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We present a rigorous analysis of the primitive Gaussian basis sets used in the electronic structure
theory. This leads to fundamental connections between Gaussian basis functions and the wavelet
theory of multiresolution analysis. We also obtain a general description of basis set superposition
error which holds for all localized, orthogonal or nonorthogonal, basis functions. The standard
counterpoise correction of quantum chemistry is seen to arise as a special case of this treatment.
Computational study of the weakly bound water dimer illustrates that basis set superposition error
is much less for basis functions beyond the 6-311G* level of Gaussians when structure, energetics,
frequencies, and radial distribution functions are to be calculated. This result will be invaluable in
the use of atom-centered Gaussian functions forab initio molecular dynamics studies using
Born-Oppenheimer and atom-centered density matrix propagation. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1780157#

I. INTRODUCTION

Over the past several years ‘‘on-the-fly’’ approaches to
dynamics of nuclei and electrons1–6 have become popular,
leading to the field ofab initio molecular dynamics. Here,
approximations to the electronic structure are calculated as
needed, as the nuclear configurations are propagated to simu-
late dynamics on the Born-Oppenheimer surface. In recent
years the Car-Parrinello~CP! method3,7–10has emerged as a
very powerful implementation ofab initio molecular
dynamics.3,4,7–10The CP method is an extended Lagrangian
molecular dynamics~MD! scheme11,12 where the electronic
degrees of freedom are treated explicitly as dynamical vari-
ables and propagated with the nuclear degrees of freedom.
Such a scheme offers significant computational advantages
for efficient MD calculations. Several important applications
with density functional theory~DFT! and the CP method are
well documented in the literature.7,8 Traditionally, CP calcu-
lations employ Kohn-Sham orbitals expanded in plane-wave
basis sets ~occasionally augmented with Gaussian
orbitals13,14!, although recently15 Wannier basis functions16,17

have been used to represent the molecular orbitals. Gaussian
basis functions within the generalized valence bond
~GVB!18,19 and Hartree-Fock20 framework and floating
Gaussians21 have also been used within the CP scheme.

In Refs. 6 and 22–26 we have described the theory,
implementation, and initial applications of an extended La-
grangian MD method that employs atom-centered Gaussian
basis functions and one-particle electronic density matrix
propagation. Here, the basis functions follow the nuclei and
hence this method is called atom-centered density matrix

propagation~ADMP!. The ADMP method has many attrac-
tive features. Systems can be simulated by accurately treat-
ing all electrons or by using pseudopotentials. Through the
use of smaller values for the tensorial fictitious mass, large
time steps can be employed~ca. 0.25 fs in water simulations!
and lighter atoms such as hydrogens are routinely used. A
wide variety of exchange-correlation functionals can be uti-
lized, including hybrid density functionals such as B3LYP.
Atom-centered functions can be used with the appropriate
physical boundary conditions for molecules, polymers, sur-
faces, and solids, without the need to treat replicated images
to impose 3d periodicity. Consequently, charged systems and
QM/MM models of biological systems26 can be treated as
easily as neutral molecules. Deviations from the Born-
Oppenheimer surface and the mixing of fictitious and real
kinetic energies can also be rigorously controlled on-the-fly
in ADMP. Because of fewer basis functions per atom, larger
time steps, and its asymptoticO(N) scaling,27 good compu-
tational efficiency can be achieved with the ADMP method.
Interesting applications such as solvation of excess protons
in water clusters,28,29 hydroxyl-stretch redshifts in chloride-
water clusters,23 product distributions in gas-phase chemical
reactions,23 and proton shuttling in biological ion-channels
and water wires26 have already been studied. ADMP trajec-
tories of the order of picoseconds show stable dynamics, and
the adiabaticity can be controlled effectively in these systems
without thermostats. ADMP has also been recently extended
to treat nuclear quantum effects using full quantum wave
packet dynamics.30 The important conceptual and computa-
tional differences between ADMP and other Gaussian basis-
set based implementations18–21 of the Car-Parrinello formal-a!Electronic mail: iyengar@indiana.edu
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ism have been discussed in detail in Ref. 23.
Current implementation of the ADMP approach has been

found to be computationally superior to Born-Oppenheimer
dynamics.23 This important result can be conceptualized
based on the following: in Born-Oppenheimer dynamics, the
density matrix is to be converged at every dynamics step.
Assuming that the largest possible time step is used during
dynamics, SCF convergence requires'8 – 12 SCF steps.
~This depends on the convergence threshold and difficult
cases such as transition metal complexes may require more
SCF steps.! In ADMP, on the contrary, only the equivalent of
1 SCF step is required per dynamics step; this 1 SCF step is
necessary to calculate the Fock matrix required for propagat-
ing the density matrix.~A brief review of ADMP is presented
in Sec. II.! Both BOMD and ADMP evaluate the gradient of
energy with respect to nuclear coordinates and this calcula-
tion requires approximately the same amount of time in both
methods. Note that the gradients used in ADMP are more
general than those used in BOMD~Refs. 6 and 24! on ac-
count of the non-negligible magnitude of the commutator of
the Fock and density matrix~see Sec. II and Ref. 24 for
details!. However, the additional terms require no significant
computation over the standard BOMD gradient calculation.
The calculation of nuclear force requires approximately three
times as much computation time as a single SCF cycle. This
makes ADMP faster than BOMD by over a factor of 4 per
dynamics step. However, the requirement that the ADMP
energies oscillate about the BO values with small
amplitudes22 implies that ADMP step sizes cannot be as large
at those in BO dynamics. But good energy conservation,
which applies to both methods, limits the BO steps to at most
twice those of ADMP.23 ~ADMP already uses reasonably
large time steps on account of smaller values for the fictitious
mass and an innovative tensorial fictitious mass scheme.22!
This allows ADMP to be over a factor of 2 superior to
BOMD, but this estimate is only for cases where the SCF
convergence in BOMD is not difficult.23 The hard to con-
verge cases would require more SCF steps thus making
ADMP more efficient as compared to BOMD for these cases.
Furthermore, computational improvements that speed up the
gradient evaluation will tilt this comparison further towards
ADMP.

