binding energy for HO-isoprene 3 (H2O)n was computed as

ΔEcluster ¼ n� Ewater þ EHO� isoprene � Ecluster ð16Þ

Figure 2. Geometries optimized to local minima of HO-isoprene 3 (H2O)n clusters: 1 (a), 3 (b,c), 4 (d), 8 (e), and 15 (f) waters. All images are from
B3LYP calculations except (c), which is from MP2. The minimum energy conformations for all clusters except the three-water cluster are similar for
B3LYP amdMP2. In (d) and (e), dashed red lines indicate hydrogen bonding networks, while the faded lines represent water/alkyl hydrogen-like bonds.
The hydrogen circled in (f) shows the most red-shifted OH stretch positioned across two water molecules. This occurrence is not possible in the smaller
clusters where the most red-shifted OH stretch is the isoprene-hydroxyl stretch.
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where Ewater and EHO�isoprene are both optimized energies for a
single water and hydroxy-isoprene, respectively. In a second
approach the binding propensity of hydroxy-isoprene to water
was gauged using

ΔE ¼ En� water þ EHO� isoprene� f � Ecluster ð17Þ

where En‑water is the energy of the n-water cluster retained at the
same geometry as in the optimized HO-isoprene 3 (H2O)n
cluster. Similarly, EHO�isoprene�f is also the energy of hydroxy-
isoprene maintained at the same geometry as in the optimized
HO-isoprene 3 (H2O)n cluster. In both cases, Ecluster is the absolute
energy of the optimized cluster.
3.1. Analysis of Optimized Cluster Geometries. Geometry

optimizations to local minima were performed using B3LYP/
6-31G(d). Cluster sizes studied range from 1�15 water molecules
solvating a single hydroxy-isoprenemolecule. The clusters with up
to 8 water molecules were also optimized with MP2. Repre-
sentative optimized geometries are provided in Figure 2. The
DFT and MP2 geometries differed for the three water cluster and
hence both structures are provided for this case (cf. Figure 2b,c). In
both methods, the first two water molecules form a triangular
geometry with the hydroxyl group. However, while the third water
molecule formed hydrogen bonds with the hydroxyl group and the
other waters in the DFT geometry, it formed only one hydrogen
bond to the hydroxyl group and a weak interaction with a methyl
hydrogen in the MP2 geometry. Clearly, the latter involves a
dispersion interaction which is absent in B3LYP. For other cluster
sizes, the optimized structures for the two methods are in good
qualitative agreement.
As expected, a significant primary interaction between the

water cluster and the hydroxy-isoprene radical is via hydrogen
bonding to the hydroxyl group. However, there are a number of
weak interactions influencing the geometry of the cluster as well.
There are many instances of weak interactions between water
oxygens and alkyl hydrogens (see Figures 2c�e) and the overall
stable interaction between hydroxy isoprene and water is in-
dicated by the total binding energy (ΔEcluster in eq 16) shown in
Figure 3. (Also see Table 1 for the dependence of ΔEcluster on
level of theory.) In Figure 3 we present ΔEcluster obtained from
both B3LYP, as well asMP2, for a variety of cluster sizes. The two
levels of theory are generally in good agreement. (This may also
be seen fromTable 1.) Close inspection of Figure 3 indicates that
the stabilization increases roughly linearly up to the point where
eight water molecules are added; the stabilization energy per

water grows faster beyond eight waters. The structure with eight
water molecules in shown in Figure 2e where all the hydrogen
bond locations in the first shell are saturated. On average it
appears that two hydrogen bonds are formed as each new water
molecule is added to the cluster. The most significant nonhydro-
gen bonding interaction, however, appears to be a hydrogen-
bond-like interaction between one of the water hydrogens and
the delocalized radical electron-cloud situated to the opposite
end from the OH-group in hydroxy-isoprene molecule. This is a
very consistent interaction for the set of optimized structures in
this study, occurring in clusters with six or more waters. For cases
with fewer than six water molecules, these are generally spatially
well-separated from the oxygen end. For the case of one water, a
hydrogen bond is formed with the hydroxyl group, but with no
other waters present to interact with, the free hydrogen end of
the water is directed toward the “hydrophobic” moiety. This is
shown in Figure 2a. In the cases of six or more water molecules,
the water hydrogen is pointing in the direction of the terminal
carbon, suggesting that this is where the largest portion of
negative charge resides. This is supported by a spin density
analysis (see Figure 4) as well as Mulliken population analysis,
which assigns the terminal carbon with the greatest negative
charge among the three sp2 carbons.
In general, the optimized geometries of these clusters are

characterized by a few different interactions. Within the hydrogen
bonding network of the water clusters, there is a prominence of
five-membered rings. While five-membered rings comprising
intramolecular hydrogen bond-like interactions were also noted
for the case of hydroxy-isoprene adduct 1 in refs 6 and 19, the
interactions here involve water, as can be noted from Figure 2d,e.
Furthermore, these five-membered rings are reminiscent of
similar topologies seen in hydroxyl water clusters,10 lending some
credence to the idea that solutes may enforce further order on the
solvating water molecules. As for the interaction of the water
cluster with the hydroxy-isoprene molecule, the most important
is the hydrogen bonding to the hydroxyl group followed by
weaker interactions to the radical end and alkyl hydrogens.
3.2. Harmonic Analysis of O�H Stretch in Optimized

Structures. The harmonic frequencies are displayed in Figure 5.

Figure 3. Stability of the interaction between hydroxy isoprene and
water is indicated by the total binding energy (ΔEcluster in eq 16) as a
function of number of water molecules: black, B3LYP; blue, MP2. On
average, 13 kcal/mol (amounting to about two hydrogen bonds) is
gained in stability with the addition of each water molecule.