In this paper we study the effect of basis-set superposi-
tion error ~BSSE!31–36 on dynamics ~both BOMD and
ADMP!. In ADMP and in the BOMD implementation within
the Gaussian suite of electronic structure programs37 atom-
centered Gaussians are used as electronic basis sets. As at-
oms move, the basis functions remain with the atoms. This
has the important advantage that the basis functions are al-
ways present in regions where the density has important con-
tributions, however, has the disadvantage that the vector
space that represents the molecular orbitals is not constant
and changes with time and could change appreciably, when
small basis sets are used. In this paper we analyze this prob-
lem both analytically and computationally.

The paper is organized as follows: in Sec. II we first
present a brief overview of ADMP to facilitate some of the
discussion. Further details may be found in Refs. 6, 22–26,
and 30. In Sec. III, we analyze the primitive Gaussian basis

functions that are used in the ADMP approach. We show in
Sec. III that these primitive Gaussians are very closely re-
lated to the theory of multiresolution analysis which has
given rise to wavelet basis functions.38–41 We show in Sec.
III that primitive Gaussians, in fact, belong to a very general
category of multiwavelets with nonintegral scale factors.
This is an important connection, since wavelets are being
used in digital signal processing,39–41 computational fluid
mechanics,38 and in a number of other areas of scientific
computing that involve solutions to nonlinear differential
equations. Wavelets are preferred over plane waves in these
areas due to their locality and efficiency in representing non-
uniform functions. Quantum chemistry of the gas phase and
quantum chemistry of reactions in the condensed phase in-
volve the accurate description of wave functions that may be
spatially nonuniform. As a result the use of wavelets in elec-
tronic structure theory has become important recently.42–44In
Sec. III A we exploit this connection to analyze, formally,
basis-set superposition error and we arrive at error bounds
for this quantity. We also make connections to the standard
counterpoise expression.31–36 In Sec. IV we present a com-
parison of ADMP and BOMD calculations performed with
and without counterpoise corrections, and show that for com-
monly used basis sets such as 6-311G** , the effect of
basis-set superposition error on observable quantities is
small. In Sec. V we present our conclusions.

II. A BRIEF OVERVIEW OF ATOM-CENTERED
DENSITY MATRIX PROPAGATION „ADMP…

The ADMP equations of motion for the nuclei and den-
sity matrix are

M
d2R

dt2
52

]E~R,P!

]R U
P

, ~1!

mI 1/2
d2P

dt2
mI 1/252F ]E~R,P!

]P U
R

1LP1PL2LG , ~2!

whereR, V, andM are the nuclear positions, velocities, and
masses, andP, W, andmI are the density matrix, the density
matrix velocity, and the fictitious mass tensor for the elec-
tronic degrees of freedom.L is a Lagrangian multiplier ma-
trix used to impose N-representability of the single particle
density matrix. The energyE(R,P) is calculated using
McWeeny purification,P̃53P222P3,

E5Tr@h8P̃81 1
2 G8~P̃8!P̃8#1Exc1VNN

5Tr@hP̃1 1
2 G~P̃!P̃#1Exc1VNN . ~3!

Here, h8 is the one electron matrix in the nonorthogonal
Gaussian basis andG8( P̃8) is the two electron matrix for
Hartree-Fock calculations, but for DFT it represents the Cou-
lomb potential. The termExc is the DFT exchange-
correlation functional~for Hartree-FockExc50), while VNN

represents the nuclear repulsion energy. In the orthonormal
basis, these matrices areh5U2Th8U21, etc., where the
overlap matrix for the nonorthogonal Gaussian basis,S8, is
factorized to yieldS85UTU. There are a number of choices
for the transformation matrixU, e.g.,U can be obtained from
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Cholesky decomposition45 of S8 or U5S81/2 for Löwdin
symmetric orthogonalization. The matrixU can also include
an additional transformation so that overall rotation of the
system is factored out of the propagation of the density. The
density matrix in the orthonormal basisP is related to the
density matrix in the nonorthogonal Gaussian basisP8 by
P[UP8UT. The gradient terms involved in the equations of
motion are

]E~R,P!

]P U
R

53FP13PF22FP222PFP22P2F, ~4!

whereF is the Fock matrix and in the nonorthogonal basis,

Fn,s8 [hn,s8 1G8~P̃8!n,s1
]Exc

]P8
, ~5!

while the orthogonal basis Fock matrix isF5U2TF8U21.
The nuclear gradients are

]E

]RU
P

5H TrFdh8

dR
P̃81

1

2

]G8~P8!