Figure 4. Spin density plot indicates that the free-radical remains
localized on the 2- and 4-positions of hydroxy isoprene even in the
presence of water. This remains the case for all water clusters studied here.
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It may be noted that, within the harmonic approximation, the
modes that predominantly depict the isoprene-hydroxyl stretch
and bend shift substantially as a result of hydration. For example,
for the zero water case, the stretch and bend are very well
separated (see the separation between the blue vertical lines in
the bottom left panel of Figure 5). However, as water molecules
are added, the separation reduces and the hydroxyl stretch begins
to red-shift as a result of solvation. This appears to occur until the
point where six watermolecules surround the hydroxyl end of the
isoprene molecule at which stage the trend begins to flatten out.
Beyond nine water molecules, the hydroxyl stretch begins to blue
shift again while the bending vibrations appear to have been
stabilized near their six water value. (As we see later in section 4,

the hydroxyl stretch and bend modes are coupled when anhar-
monicity is included under finite temperature conditions.)
Due to hydrogen bonding, it is expected that the alcohol O�H

stretch would be shifted when water is present as compared to
the isolated HO-isoprene molecule. Initially, as the cluster size is
increased, the alcohol O�H stretch was red-shifted by up to
800 cm�1 as in the case of the six water cluster. At the same time,
water O�H stretches, which were at higher values, were red-
shifted as well. After the sixth water, the red shift of the alcohol
O�H stretch decreases with cluster size. After this point, water
O�H stretches continued to be red-shifted and attain frequen-
cies lower than the alcohol O�H stretch. These trends can be
seen in the bottom panel of Figure 6. Two questions that emerge
are (1) what caused the alcohol O�H stretch to stop being red-
shifted at a cluster size of around six waters and (2) why did water
O�H stretch frequencies trade places with the alcohol O�H
stretch and attain the lower value in the larger cluster sizes?
To further probe the hydroxyl O�H stretch, the difference

between the oxygen and hydrogen charges were calculated from a

Table 1. Dependence of the Total Binding Energy
(ΔEcluster in eq 16) on Level of Theorya

B3LYP MP2 CCSD(T)

6-

31G(D)

6-311+

+G(2D,2P)b
6-

31G(D)

6-311+

+G(2D,2P)c
6-311+

+G(2D,2P)d

1e �9.307 �5.077 �9.878 �7.436 �7.211

2e �24.383 �14.838 �23.629 �16.897 �16.867

3e �37.363 �26.047 �36.798 �25.098 �28.103

avgf �11.842 �7.660 �11.718 �8.239 �8.697
aUnits: kcal/mol. b b3lyp/6-311++g(2d,2p) geometries optimized start-
ing from the b3lyp/6-31+g(d) optimized geometries. cmp2/6-311+
+g(2d,2p) geometries optimized from mp2/6-31+g(d) geometries,
which in turn were optimized from b3lyp/6-31+g(d) optimized geo-
metries. d ccsd(t)/6-311++g(2d,2p) single point calculations on mp2/
6-311++g(2d,2p) geometries. eNumber of water molecules. fAverage
stabilization energy per water molecule.

Figure 5. Harmonic frequencies for the HO-isoprene 3 (H2O)n clusters.
The peaks in blue represent the OH stretch (higher frequency) and
bend (lower frequency) for hydroxy isoprene. These peaks clearly
shift substantially as the number of water molecules is increased. See
Figure 6.

Figure 6. Trends from single-point calculations on the optimized HO-
isoprene 3 (water)n clusters. HO-isoprene 3 (water)n binding energy,
ΔE in eq 17 (top, black); Mulliken charge difference between the hydroxyl
oxygen and hydrogen (top, red); hydroxyl O�H stretch frequency
(bottom, black); and lowest water O�H stretch frequency (bottom,
blue). The dashed lines represent MP2 results, the rest being UB3LYP.

Figure 7. Vibrational spectra for the eight water cluster, including the
harmonic IR frequency calculation (black), the velocity autocorrelation
function (FT-VAC, eq 4; red), and the dipole autocorrelation function
(FT-DAC, eq 5; green). The FT-VAC is shown along the negative
vertical axis for clarity.



406 dx.doi.org/10.1021/jp204511v |J. Phys. Chem. A 2012, 116, 399–414

The Journal of Physical Chemistry A ARTICLE

Mulliken population analysis. While this may not provide a
unique determination of the charges on the atoms, the general
trend followed by the charge separation across the O�H bond
may contain qualitative information about the change in bond
strength. These charge differences, plotted in Figure 6 (red curve
in the top panel), show that the introduction of water molecules
increases the charge difference, weakening the bond, until the
fifth water has been added, after which the charge difference stops
increasing. This suggests that the hydrogen bonds of the first few
waters weaken the O�H bond of the HO-isoprene hydroxyl
group, thereby lowering its vibrational frequency, but as the first
solvation shell becomes filled, further addition of water does not
contribute to weakening the alcohol O�H bond. Because this
reduction in Mulliken charge difference is associated with adding
water molecules, we also see a complementary stabilization is
indicated by ΔE (see eq 17), depicted by the black trace in the
top panel of Figure 6. Both theMulliken charge difference as well
asΔE appear to have been stabilized beyond six water molecules.
[Compare the behavior of ΔE on the top panel of Figure 6 with
that of ΔEcluster (eq 16) in Figure 3. While ΔE estimates the
binding interaction between hydroxy isoprene and the prear-
ranged water cluster (see note following eq 17), ΔEcluster
estimates the total binding energy, including stability due to
water�water interactions. Thus, ΔE represents the direct effect
of water on hydroxy isoprene, and this effect tails off at roughly six
water molecules.]
If increased hydrogen bonding results in a shift in the O�H

stretch, then the addition of every water should shift the
frequency. However, it is not that an increase in hydrogen
bonding shifts the frequency, but rather that the increased
bonding to the hydroxyl group results in a red shift. The ΔE
binding energies in Figure 6, superimposed on the alcohol O�H
stretch data, would ideally be energies of only the binding to the
hydroxyl group (see discussion following eq 17), but since there
is binding that occurs at other sites on the molecule, not all of the
binding results in a shift of the O�H stretch. Still, the majority of
the interaction between the water cluster and the HO-isoprene
radical is through the hydrogen bonding to the alcohol group, so
the trend in binding energy does turn out to predict at what
approximate cluster size the O�H stretch will cease to be red-
shifted. This will occur when further additional water molecules
bind to only the water cluster and contribute no more binding to
the molecule. At this point, the water cluster may be sufficiently

large to model the local behavior of the HO-isoprene radical on
the surface of a large aerosol droplet.
The analysis of the O�H charge difference and water cluster

binding energies provide us with information about why the
alcohol O�H frequency stops decreasing and at about which
cluster size this occurs. Still, the question is left to answer, why, in
the larger clusters, does a water O�H stretch trade places with
the alcohol O�H stretch as having the lowest O�H stretch
frequency value. To address this point, the cluster geometries
described in the last section will be invoked. In the smaller
clusters, the HO-isoprene hydroxyl group is the most coordi-
nated of all O�H bonds, causing its frequency to be red-shifted
more than any of the water O�H stretches. As can be seen in
Figure 2f, when the cluster contains a sufficient number of water
molecules, there may be water molecules in the system that are
better coordinated than the alcohol group of HO-isoprene,
causing the O�H stretch on a particular water to be the one
whose frequency is shifted the most.

4. SPECTRAL ANALYSIS FROM AB INITIO MOLECULAR
DYNAMICS

The ab initio molecular dynamics simulations were per-
formed using atom-centered density matrix propagation
(ADMP)6,9�13,15,34,40�43,47 with B3LYP. The dynamics trajec-
tories were NVE simulations carried out with time steps of 0.25 fs and
an average temperature of 248( 28K.The temperature is determined
from the nuclear kinetic energy.This approach applies the equipartition
theorem. It has been found in other studies using ADMP that this
relation provides a good approximation to the cluster temper-
ature.10,12,13 Furthermore, as noted below, we utilize time-cor-
relation functions constructuted using nuclear velocities. As a result, a
dynamics trajectory that conserves the total energy is essential.
Clusters containing six and eightwaterswere simulated up to approxi-
mately 5 ps of dynamics. These two clusters were chosen since they
exhibited the largest shift in alcohol O�H stretching frequency, as
indicated by the discussion in the previous section. In this study, the
spectroscopic analysis of the eight water cluster will be explored.

The dipole spectrum (eq 6) and the vibrational density of
states (eq 4) are presented in Figure 7 along with the harmonic
stick spectrum. The harmonic and dipole spectra (black and
green, respectively, in the upper panel) show qualitative agree-
ment below 2000 cm�1. In the higher frequency range the most

Figure 8. [Ci(ω)]
2 (see eq 15) values from the hydroxy-isoprene O�H stretchmode contribution (blue) andO�Hbendmode contributions (brown)

are plotted on the negative vertical axis for clarity. (a) Full spectral range; (b), partial range. The plots indicate that the contributions from these
Harmonic modes to the anharmonic dynamically averaged spectrum are delocalized over the entire spectral range. In addition, the FT-VAC (red) and
the FT-DAC (green) are shown along the positive vertical axis for comparison. The arrow depicts the harmonic hydroxy-isoprene O�H stretch
frequency at 2885 cm�1. The harmonic bend modes can be found at≈1500 and≈1000 cm�1. The blue curve indicates that, as a result of dynamics, the
harmonic hydroxy-isoprene O�H stretch is coupled to the water stretch as well as the harmonic hydroxy-isoprene O�H bend modes.
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prominent peak in the harmonic stick spectrum appears red-
shifted (≈2885 cm�1) with respect to the corresponding peaks
in the dynamically averaged spectra. In the harmonic spectrum,
this well-isolated peak with the greatest intensity is the iso-
prene�OH stretch mode located at 2885 cm�1. The dipole
spectrum does not contain such a prominent, well-separated
peak. Rather than a well-pronounced peak in the dipole spec-
trum, there is only a small shoulder on the red-shifted water
stretching band in the vicinity of the shared proton stretch of the
harmonic spectrum. The question remains as to where exactly
the isoprene�OH stretch appears in the dynamically averaged
spectral result.

The apparent loss of intensity from the shared proton stretch
prevents its straightforward identification (see also refs 9�11 for
similar shifts in frequencies in water clusters). To gauge this
effect, we provide the quantity |Ci(ω)|

2 (see eq 15) for the
hydroxy-isoprene OH stretch (blue) and the two orthogonal
bends (brown) in Figure 8a. The quantity |Ci(ω)|

2 provides a
measure of the contribution from harmonic mode i (which in this
case is the mode that is predominantly an isoprene�OH stretch
or bend) to the dynamically averaged spectral intensity at freque-
ncy ω. While the most prominent stretch contribution still
appears close to its harmonic fundamental (black arrow in
Figure 8a), the contributions from the stretch shown are clearly
delocalized as a result of dynamical averaging and thermal
sampling of the potential surface. Specifically, the isoprene�OH
stretch couples, as expected, into the water�OH stretch spectral
region (>3000 cm�1) as well as its own bend. This dynamical
mixing of the harmonic fundamental OH stretch is quite similar
to that encountered in refs 9�11 and 13 where again the shared
proton stretch in a hydrogen-bonded system was found to con-
tribute almost over the entire spectral range when finite-temperature

dynamical averaging was taken into account. However, what is also
interesting to note in Figure 8 is the fact that the isoprene�OH
stretch provides significant contributions at the 1000 and 1500 cm�1

regions, which are expected to be predominantly bend-dominated
regions.