]R U
P8

P̃8G
2TrFF8P̃8

dS8

dR
P̃8G1

]Exc

]R U
P

1
]VNN

]R J
1TrF @P̃,F#S Q̃

dU

dR
U212P̃U2T

dUT

dR D G , ~6!

whereQ̃[I2P̃. Note that as the commutator@P̃,F#→0, the
nuclear forces tend to those used in the standard Born-
Oppenheimer MD.6,24,46 However, in ADMP, the magnitude
of the commutator@P̃,F# is non-negligible and hence the
general expression for the nuclear gradients6,24 in Eq. ~6! is
used.

Like CP, ADMP represents fictitious dynamics where the
density matrix is propagated instead of being converged. The
accuracy and efficiency are governed by the choice of the
fictitious mass tensormI ; hence one must be aware of the
limits on this quantity. We have derived two independent
criteria22,24 that place bounds on the choice of the fictitious
mass. First, the choice of the fictitious mass determines the
magnitude of the commutator@P̃,F# thus determining the
extent of deviation from the Born-Oppenheimer surface,24

i@F,Papprox#iF>
1

i@Papprox,W#iF
UTrFWmI 1/2

dW

dt
mI 1/2GU,

~7!

wherei@¯#iF is the Frobenius norm45,47 of the commutator
and is defined asiAiF5A( i , jAi , j

2 . Second, the rate of
change of the fictitious kinetic energy,

dHfict

dt
5TrFWmI 1/2

d2P

dt2
mI 1/2G

52TrFWS ]E~R,P!

]P U
R

1LP1PL2LD G , ~8!

is to be bounded and oscillatory and this again is determined
by the choice of fictitious mass tensor. We have shown that
ADMP gives results that are in good agreement with BOMD
and is computationally superior to BOMD.23 However, one

must monitor the quantities in Eqs.~7! and ~8! to ascertain
that the ADMP dynamics is physically consistent. In all ap-
plications studied to date6,22,23,26,28,29these conditions are sat-
isfied thus yielding a computationally efficient and accurate
approach to model dynamics on the Born-Oppenheimer sur-
face.

III. FORMAL ANALYSIS OF PRIMITIVE GAUSSIAN
BASIS FUNCTIONS: CONNECTIONS TO
MULTI-RESOLUTION ANALYSIS

The general form of the primitive cartesian Gaussian ba-
sis functions used in ADMP is

x l ,m,n
R ~r !5~x2Rx!

l~y2Ry!m~z2Rz!
nexp@2a~r2R!2#,

~9!

whereR[$Rx ,Ry ,Rz% is the Gaussian center andl , m, and
n are integers that determine the orbital angular momentum
of the basis function. The following two characteristics are
evident upon inspection of Eq.~9!:

~1! Translation: The basis function in Eq.~9! has a transla-
tional property which is represented by its dependence
on the atom centerR.

~2! Dilation: There is a dilatory characteristic associated
with Eq. ~9! wherein for a given value ofl , m, n, andR,
the exponenta can have multiple values. For example,
many differenta values may be used to construct a con-
tracted 1s-type or 2s-type Gaussian basis function. The
primitive Gaussians with smallera are simply a ‘‘di-
lated’’ version of the original for every value ofl , m, n,
andR.

Based on the above observations, we see thatthe primitive
Gaussian basis functions used in electronic structure theory
are closely related to the theory of multiresolution analysis
that has been well-studied over the last couple of
decades.38–41 Multiresolution analysis leads to basis func-
tions called ‘‘wavelets’’ which have, in recent times, been
very popular in scientific computing.38–41 Since wavelets
share a similar property as those highlighted above, the
wavelets have been broadly described as atranslation-
dilation basis set. In fact, as we will see below that Eq.~9! is
an example of amultiwavelet.48 To understand the similari-
ties between the wavelet theory and the primitive Gaussian
functions in Eq.~9!, let us consider the following definitions
for the scaling functionand thewavelet functionthat form
the basis for multiresolution analysis:

j i , j~x!5a2 j /2j~xa1 j2 i !, ~10!

h i , j~x!5a2 j /2h~xa1 j2 i !, ~11!

where j(x) and h(x) can either be orthogonal or nonor-
thogonal~they are generally orthogonal in all wavelet appli-
cations! andj(x) is called the scaling function andh(x) is
called the wavelet function. In most casesj(x) constitutes a
function with average lower frequency~and hence called a
low-pass filter! while the wavelet function is generally a
high-pass filter since it is generally chosen to have a Fourier
transform that is predominantly nonzero in the high-
frequency region. Using Eqs.~10! and ~11! a complete hier-
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archy of basis functions are constructed and this hierarchical
representation allows accurate and efficient ways to store im-
ages and solve partial differential equations whenj(x) and
h(x) are appropriately chosen. The indicesi and j are gen-
erally integers although that is not a requirement of the
theory anda is a scaling parameter that specifies the extent
of ‘‘dilation.’’ Again, in most signal processing applications
the two-scale version (a52) of these equations is common.
Based on Eqs.~10! and ~11! a variety of such hierarchical
wavelet bases have been developed39,40,49and some of these
have also been recently used in electronic structure
calculations.42–44