To further gauge the effect seen in Figure 8, we inspect the
time-dependent evolution of contributions from the harmonic
stretch and bend modes emanating from the HO-isoprene moeity.
This is seen from an analysis of |Ci,t0(ω,t)|

2 (see eq 13), as
depicted in the spectrograms in Figure 9. Specifically, in
Figure 9a,b we provide contributions arising from the harmonic
stretch to the dynamically averaged (FT-VAC) spectrum. That
is, in Figure 9a,b, we depict |Ci,t0(ω,t)|

2, for i =H ), as noted in the
subfigure caption. These figures again underline the effect seen in
Figure 8 where contributions arise from the spectral region
greater than 3000 cm�1 as well as the lower frequency region.

Figure 10. The time evolution of the polar angle between the shared
proton O�O axis and the O�O axis in the reference equilibrium
structure upon which the harmonic normal coordinates are defined.

Figure 9. Time-frequency |Ci,t0(ω,t)|
2 (see eq 13) analysis for hydroxy-isoprene O�H stretch mode contribution (a and b) and hydroxy-isoprene

O�H bend contribution (c and d) underline the fluxional nature of these hydrogen-bonded systems.
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Figure 9, however, also provides a temporal resolution that is
absent in Figure 8.

In Figure 9c,d, we provide contributions arising from the
harmonic bend modes. While the fundamental harmonic stretch
appears at 2885 cm�1, the bend appears at around 1000 and
1500 cm�1. However, these are all coupled as a result of
dynamics and it is this effect that is captured through the cumula-
tive blue and brown traces in Figure 8.

The analysis above indicates that the hydroxy OH stretch and
bend modes that appear pure within the harmonic approxima-
tion are now coupled as a result of anharmonicity as it is intro-
duced in the analysis through the ab initio dynamics calculations.

We next probe the reasons behind such a coupled feature.
While the total angular momentum is well conserved within the
dynamics calculation, there exists a change in OH bond orienta-
tion during dynamics, as indicated in Figure 10, and provides a
vehicle to couple the harmonic bend and stretch modes. We may
project out such an internal rotation-induced coupling in the
spectrum by computing the evolution of

~COO
H|| ,H^;t

0 ðω, tÞ � ½ðV∼ t0 ðω, tÞ 3 HBi¼H||
Þ HBi¼H||

þ ðV∼ t0 ðω, tÞ 3 HBi¼H^, 1Þ HBi¼H^, 1

þ ðV∼ t0 ðω, tÞ 3 HBi¼H^, 2Þ HBi¼H^, 2 � 3 R̂OOðtÞ
¼ ½Ci¼H|| , t

0 ðω, tÞ HBi¼H||
þ Ci¼H^, 1 , t

0 ðω, tÞ HBi¼H^, 1

þ Ci¼H^, 2 , t
0 ðω, tÞ HBi¼H^, 2 � 3 R̂OOðtÞ ð18Þ

where we have defined the new quantity ~COO
H ) ,H^;t 0(ω,t) in terms of

Ci,t0(ω,t) introduced in eq 13. Essentially, ~COO
H ) ,H^;t 0(ω,t) is the

projection of the spectral components in Figure 9 along the
instantaneous OO axis. The corresponding time-frequency evo-
lution of ~COO

H ) ,H^;t 0 (ω,t) is shown in Figure 11. In comparing
Figures 11 and 9a, it is clear that, while Figure 9a shows contribu-
tions from the bend modes toward the FT-VAC spectrum, this is
not the case in Figure 11.Clearly internal rotation of theOHbond has
the effect of coupling these modes thus providing an additional degree of
freedom for energy redistribution that is absent within the harmonic
approximation, but is present in the dynamics calculations and
facilitated by sampling of the anharmonic potential surface.

5. CONCLUSION

In this manuscipt, ab initio molecular dynamics and static
electronic structure calculations are utilized to assess the influence

of water on the stability and vibrational density of states of a
hydroxy-isoprene adduct. This is done to model the effect of
atmospheric water on a radical intermediate relevant to atmospheric
chemistry. As expected, the most prominent interactions between
the water clusters and the hydroxy-isoprene adduct are through
hydrogen bonding to the alcohol group. Of the nonhydrogen
bonding interactions was an attraction between water hydrogen
atoms and the radical electron delocalized across the carbons
opposite of the alcohol group. The radical interacted consistently
with clusters of six or more waters; for all cluster sizes, the hydroxy-
isoprene radical was found on the surface of the water cluster.

Vibrational frequency calculations within the harmonic model
showed that addition of water molecules resulted in a red-shift of
the hydroxy-isoprene OH stretch, the red-shift being nearly
linear with cluster size up to the six water cluster in which the
maximum shift, of 800 cm�1, occurred. Mulliken charge analysis
showed that as more water molecules were introduced the charge
difference between the alcohol oxygen and hydrogen widened,
indicating a weakening of the bond as the alcohol group interacts
with the water cluster. The widening of the charge difference as
well as the water cluster/hydroxy-isoprene binding energy
stabilize also at the six water cluster. These trends support the
use of clusters with as few as six water molecules to model the
influence of atmospheric aerosol adsorption of the hydroxy-
isoprene radical.

The ab initio molecular dynamics of hydroxy-isoprene on a
cluster of eight water molecules were used to compute time-
averaged and transient time dependent vibrational spectra. In the
static harmonic model calculation, the vibrational frequency of
the alcohol OH stretch corresponded to a peak in the simulated
IR spectrum that was the largest in intensity and well isolated at
2885 cm�1. In contrast, the spectrum computed from the
dynamics trajectory produced no large, well-separated peak in
that region, but merely a shoulder on a broad water OH
stretching band. The vibrational density of states projected along
the alcohol OH stretch harmonic normal coordinate indicated
that the peak was well dispersed over a wide frequency range
from 2700 to 3300 cm�1 as well as contributing to peaks at
1000 and 1500 cm�1 where the alcohol bending frequencies
were expected to be found. The source of the coupling between
the harmonic stretching and bending modes were probed using a
computational technique, introduced here: two-dimensional
spectra representing transient vibrational densities of states were
computed along the harmonic normal modes. It was found that a
local, internal, rotation caused the observed coupling of the
vibrational modes, rotating the alcohol OH axis by up to 50�.

Figure 11. Time-frequency evolution of |~COO
H ) ,H^;t 0 (ω,t)|

2 (see eq 18).
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The internal rotation present in the dynamics trajectory allows
for additional pathways of intramolecular vibrational energy
redistribution.

’APPENDIX A

Brief Overview of the Theoretical Basis for the Extended
Lagrangian Ab Initio Molecular Dynamics Method, Atom-
Centered Density Matrix Propagation (ADMP). The method
of ab initio molecular dynamics (AIMD) relies on a calculation of
the electronic potential energy surface traversed by the nuclei
“on-the-fly” during the dynamics procedure. Both Born-Oppen-
heimer (BO) molecular dynamics (MD),29�36,77 as well as Car-
Parrinello (CP) dynamics,32,35,77�79 are part of this category.
The CP scheme differs from the BO dynamics approach in that
the wavefunctions are propagated together with the classical
nuclear degrees of freedom using an extended Lagrangian. This,
in turn, relies on an adjustment of the relative nuclear and
electronic time-scales, which facilitates the adiabatic propagation
of the electronic wavefunction in response to the nuclear motion
with suitably large time steps. This adjustment of time scales
through the use of a fictitious electronic wavefunction kinetic
energy and mass, enables the CP approach to predict effectively
similar nuclear dynamics on the BO surface at significantly
reduced cost. In this respect, CP differs from methods which
rigorously treat the detailed dynamics (rather than structure) of
the electrons (see ref 33 and references therein). The CPmethod
is essentially an extended Lagrangian80,81 dynamics scheme in
which the electronic degrees of freedom are not iterated to
convergence at each step, but are instead treated as fictitious
dynamical variables and propagated along with the nuclear
degrees of freedom by a simple adjustment of time scales. The
resultant energy surface remains close to a converged adiabatic
electronic surface. Numerous important examples of applications
with density functional theory and the CP method are now well
documented in the literature (see, e.g., ref 35 and 78). In the
original CP approach, the KohnSham molecular orbitals, ex-
panded in a plane-wave basis, were chosen as dynamical variables
to represent the electronic degrees of freedom.77 However, this is
not the only possible choice. An alternative approach is to
propagate the individual elements of the reduced one-particle
density matrix, P.
In atom-centered densitymatrix propagation (ADMP),34,40�44,46

atom-centered Gaussian basis sets are employed to represent the
single-particle electronic density matrix within an extended
Lagrangian formalism. Here, the basis functions follow the
nuclei. The ADMP method has several attractive features. Sys-
tems can be simulated by accurately treating all electrons or by using
pseudo-potentials. Through the use of smaller values for the
tensorial fictitious mass, relatively large time steps can be employed
and lighter atoms such as hydrogens are routinely used. A wide
variety of exchange-correlation functionals can be utilized, including
hybrid density functionals such as B3LYP. Atom-centered functions
can be used with the appropriate physical boundary conditions for
molecules, polymers, surfaces, and solids, without the need to treat
replicated images to impose 3d periodicity. This is particularly
relevant to atmospheric clusters that are described here. AQM/MM
generalization has been demonstrated.46 ADMP has been demon-
strated through the treatment of several interesting problems,
including6,9,11�15,39,41,43,46 (a) a recent demonstration that dynami-
cal effects are critical in obtaining good vibrational spectroscopic
properties of flexible systems9�13,39 and (b) the prediction of the

“amphiphilic” nature of the hydrated proton,15,39,82 which has now
been confirmed by many experimental and theoretical studies.
The ADMP equations of motion for the nuclei and density

matrix are derived from the extended Lagrangian:

L ¼ 1
2
Tr½VTMV� þ 1

2
Tr½ð_μ1=4W_μ1=4Þ2� � EðRC, P, RQMÞ

� Tr½ΛðP2 � PÞ� ðA1Þ

where R, V, andM are the nuclear positions, velocities, and masses
and P,W, and μ

�
are the density matrix, the density matrix velocity,

and the fictitious mass tensor for the electronic degrees of freedom.
Λ is a Lagrangian multiplier matrix used to impose N-represent-
ability of the single particle density matrix. The energy, E(R,P), is
calculated using McWeeny purification, ~P = 3P2 � 2P3,

E ¼ Tr h0~P0 þ 1
2
G0ð~P0Þ~P0

� �
þ Exc þ VNN

¼ Tr h~P þ 1
2
Gð~PÞ~P

� �
þ Exc þ VNN

ðA2Þ

Here, h0 is the one electron matrix in the nonorthogonal Gaussian
basis and G0(~P0) is the two electron matrix for Hartree-Fock
calculations, but for DFT it represents the Coulomb potential.
The term Exc is the DFT exchange-correlation functional (for
Hartree-Fock Exc = 0), while VNN represents the nuclear repulsion
energy. In the orthonormal basis, thesematrices are h =U�Th0U�1,
and so on, where the overlapmatrix for the nonorthogonal Gaussian
basis, S0, is factorized to yield S0 = UTU. There are a number of
choices for the transformation matrix U, for example, U can be
obtained from Cholesky decomposition83 of S0 or U = S01/2 for
L€owdin symmetric orthogonalization.ThematrixU can also include
an additional transformation so that overall rotation of the system is
factored out of the propagation of the density. The density matrix in
the orthonormal basis, P, is related to the density matrix in the
nonorthogonal Gaussian basis, P0, by P � UP0UT .
The equations of motion for the above formalism are