To illustrate Eqs.~10! and ~11! let us consider the ex-
ample of the two-scale Haar wavelet and scaling functions.
The basic Haar scaling function is a square function where
j(x) is equal to 1, for 0<x<1, and zero otherwise. The
Haar wavelet function is the orthogonal complement of the
Haar scaling function and henceh(x) is equal to 1, for 0
<x<1/2, andh(x) is equal to21 for 1/2<x<1, and zero
otherwise. The translational and dilation properties in Eqs.
~10! and~11! are then used to generate a complete hierarchy
of Haar wavelet basis functions (a52). Two properties are
evident upon inspection of the Haar wavelet and scaling
functions:~a! localization: all theh and j functions are lo-
calized, ~b! multiresolution: the wavelet functions with
higher j values may be used to represent highly oscillatory
~high frequency! functions, or highly oscillatory regions of a
function, while the scaling functions with lowerj values may
represent flatter~low frequency! regions. Thus, if a given
function displays high frequency behavior in some region
and low frequency behavior in another region, the higherj
wavelet functions may be used to represent the high fre-
quency region and the lowj scaling functions may be used
to represent the lower frequency regions. Intermediate fre-
quency regions may be represented using other components
of the hierarchical scheme presented in Eqs.~10! and~11!. In
this way an accurate and efficient fit could be obtained for
nonuniform functions and this is the reason wavelets have
become popular in various areas of scientific computing.
Compare this with a fit accomplished using a Fourier series.
Here using the high-frequency Fourier functions to represent
the high-frequency region leads to the Gibb’s phenomenon
or rapid intertwining in the low-frequency region since the
Fourier functions are not local.~This aspect is further dis-
cussed later in this section.!

On comparing Eqs.~10! and ~11! with Eq. ~9! the fol-
lowing statements are apparent. The exponenta in Eq. ~9!
takes the role of a scaling factor similar toa2 j in Eqs.~10!
and ~11!, which makes it possible to have different spreads
for orbitals with different principal quantum numbers. The
vector R[$Rx ,Ry ,Rz% takes the role of translation as per-
formed by the indexi in Eqs.~10! and~11!. ~To be exact, we
must note that in the atom-centered form of the basis sets
noted in Eq.~9! the translatesR are not uniform. This is also
the case for the scaling factor. In the case ofeven tempered
or uniform basis sets, these would be uniform and the atom-
centered forms in Eq.~9! are a subset of sucheven tempered
basis sets. It is advantageous to use this subset in electronic
structure theory of molecular systems since the electron den-

sity is generally a maximum at the nuclear center.50! Due to
this similarity between the Gaussian functions and wavelets,
theMexican hat wavelet$(12x2)exp@2x2/2#% has been used
in analyzing vision and theMorlet wavelet $exp@2ıvx#
3exp@2x2/2#% has been used in signal processing. The Mexi-
can hat wavelet is related to thed-type Gaussian basis de-
rived from Eq.~9!. Note the similarity between the Morlet
wavelet and coherent states,51 and also the periodic form of
Eq. ~9! which have been used to enforce periodic boundary
conditions with Gaussian basis functions.52

Unlike Eqs.~10! and~11!, Eq. ~9! may have many basic
forms @as opposed to just two forms for Eqs.~10! and ~11!,
one scaling function and one wavelet function; for example,
see the Haar wavelet discussion above#. One can have as
many sets of$ l ,m,n% as required for eachR, each set corre-
sponding to a given angular momentum. In this sense, Eq.
~9! is a multi wavelet.48 @In fact, the Cartesian Gaussians in
Eq. ~9! approach aframe in the limit of large angular
momenta.41#

Equations~10! and~11! can both have real values for the
scaling factora ~although real values for the scaling factor
are seldom used in most wavelet applications! and in this
case the associated wavelet and scaling functions turn out to
be nonorthogonal.40 By contrast, the scaling parameter in Eq.
~9! is always real, however, the associated nonorthogonality
of Gaussian basis functions has been known for a long time,
before the development of wavelets.

All this is extremely interesting since it has been re-
cently realized that wavelets and multiwavelets have great
utility in fitting diverse data and in solving partial-differential
equations of various kinds. Wavelet signal processing is also
replacing the standard digital Fourier transforms~used in
jpeg files! to become the industry standard in image com-
pression and data storage.53 One of the main reasons for this
is, when the scaling and wavelet functions are appropriately
chosen, the multiresolution analysis theory provides a frame-
work to accurately represent nonuniform functions that may
portray a diverse spatial~or temporal! frequency dependence.
When a truncated series of plane waves of some orderN is
used to approximate such functions, the residue is a Fourier
function of orderN11, which is a very rapidly oscillatory
function. This leads to the so-called Gibb’s phenomenon54

where the approximated function constantly intertwines
around the real function. Wavelets and multiwavelets on the
contrary give rise to what are known as ‘‘well-tempered’’ or
smooth approximations55,56 to fitted data and this intertwin-
ing effect is generally not present due to the localized nature
of the functions chosen in Eqs.~10!, ~11!, and ~9!. @An im-
portant difference between a plane-wave fit and a fit based on
Eqs. ~10!, ~11!, and ~9! is as follows: While an approxima-
tion to a function based on a plane-wave expansion results in
a normedconvergence to the true function, an approximation
based on Eqs.~10!, ~11!, and~9! results in auniformconver-
gence to the true function.57 The normedconvergence is a
weakconvergence criterion as compared to theuniformcon-
vergence.# Alternately, such artifacts in the plane-wave bases
may be eliminated by using a ‘‘smoothing’’ or ‘‘windowing’’
process to reduce the contribution of high frequency
noise.54,58 Without the ‘‘windowing,’’ this constitutes one of
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the major impediments in the accurate description of local-
ized systems using plane-waves even when large box sizes
are used.8

In ADMP there is an additional complication that arises
from the use of Eq.~9! as the primitive basis set. The trans-
lation property of the Gaussian multiwavelet basis is time-
dependent on account of moving nuclei, since basis functions
in ADMP are atom-centered. This, along with the nonor-
thogonal nature of multiwavelets associated with nonintegral
scaling factors gives rise to different levels of basis-set com-
pleteness at different nuclear geometries.Hence the ‘‘qual-
ity’’ of the basis set changes as the nuclei move. This is
known as the ‘‘basis-set superposition error.’’ However, we
can now see that this problem is quite general and should
occur in any multiwavelet~or wavelet! application where the
wavelet centers are not stationary. In the following section
we present a general treatment of such errors.