M
d2R
dt2

¼ � ∂EðR,PÞ
∂R

�����
P

ðA3Þ

_μ1=2
d2P
dt2

_μ1=2 ¼ � ∂EðR,PÞ
∂P

�����
R

þ ΛP þ PΛ�Λ

#2
4

ðA4Þ
These equations are numerically integrated using the velocity

Verlet scheme.40,84 The gradient terms involved in the equations
of motion are

∂EðR,PÞ
∂P

�����
R

¼ 3FP þ 3PF� 2FP2 � 2PFP� 2P2F ðA5Þ

where F is the Fock matrix and in the nonorthogonal basis:

F0ν, σ � h0ν, σ þ G0ð~P0Þν, σ þ ∂Exc
∂P0 ðA6Þ
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while the orthogonal basis Fock matrix is F = U�TF0U�1 . The
nuclear gradients are

∂E
∂R

�����
P

¼ Tr
dh0

dR
~P0 þ 1

2
∂G0ðP0Þ
∂R

�����
P0

~P0
#
� Tr F0~P0dS

0

dR
~P0

� �2
4

8<
:

þ ∂Exc
∂R

�����
P

þ ∂VNN

∂R

)
þ Tr ½~P, F� ~Q

dU
dR

U� 1 � ~PU� TdU
T

dR

 !" #

ðA7Þ
where ~Q t I� ~P. It has been shown that,40,42 as the commutator
[~P,F] f 0, the nuclear forces tend toward those used in the
standard Born-Oppenheimer MD.85 However, in ADMP, the
magnitude of the commutator [~P,F] is non-negligible, and hence,
the general expression for the nuclear gradients34,42 in eq A7
is used.
Because the conjugateHamiltonianwas derived from a Legendre

transform63 of the Lagrangian in eq A1:

H ðP,W ,R,V , tÞ ¼ TrðWWÞ þ TrðV TVÞ
� L ðP,W,R,V, tÞ ðA8Þ

where W and V are the conjugate momenta for P and R,
respectively, and are given by

W ¼ ∂L
∂W

¼ _μ1=2W_μ1=2 ðA9Þ

and

V ¼ ∂L
∂V

¼ MV ðA10Þ

is conservative, that is,

dH
dt

¼ 0 ðA11Þ

the integrated velocity Verlet equations obtained from eqs A3 and
A4 conserve the total energy to within the micro-hartree range for
time steps of the order of 0.25 fs. Because the velocity Verlet
equations are obtained from a third order44Trotter factorization86,87

of the Liouville equation for eqs A3 and A4,44 the integration error
grows as the third power of the chosen dynamics time step. Hence,
angular momentum is also well-conserved within the numerical
limits enforced by the third order integration scheme. It must,
however, be emphasized that this simulation scheme is purely
classical from the point of view of the nuclei. One of the deficiencies
of such an approach is the restricted zero-point constraint.88�90

The problem of constraining classical dynamics equations through
the influence of the zero-point vibrational modes which in turn
include the full anharmonic potential surface is a challenging and
unsolved problem in chemical physics. Common approaches88�90

include constraining the dynamics using modes obtained through a
local harmonic approximation. Our approach here does not include
these effects.
Like CP, ADMP represents fictitious dynamics where the

density matrix is propagated instead of being converged. The
accuracy and efficiency is governed by the choice of the fictitious
mass tensor, μ

�
; hence, one must be aware of the limits on this

quantity. We have derived two independent criteria40,42 that
place bounds on the choice of the fictitious mass. Firstly, the
choice of the fictitious mass determines the magnitude of the
commutator [~P,F], thus, determining the extent of deviation

from the Born-Oppenheimer surface:42

jj½F,Papprox�jjF g
1

jj½Papprox ,W�jjF

�����Tr W_μ1=2
dW
dt

_μ1=2
� ������

ðA12Þ
where ||[...]||F is the Frobenius norm

83,91 of the commutator and
is defined as ||A||F = (∑i,jAi,j

2)1/2. Secondly, the rate of change of
the fictitious kinetic energy,

dH fict

dt
¼ Tr W_μ1=2

d2P
dt2

_μ1=2
" #

¼ �Tr W
∂EðR, PÞ

∂P

�����
R

þ ΛP þ PΛ�Λ

!0
@

3
5

2
4

ðA13Þ
is to be bounded and oscillatory and this again is determined by
the choice of fictitious mass tensor. We have shown that ADMP
gives results that are in good agreement with BOMD and is
computationally superior to BOMD.41 However, one must
monitor the quantities in eqs A12 and A13 to ascertain that
the ADMP dynamics is physically consistent. In all applications
studied to date,9,11,15,34,39�41,46 these conditions are satisfied,
thus, yielding a computationally efficient and accurate approach
to model dynamics on the Born-Oppenheimer surface.
Current implementation of the ADMP approach has been

found to be computationally superior to Born-Oppenheimer
dynamics.41 This important result can be conceptualized based
on the following: In Born Oppenheimer dynamics, the density
matrix is to be converged at every dynamics step. Assuming that
the largest possible time step is used during dynamics, SCF
convergence requires approximately 8�12 SCF steps (this
depends on the convergence threshold and difficult cases such
as transition metal complexes may require more SCF steps). In
ADMP, on the contrary, only the equivalent of 1 SCF step is
required per dynamics step; this 1 SCF step is necessary to
calculate the Fock matrix required for propagating the density
matrix. (A brief review of ADMP is presented in Section A.) Both
BOMD and ADMP evaluate the gradient of energy with respect
to nuclear coordinates, and this calculation requires approxi-
mately the same amount of time in both methods. Note that the
gradients used in ADMP are more general than those used in
BOMD34,42 on account of the non-negligible magnitude of the
commutator of the Fock and density matrix (see Section A and
ref 42 for details). However, the additional terms require no
significant computation over the standard BOMD gradient
calculation. The calculation of nuclear force requires approxi-
mately 3 times as much computation time as a single SCF cycle.
This makes ADMP faster than BOMD by over a factor of 4 per
dynamics step. However, the requirement that the ADMP
energies oscillate about the BO values with small amplitudes40

implies that ADMP step sizes cannot be as large at those in BO
dynamics. But good energy conservation, which applies to both
methods, limits the BO steps to at most twice those of ADMP41

(ADMP already uses reasonably large time-steps on account of
smaller values for the fictitious mass and an innovative tensorial
fictitious mass scheme40). This allows ADMP to be over a factor
of 2 superior to BOMD, but this estimate is only for cases where
the SCF convergence in BOMD is not difficult.41 The hard to
converge cases would require more SCF steps (or a better SCF
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convergence algorithm), thus, making ADMP more efficient as
compared to BOMD for these cases. Furthermore, computa-
tional improvements that speed up the gradient evaluation will
tilt this comparison further towards ADMP.

1. Treatment of Anharmonic Hydrogen-Bonded Systems
Using Ab Initio Molecular Dynamics: Case Study for the
Highly Anharmponic Cl�H�Cl� Moiety. As indicated earlier,
the dynamics techniques used here have been employed to treat
many hydrogen-bonded systems. See, for example, ref 6, 8�16,
and 39. In this section, a brief case-study is presented for the
Cl�H�Cl� system. Data from ref 80 is excerpted here in
Tables 2 and 3, for convenience. The first block of data in
Table 2 depicts harmonic frequencies obtained from electronic
structure calculations as well as excitation energies obtained
using potential surfaces for the shared proton for frozen Cl�Cl
distances. The second block shows experimental data provided
from the velocity modulation spectroscopy93,94 work in ref 92. As
indicated by the first block of data, the harmonic approximation
is inadequate at all levels of electronic structure theory. The
proton potential energy surfaces shown in Figure 12 are obtained
from retaining the Cl atoms at their respective optimized
positions. A direct polynomial fit of these surfaces displays
significant contributions from fourth and sixth order terms which
explains the limited accuracy of the harmonic frequency calcula-
tions. In fact, borrowing the diatomic molecular spectroscopy
notation,95 the anharmonic constant wexe, for ν3 is a large
negative number (see the last column of Table 2) as the spacing
between the vibrational levels increases as opposed to that in the
harmonic approximation. In Table 2, we also provide corrections
to the harmonic approximation by computing three-dimensional
proton eigenstate transition energies at the equilibrium Cl�Cl
geometries for the respective levels of theory (see footnote e in
Table 2). Even these calculations only provide an upper bound to
the experimental results, though they significantly improve over
the harmonic results. Clearly, in addition to anharmonicity,
coupling between the proton and chloride motions is critical
and is missing in the first block of data provided in Table 2.
In Table 3, we present our results from ab initio dynamics

studies at constant energy (NVE) where spectra are computed
using IV(ω) in eq 4. De-convolving the FT-VAC spectra through
analysis of the individual nuclear motions indicate temperature-
dependent peaks corresponding to ν1, ν2, and ν3. The dynamical

spectra show an improvement in the ν1 and ν2 stretches over the
harmonic approximation. The most dramatic change, however, is
shown in the asymmetric proton stretch, ν3. Most importantly,
unlike the harmonic results, the ab initio dynamics studies are less
sensitive to the electronic structure treatment as a result of
dynamical averaging of the potential surface. Furthermore, the
fact that ν3 from the dynamics simulations are blue-shifted as
compared to those from the harmonic approximation, underlines
the importance of fourth order anharmonic contributions to the
potential in this system.
The agreement with experiment is drastically improved when

quantum nuclear effects are introduced in ab initio dynamics
studies as done with the QWAIMD method.8,37,96�100 See
second block of Table 3. As can be seen the agreement between
the QWAIMD results and experiment improves with increasing
temperature. Due to a dependence of ν3 on the simulation
temperature, it is important to note that the experiments in ref 92
were performed using velocity modulation spectroscopy where
the effective vibrational temperature could be as high as
1000K.93,94 Hence, it is not surprising that the higher tempera-
ture QWAIMD results get closer to the experimental result. The
reason why QWAIMD exhibits a temperature dependence in its
vibrational properties is because as the temperature increases, the
Cl�Cl geometry samples larger distances. Since the electronic

Figure 12. Displayed here are one-dimensional slices of the potential
energy surfaces of the shared proton along the Cl�Cl axis at equilibrium
geometries obtained at the levels of theory indicated in Table 2. The
horizontal axis represents a spread of 0.529 Å (1 Bohr). The B3LYP/
aug-cc-PVTZ and B3LYP/6-31+G(d,p) surfaces are indistinguishable
and the CCSD surface shows a double well. The basis set used for both
CCSD and CCSD(T) is aug-cc-PVTZ, as listed in Table 2.

Table 2. Vibrational Frequencies of Cl�H�Cl�, As Computed Using Standard Methodsa