A. Basis-set superposition error „BSSE…:
Effect on dynamics

In order to understand the effect of ‘‘basis-set superpo-
sition error’’ to dynamics~both ADMP and BOMD! using
basis sets such as those in Eq.~9! in particular and any mul-
tiwavelets in general, we will study how the basis set space
changes during a dynamics process. Let us first introduce the
set V$ l ,m,n%

R to represent the vector space spanned by all the
primitive Gaussian basis functions belonging to the atom
centered atR. The family of angular momentum indices
$ l ,m,n% takes on values depending upon the choice of
Gaussian basis set. As a result of moving nuclei in ADMP
and BOMD, the overlap of the vector spaceV$ l ,m,n%

R with the

vector spaceV$ l ,m,n%
R8 , centered on another atom, is a time-

dependent quantity. Consider the set

V$ l ,m,n%
R8 2V$ l ,m,n%

R8 ùV$ l ,m,n%
R . ~12!

The quantityV$ l ,m,n%
R8 ùV$ l ,m,n%

R is the intersection between the
two vector spaces, by which is meant the orthogonal set of
vectors that span the space of the overlap matrix of the vec-

tors in V$ l ,m,n%
R andV$ l ,m,n%

R8 . The subtraction in Eq.~12! is a
set-theoretic subtraction that implies the removal of the
space spanned by the overlap matrix from the original space.
The difference in Eq.~12! may be obtained from a Schmidt

orthogonalization of the vectors inV$ l ,m,n%
R8 from the vectors

in V$ l ,m,n%
R . The quantity in Eq.~12! is, however, time depen-

dent asR and R8 move with time during dynamics. The
difference between the quantity in Eq.~12! at timet8 and the
same quantity at timet, that is

$~V$ l ,m,n%
R8,t8 2V$ l ,m,n%

R8,t8 ùV$ l ,m,n%
R,t8 !

2~V$ l ,m,n%
R8,t 2V$ l ,m,n%

R8,t ùV$ l ,m,n%
R,t !%, ~13!

where we have used the superscript index to identify the time
dependence, represents how the basis-set space changes with
time in the neighborhood ofR. In fact, Eq.~13! represents
the additional basis functions that have been added~or re-
moved! at time t8, since the set-theoretic subtraction in Eq.

~13! represents the removal of elements in@V$ l ,m,n%
R8,t

2V$ l ,m,n%
R8,t ùV$ l ,m,n%

R,t # from the set @V$ l ,m,n%
R8,t8

2V$ l ,m,n%
R8,t8 ùV$ l ,m,n%

R,t8 #. It is instructive to explain in words
what the expressions in Eqs.~12! and ~13! mean. The sub-
tractions used are set-theoretic subtractions and hence, if
@A2B# is to be obtained, as is the case in all of these equa-
tions, then this is done by removing the portion ofA that also
exists in B. Hence in this sense,@A2B#[@A2AùB#,
which is obtained by the Schmidt orthogonalization of the
vectors inA from the vectors inB. This explains how the
quantities in Eqs.~12! and ~13! are to be viewed.~Subtract-
ing two vectors spaces is well-known in applied mathematics
and the difference between two vectors spaces is called the
Bellman residual.!

Since, Eq.~13! represents the additional basis functions
that have been added~or removed! at timet8, there must also
be the opposite kind of elements, that is, those in the set,

@V$ l ,m,n%
R8,t 2V$ l ,m,n%

R8,t ùV$ l ,m,n%
R,t #, that are not in the set,

@V$ l ,m,n%
R8,t8 2V$ l ,m,n%

R8,t8 ùV$ l ,m,n%
R,t8 #. Hence the quantity

V R,R8
t,t8 [$~V$ l ,m,n%

R8,t8 2V$ l ,m,n%
R8,t8 ùV$ l ,m,n%

R,t8 !

2~V$ l ,m,n%
R8,t 2V$ l ,m,n%

R8,t ùV$ l ,m,n%
R,t !%

% $~V$ l ,m,n%
R8,t 2V$ l ,m,n%

R8,t ùV$ l ,m,n%
R,t !

2~V$ l ,m,n%
R8,t8 2V$ l ,m,n%

R8,t8 ùV$ l ,m,n%
R,t8 !% ~14!

represents how the quality of the basis set changes in the
vicinity of R between timest and t8. A Venn diagram rep-
resenting Eq.~14! is presented in Fig. 1.~For dynamicst8
may be chosen ast1Dt.) The terms in Eq.~14! are to be
obtained from the direct-sum%: The quantity@A% B# is sim-
ply the union of all the elements in both sets. Hence an
orthogonal set belonging to@A% B# may be obtained from a
QR decomposition of the vectors inA andB, together.

The projection of the orbitals at timet onto the vector
space represented by Eq.~14! determines how the change in
the quality of the basis-set expansion due to the moving na-
ture of the atom-centered basis functions affects the physical

process. This is because the basis vectors in the spaceV R,R8
t,t8

are those vectors that are not present either at timet or at
time t8. Hence the existence of a sizable component of the
orbital in this vector space would ensure that the orbital is

FIG. 1. Venn diagram corresponding to the set in Eq.~14!, assuming that the
system atR is stationary. The shaded area represents Eq.~14!, i.e., the set
comprising the basis vectors that are absent at timet and present at timet8,
or those that are absent at timet8 but present at timet.
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treated incompletely at either timet or at timet8. Thus the

projection of the orbitals onto the spaceV R,R8
t,t8 completely

quantifies basis-set superposition error for a given problem.

It is interesting to consider the nature of the spaceV R,R8
t,t8

when the basis functions centered on each atom become
large and effectively complete. When this happens the inter-

section@V$ l ,m,n%
R8,t ùV$ l ,m,n%

R,t >V$ l ,m,n%
R8,t >V$ l ,m,n%

R,t # at both timet

and at t8. Hence the quantityV R,R8
t,t8 in Eq. ~14! becomes

zero~null set!. In Fig. 1, this represents the fact that when all
circles become suitably large, the size of the shaded portion
goes to zero. This implies that basis set superposition error is
completely absent for large enough atom-centered basis sets.

It is also negligible whenV$ l ,m,n%
R andV$ l ,m,n%

R8 are large and
not complete, but the component of an orbital in the space

V R,R8
t,t8 is small. In this case the vector spacesV$ l ,m,n%

R and

V$ l ,m,n%
R8 areeffectivelycomplete for a given problem. This is,

of course, system dependent and chemistry dependent
~which is why the orbital at timet enters into the discussion!.

If an orthonormal multi-wavelet unlike that described in

Eq. ~9! were to be used, then the quantity@V$ l ,m,n%
R8 ùV$ l ,m,n%

R #
would be zero at all times, and, from Eq.~14!, it would be
the overlap of the orbitals at timet with the space,

@V$ l ,m,n%
R8,t8 2V$ l ,m,n%

R8,t # % @V$ l ,m,n%
R8,t 2V$ l ,m,n%

R8,t8 # ~15!

that contributes to the superposition error. This is shown in
Fig. 2. Clearly, this is small whent82t[Dt is small within
a dynamics setting.@This is also the case for the quantity in
Eq. ~14!.# However, whenDt is not negligible, this quantity

remains finite, whenV$ l ,m,n%
R8,t andV$ l ,m,n%

R,t are not effectively

complete. It should be noted that when bothV$ l ,m,n%
R8,t and

V$ l ,m,n%
R,t do approach completeness,$@V$ l ,m,n%

R8,t8 2V$ l ,m,n%
R8,t #

% @V$ l ,m,n%
R8,t 2V$ l ,m,n%

R8,t8 #% is a null set as in the nonorthogonal
case discussed above. This is, however, not the case when

V$ l ,m,n%
R8,t andV$ l ,m,n%

R,t are not effectively complete. Thus, it is
only the local and time-dependent nature of the basis func-
tions that causes this kind of an error, and the orthogonal
nature of the basis set has limited bearing on the error. This
is especially interesting since recently orthonormal, but local,
Wannier functions16,17 have been used to perform Car-
Parrinello dynamics.15 A similar error may be expected in

these calculations for a finite basis set, if the Wannier basis
functions were time-dependent or nuclear coordinate
dependent.15

To proceed further with our discussion of Eq.~14!, we

note that since the overlap of the setV R,R8
t,t8 with the orbitals

is crucial in determining the extent of the superposition error,
an upper bound to such error for normalized orbitals may be
written as

iV R,R8
t,t8 i2

C , ~16!

where we have also used the Holder inequality and the no-
tation i¯i2

C represents a constrainedL2 norm, where the
constraint comes from the fact that we want to consider only
the domain in space where a given orbital, whose basis-set
superposition error we are interested in, is numerically non-
zero. An unconstrained norm should present a weak upper
bound.

It is interesting to now consider how the above discus-
sion can be specialized for the case of calculating dissocia-
tion energies that have been well-studied using the counter-
poise correction.34 In such a case the two time frames being
used in Eqs.~14! and~16! would bet50 ~the undissociated
system! and t85` ~the dissociated system!. Since the over-
lap of the two spaces would be zero for the dissociated sys-
tem, the expression in Eq.~14! becomes

V R,R8
0,̀ [$V$ l ,m,n%

R8,` 2~V$ l ,m,n%
R8,0 2V$ l ,m,n%

R8,0 ùV$ l ,m,n%
R,0 !%

% $~V$ l ,m,n%
R8,0 2V$ l ,m,n%

R8,0 ùV$ l ,m,n%
R,0 !2V$ l ,m,n%

R8,` %

5V$ l ,m,n%
R8,`

% ~V$ l ,m,n%
R8,0 2V$ l ,m,n%

R8,0 ùV$ l ,m,n%
R,0 !. ~17!

We obtain the second expression above from the fact that the
orbitals localized aroundR for the undissociated system will

have no overlap withV$ l ,m,n%
R8,` ~which is infinitely far fromR

at t85`, the dissociated system!. This expression implies
that the dissociated system att5` is to be corrected by
augmenting additional basis functions from the setV R,R8

0,̀ for
the system atR.