level of theory ν1 (cm
�1) ν2 (cm

�1) ν3 (cm
�1) Cl�Cl dist. (Å)b we (cm

�1)c wexe (cm
�1)c

B3LYP/6-31+G(d,p) 328 834d 849e 560d 949e 3.15 827.54 �173.484

B3LYP/aug-cc-PVTZ 324 818d 829e 582d 952e 3.15 833.463 �169.508

MP2/6-31+G(d,p) 353 893d 907e 98d 865e 3.10 698.037 �217.648

MP2/aug-cc-PVTZ 345 847d 863e 637d 974e 3.11 858.043 �181.427

CCSD/aug-cc-PVTZ 181 828d 874e 833d 764e 3.14f 565.65 �228.137

CCSD(T)/aug-cc-PVTZ 340 842d 325d 3.12 730.253 �204.83

experimentg 318 792 ( 9 723
aAnharmonic contributions are critical for ν3, the shared proton stretch. The first block of data includes direct use of electronic structure methods within the
harmonic approximation which appears to be inadequate for describing the anhmaronic shared proton stretch. In the last block experimental data is provided.
bTheCl�Cl distance is computed at the optimized geometry obtained at the listed level of electronic structure theory. cPotential energy surface harmonic and
anharmonic constants. dHarmonic frequency corresponding to the optimized geometry. eFrom three-dimensional 1r 0 eigenstate transitions. The potential
energy surface for the eigenstates is obtained from a full-scan of the quantum proton, with the chlorides fixed at optimized geometry positions. Hence, the
eigenstates here are corrected for anharmonicity, but do not include coupling with the chloride motions. fFor CCSD, the shared proton is not symmetrically
placed along the Cl�Cl axis. This is in contrast with respect to all other optimized geometries here. gRef 92.
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potential surface adapts to this change within QWAIMD, this
effectively flattens out the potential energy surface on the shared
proton along the Cl�Cl distance at larger temperatures. Com-
pare the higher temperature potential depicted using the red
curve in Figure 13 with the corresponding lower temperature
black curve. This reduced confinement on the shared proton
lowers the transition energies as the wavepackets exhibit a broader
distribution at higher temperatures. Compare the gray andmagenta
wavepacket curves in Figure 13. These lower transition energies for
the higher temperature QWAIMD calculation are seen as a red-shift
in the ν3 transition frequency.

’APPENDIX B

Vibrational Density of States and the Velocity Autocorre-
lation Function: Correspondence through the “Averaged”
Quantum Flux Operator. In this section we further analyze
IV(ω) in eq 4 and its connections to the vibrational density of
states.
The spectral density operator, δ(E�H),59 provides a spectral

decomposition of the Hamiltonian, H because the state
δ(E � H)|χæ is always an eigenstate of H, with eigenvalue E. In
caseswhereE is not an eigenvalue, the stateδ(E�H)|χæ is identically
zero. This can be seen from the fact that (E� H)δ(E� H)|χæ = 0
for all values ofE. As a result,δ(E�H) provides a density of states for
the Hamiltonian, H.
We next examine the connections between the vibrational

density of states and IV(ω) in eq 4. Let us first define the

quantum analogue of velocity as the expectation value or the
“averaged” value of the flux operator:

JðtÞ ¼ R ψðtÞ
����� p̂m
�����ψðtÞ

* +2
4

3
5 ¼ R ψðtÞ

������ ip
m

∇

�����ψðtÞ
* +2
4

3
5

¼ R ψð0Þ expðiHt=pÞ
������ ip
m

∇

����� expð�iHt=pÞψð0Þ
* +2
4

3
5

ðB1Þ
where the quantity R [ 3 3 3 ] is the real part of the complex
number within square brackets, and we have used the fact that
ψ(t) � exp(�iHt/h)ψ(0). A spectral decomposition of the
function ψ(0), in terms of the eigenvalues and eigenstates of H:
{Ei,ϕi}, then yields

JðtÞ ¼ R ∑
i
ciϕi exp

iEit
p

� ������� ip
m

∇

����� ∑j exp
� iEjt
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� �
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4
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� ip
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c�i cj exp
iðEi � EjÞt

p

( )
Æϕij∇jϕjæ

" #
ðB2Þ

Thus, the quantum analogue of the nuclear velocity autocorrela-
tion function, IV(ω) in eq 4, may be defined as the expectation
value of flux autocorrelation function:

IJðωÞ �
Z þ∞

�∞
dt exp½�iωt�ÆJðtÞJð0Þæ

�
�����
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�∞
dt exp½�iωt�JðtÞ

�����
2

ðB3Þ

where we have used the convolution theorem48 as in eq 4. Using
eq B2, we obtain

IJðωÞ

¼
�����
Z þ∞
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where δ(...) is the Dirac delta function. Equation B4 clearly leads
to a spectral representation with peaks positioned at the various
energy differences that correspond to vibrational excitations.
This is due to the presence of the quantity δ(ω� ([Ej� Ei])/p).
However, unlike δ(E�H) above, IJ(ω) has peak intensities that
are related to the velocity squared. (Note that kinetic energy is
obtained in eq 11 when mass-weighted velocities are used.)
Indeed, both the classical analogue of eq B3, that is IV(ω) in eq 4,
as well as IJ(ω) itself has been used in recent publications to
perform a spectral decomposition. See, for example, ref 8 for the
use of IJ(ω) to compute vibrational states and refs 6, 9�16, and
39 for the use of IV(ω) in computing vibrational states.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: iyengar@indiana.edu.

Table 3. Dynamically Averaged Vibrational Density of States
Calculated from Classical Ab Initio Dynamics Studiesa

level of theory temp (K)b ν1 (cm
�1) ν2 (cm

�1) ν3 (cm
�1)

B3LYP/6-31+G(d,p) 15.95 319 830 600

B3LYP/6-31+G(d,p) 50.29 308 818 658

B3LYP/6-31+G(d,p) 75.5 308 814 658

B3LYP/aug-cc-PVTZ 15.89 317 813 622

B3LYP/aug-cc-PVTZ 49.63 313 808 625

B3LYP/aug-cc-PVTZ 74.97 308 806 647

MP2/aug-cc-PVTZ 15.72 336 842 645

MP2/aug-cc-PVTZ 49.64 330 834 653

QWAIMD:B3LYP/6-31+G** 323.50 300 857 806

QWAIMD:B3LYP/6-31+G** 714.45 254 863 723

experimentc 318 792 ( 9 723
aData excerpted from ref 8. bAverage internal temperature of the system
during the simulation computed using nuclear velocities. cRef 92.

Figure 13. Temperature dependence of vibrational properties in
QWAIMD. The system studied is Cl�H�Cl� as in Table 2.
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