It is useful to compare this last expression in Eq.~17!
with the standard counterpoise correction34 used in most cal-
culations. Here, in the spaceV$ l ,m,n%

R,` ~the dissociated system!
the basis functions localized onR, and also basis functions
localized on all otherR8 are included. Note now that Eq.

~17! suggests that the orthogonal portion ofV$ l ,m,n%
R8 , that is

V$ l ,m,n%
R8,0 2V$ l ,m,n%

R8,0 ùV$ l ,m,n%
R,0 , be included along with the basis

functions onR andV$ l ,m,n%
R8,` . ~The latter would have no over-

lap with an orbital localized atR and hence would not be
expected to contribute much.! In this sense Eq.~17! is dif-
ferent from the standard counterpoise correction, in that it
avoids redundancy, by including only the orthogonal compo-
nent. However, it is important to note that the space spanned

by adding basis functions fromV$ l ,m,n%
R8 or by adding basis

functions fromV$ l ,m,n%
R8,0 2V$ l ,m,n%

R8,0 ùV$ l ,m,n%
R,0 is essentially the

same.~Although, the former strategy may present some nu-
merical problems where large basis sets are used for tightly
bound systems.! Since a space analogous to Eq.~17! is added
in as part ofV$ l ,m,n%

R,` the basis-set superposition error is for-

FIG. 2. Venn diagram corresponding to Eq.~15!, assuming that the system
at R is stationary. The shaded area represents the set in Eq.~15!. This is
similar to the case in Fig. 1 except the basis set on each atom are orthonor-
mal as seen in the discussion in the paragraph before Eq.~15!.

5066 J. Chem. Phys., Vol. 121, No. 11, 15 September 2004 S. S. Iyengar and M. J. Frisch

Downloaded 06 Sep 2004 to 128.253.86.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



mally zero in such calculations. The corrected energy for a
system comprisingN monomer units within the counterpoise
scheme then has the form

Ecounterpoise5E~A!2(
i

N

@Ei~A!2Ei~ai !#. ~18!

Here E(A) is the energy of the full system using a certain
basis set~represented asA), Ei(A) is the energy for thei th
monomer using the basis set for the full systemA ~which is
analogous to including basis functions localized on all other
R8 in the spaceV$ l ,m,n%

R,` as noted above! and Ei(ai) is the
energy for thei th monomer using only the basis functions
localized on thei th monomer. For a system containingN
monomers, for example, a water cluster withN water mol-
ecules, the energy in Eq.~18! requires one to calculate 2N
11 different energy values that go into the right-hand side of
the equation to obtain a counterpoise corrected value for the
total energy of the system. The 2N11 different energy val-
ues correspond to a single calculation for the full system and
two different calculations for each monomer, one with all the
basis functions and the other with only the monomer basis
functions. In this fashion the total energy is corrected by
introducing the over-stabilization of the monomer due to the
presence of basis functions localized on other monomers in
the full calculation @Ei(A)2Ei(ai)#. This contribution
@Ei(A)2Ei(ai)# gets smaller as the basis set localized on
monomeri gets more complete and this aspect is evident
from our earlier formal discussion. It is also important to
note that the energy expression in Eq.~18! only depends
upon the nuclear coordinates of the system and hence gradi-
ents with respect to these can be obtained to perform both
geometry optimizations as well as Born-Oppenheimer dy-
namics on this corrected surface, which is the subject of the
fllowing section.

IV. COMPUTATIONAL TESTS

To test the effect of basis-set superposition error on en-
ergy, geometry, and frequencies, we consider the weakly
bound water dimer. This system is chosen due to~a! its com-
putational simplicity, and~b! the existence of nonbonded in-
teractions which makes this an important system for basis-set
superposition error. Calculations are performed with and
without counterpoise corrections at various levels of theory
and basis set. The dimer geometry was optimized in two
different ways: in one case the corrected expression for en-

ergy in Eq.~18! was used, and in the other case the standard
energy expression, without counterpoise correction, was
used. The geometries and harmonic frequencies thus ob-
tained were compared. Dynamics calculations were also per-
formed using ADMP, Born-Oppenheimer dynamics with
~and without! counterpoise correction, and the velocity-
velocity correlation function obtained from these were com-
pared with that obtained from a Car-Parrinello calculation
using plane-wave basis sets.

In Table I, the geometries and dissociation energies ob-
tained from optimization with and without counterpoise cor-
rection at the 6-31G* , 6-311G* , and 6-311G** levels of
basis set using B3LYP, BLYP, and PBE density functionals
are compared. There is very little difference in the RMS
deviations between the structures obtained beyond the 6-31
1G* level of basis set. 6-31G* , on the contrary is too low
a level for the water dimer system, since while the
counterpoise-corrected optimization yields the correct struc-
ture for all three functionals, the optimization without coun-
terpoise correction leads to a double-bridge water-dimer
structure for all three functionals. Diffuse functions are evi-
dently critical to get the right chemistry in this case.

The harmonic frequencies are calculated at the opti-
mized geometries and these are presented in Fig. 3. We
present here only the results from the 6-311G* calcula-
tions. It suffices to note that above~and including! this level
of basis set, the agreement is good between the counterpoise-
corrected values and those without the counterpoise correc-
tion. From the figures it is seen that the low-frequency modes
~less than 300 cm21) do not agree as well as the higher fre-
quency bending, stretching, and some of the librational
modes. This is because the low-frequency modes involve
high-amplitude motions which cause large change in overlap
and hence these are more susceptible to basis-set superposi-
tion error. All the hydrogen bond stretching modes~ca.
3500 cm21), the bending modes and some of the higher fre-
quency librational modes are in good agreement between the
calculations including counterpoise and those without, im-
plying a lesser degree of sensitivity to basis-set superposition
error.

The Fourier transform of the velocity-velocity autocor-
relation function obtained from ADMP, Born-Oppenheimer,
and Car-Parrinello dynamics simulations are presented in
Fig. 4. Here the Born-Oppenheimer dynamics forces are de-
rived from Eq.~18! and hence include counterpoise correc-
tion. As can be seen, the ADMP results are close to the

TABLE I. Comparison of optimized geometries for water dimer.

B3LYP BLYP PBE

6-311G** 6-311G* 6-31G* a 6-311G** 6-311G* 6-31G* 6-311G** 6-311G* 6-31G*

rms deviation~Å!b 0.0288 0.009 0.4605 0.0308 0.009 0.4789 0.0277 0.007 0.4601
Error in dissociation
energy~kcal/mol!c

0.816 1.105 0.835 1.114 0.900 1.216

a6-31G* basis set optimizes to the double bridge water structure with B3LYP, PBE, and BLYP in the absence of counterpoise correction. Optimizes to the
correct structure when counterpoise correction is included.

bDistance matrix RMS difference between the optimized structures obtained with and without counterpoise correction.
cThe difference in the dissociation energy of the water dimer with and without counterpoise correction. The dissociation energy is calculated as dimer minus
two times monomer energy.
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BOMD results. As a further example we have also presented
a comparison between the oxygen-oxygen radial distribution
functions obtained from ADMP and BOMD simulations in
Fig. 5. As can be seen, these are in good agreement as well.

The Car-Parrinello calculations were performed using
deuterium atoms instead of hydrogen atoms, as is standard in
current literature,8 and by using a plane-wave cutoff of 90
Ryd. The fictitious mass was chosen to be 1100 a.u.~com-
mon in current simulations8! with a time step of about 0.1 fs.
The corresponding ADMP fictitious mass was
0.1 a.m.u. bohr2'180 a.u. with a time step of 0.25 fs which
is possible due to the tensorial mass-weighting scheme used
in ADMP.22 The frequencies thus obtained from the Car-
Parrinello simulations were harmonically corrected~by mul-
tiplying by a factor of&! to obtain the corresponding hy-
drogen spectrum.~While this is based on a harmonic bond
approximation, clearly anharmonic forces are sampled dur-
ing a molecular dynamics simulation. As a result this is only
an estimated correction factor.! The fictitious mass was cho-
sen based on previous studies8 to allow for reasonably large
time steps, however, recent studies9 indicate that a lower
fictitious mass would have to be chosen to allow for more
accurate dynamics. The lower fictitious mass would necessi-
tate smaller time steps in the Car-Parrinello approach. It is
also seen from Fig. 4 that while the ADMP results are close

to those from counterpoise-corrected BOMD, the results
from the CP simulations are uniformly red-shifted. Such sys-
tematic bias in frequencies in the CP calculations has been
noted previously,9,10,23and this is the result of the larger fic-
titious mass used in standard CP simulations.~Furthermore,
our formal analysis24 has shown that deviations from the
Born-Oppenheimer surface is directly proportional to the
size of the fictitious mass.! Nuclear mass rescaling10 has
been suggested as an approach to overcome this problem if
lower values for the fictitious mass are not used,9 however,
we have not used this in the current CP simulations.

V. CONCLUSIONS

In this paper we have performed a rigorous analysis of
primitive Gaussian basis sets and the effect of using such
functions within an atom-centeredab initio dynamics
scheme. Our analysis has led to important connections be-
tween the Gaussian basis functions and the wavelet theory
that is now popular in computational fluid mechanics, digital
signal processing, and other areas of applied mathematics
and scientific computing. These connections lead to a general
treatment of the basis-set superposition error; we find that

FIG. 3. Harmonic frequencies from optimized structures obtained with and without counterpoise corrections using the B3LYP, BLYP, and BPBE and the
6-311G* basis set. For counterpoise corrections optimization was performed on the modified surface denoted by Eq.~18!.

5068 J. Chem. Phys., Vol. 121, No. 11, 15 September 2004 S. S. Iyengar and M. J. Frisch

Downloaded 06 Sep 2004 to 128.253.86.26. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



this is closely related to the time dependence of the instan-
taneous incompleteness of basis sets that have a multiwave-
let character, of which the atom-centered Gaussian basis
functions are one example. The standard counterpoise cor-
rections appear as a special case of our discussion. Our

analysis also rigorously leads to the expected result that as
the size of the atom-centered Gaussian basis set increases,
the basis set superposition error goes to zero.

We have carried out computational tests on the weakly
bound water-dimer system to critically ascertain the limits of
ab initio dynamics approaches that use atom-centered Gauss-
ian basis functions insofar as basis set size and superposition
error are concerned. We find that beyond 6-311G* the er-
rors in geometry, energy, frequency, and structure distribu-
tion are within the accuracy of the density functional used.
For more strongly bound chemically reactive systems one
could expect to use a slightly lower level of basis set.

Our analysis also provides new ways to ascertain the
quality of a basis set during dynamics. This will be used, in
future publications, to adaptively control and change the
quality of the basis set during dynamics.
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