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We present a rigorous analysis of the primitive Gaussian basis sets used in the electronic structure
theory. This leads to fundamental connections between Gaussian basis functions and the wavelet
theory of multiresolution analysis. We also obtain a general description of basis set superposition
error which holds for all localized, orthogonal or nonorthogonal, basis functions. The standard
counterpoise correction of quantum chemistry is seen to arise as a special case of this treatment.
Computational study of the weakly bound water dimer illustrates that basis set superposition error
is much less for basis functions beyond the 6+&* level of Gaussians when structure, energetics,
frequencies, and radial distribution functions are to be calculated. This result will be invaluable in
the use of atom-centered Gaussian functions dbr initio molecular dynamics studies using
Born-Oppenheimer and atom-centered density matrix propagatioB0@ American Institute of
Physics. [DOI: 10.1063/1.1780157

I. INTRODUCTION propagationlADMP). The ADMP method has many attrac-

tive features. Systems can be simulated by accurately treat-
; ; > Ong all electrons or by using pseudopotentials. Through the
dynamics of nuclei and electron have become popular, use of smaller values for the tensorial fictitious mass, large

Ieadmg to Fhe field ofab initio molecular dynamics. Here, time steps can be employéch. 0.25 fs in water simulations
approximations to the electronic structure are calculated as_ " . .
nd lighter atoms such as hydrogens are routinely used. A

needed, as the nuclear configurations are propagated to Simgl-

late dynamics on the Born-Oppenheimer surface. In recerlfide variety of exchange-correlation functionals can be uti-
years the Car-ParrinelltlCP) method’~°has emerged as a lized, including hybrid density functionals such as B3LYP.

very powerful implementation ofab initio molecular ~Atom-centered functions can be used with the appropriate
dynamics>*’~19The CP method is an extended LagrangianPhysical boundary conditions for molecules, polymers, sur-
molecular dynamic§MD) schemé&®'? where the electronic faces, and solids, without the need to treat replicated images
degrees of freedom are treated explicitly as dynamical varito impose 8 periodicity. Consequently, charged systems and
ables and propagated with the nuclear degrees of freedor@M/MM models of biological systen38 can be treated as
Such a scheme offers significant computational advantagesasily as neutral molecules. Deviations from the Born-
for efficient MD calculations. Several important applications oppenheimer surface and the mixing of fictitious and real
with density functional theoryDFT) and the CP method are yinetic energies can also be rigorously controlled on-the-fly
We_II documented in the Ilteratuféa.Tradltlonally,_CP calcu- i, ADMP. Because of fewer basis functions per atom, larger
s ot e P ime stpe, and 1 3sympio(N) sl 900 comp
tational efficiency can be achieved with the ADMP method.

orbitals®%, although recentf{ Wannier basis functiort&’ _ - )
have been used to represent the molecular orbitals. GaussiHHereSt'ng applications such as solvation of excess protons
basis functions within the generalized valence bondh Water clusterg®2° hydroxyl-stretch redshifts in chloride-

(GVB)!19 and Hartree-Fodk framework and floating water cluster$? product distributions in gas-phase chemical

Gaussian?g- have also been used within the CP scheme. reactionsz,g and proton Shuttllng in biOlOgical ion-channels
In Refs. 6 and 22—-26 we have described the theoryand water wire® have already been studied. ADMP trajec-

implementation, and initial applications of an extended La-tories of the order of picoseconds show stable dynamics, and
grangian MD method that employs atom-centered Gaussiatine adiabaticity can be controlled effectively in these systems
basis functions and one-particle electronic density matrixvithout thermostats. ADMP has also been recently extended
propagation. Here, the basis functions follow the nuclei ando treat nuclear guantum effects using full quantum wave
hence this method is called atom-centered denSity matribacket dynamicgq The important Conceptua| and Computa_
tional differences between ADMP and other Gaussian basis-
aElectronic mail: iyengar@indiana.edu set based implementatidfis®! of the Car-Parrinello formal-

Over the past several years “on-the-fly” approaches t
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ism have been discussed in detail in Ref. 23. functions that are used in the ADMP approach. We show in
Current implementation of the ADMP approach has beerSec. Il that these primitive Gaussians are very closely re-
found to be computationally superior to Born-Oppenheimeldated to the theory of multiresolution analysis which has
dynamics?® This important result can be conceptualizedgiven rise to wavelet basis functioffs.*! We show in Sec.
based on the following: in Born-Oppenheimer dynamics, thdll that primitive Gaussians, in fact, belong to a very general
density matrix is to be converged at every dynamics stepcategory of multiwavelets with nonintegral scale factors.
Assuming that the largest possible time step is used duringhis is an important connection, since wavelets are being
dynamics, SCF convergence require8—12 SCF steps. used in digital signal processirig,** computational fluid
(This depends on the convergence threshold and difficulmechanics® and in a number of other areas of scientific
cases such as transition metal complexes may require mog@mputing that involve solutions to nonlinear differential
SCF steps.In ADMP, on the contrary, only the equivalent of equations. Wavelets are preferred over plane waves in these
1 SCF step is required per dynamics step; this 1 SCF step Rreas due to their locality and efficiency in representing non-
necessary to calculate the Fock matrix required for propagatniform functions. Quantum chemistry of the gas phase and
ing the density matrix(A brief review of ADMP is presented quantum chemistry of reactions in the condensed phase in-
in Sec. Il) Both BOMD and ADMP evaluate the gradient of Vvolve the accurate description of wave functions that may be
energy with respect to nuclear coordinates and this calculspatially nonuniform. As a result the use of wavelets in elec-
tion requires approximately the same amount of time in bottironic structure theory has become important recéftf in
methods. Note that the gradients used in ADMP are mor&ec. lll A we exploit this connection to analyze, formally,
general than those used in BOMRefs. 6 and 24on ac- basis-set superposition error and we arrive at error bounds
count of the non-negligible magnitude of the commutator offor this quantity. We also make connections to the standard
the Fock and density matrifsee Sec. Il and Ref. 24 for counterpoise expressidh.*®In Sec. IV we present a com-
detail9. However, the additional terms require no significantparison of ADMP and BOMD calculations performed with
computation over the standard BOMD gradient calculation@nd without counterpoise corrections, and show that for com-
The calculation of nuclear force requires approximately threénonly used basis sets such as 6+33**, the effect of
times as much computation time as a single SCF cycle. ThiBasis-set superposition error on observable quantities is
makes ADMP faster than BOMD by over a factor of 4 persmall. In Sec. V we present our conclusions.
dynamics step. However, the requirement that the ADMP
energies oscillate about the BO values with smallll. A BRIEF OVERVIEW OF ATOM-CENTERED
amplitude&? implies that ADMP step sizes cannot be as largeDENSITY MATRIX PROPAGATION (ADMP)
at those in BO dynamics. But good energy conservation,
which applies to both methods, limits the BO steps to at mosg
twice those of ADMP? (ADMP already uses reasonably

The ADMP equations of motion for the nuclei and den-
ity matrix are

large time steps on account of smaller values for the fictitious dz_R __JE(R,P) 1
mass and an innovative tensorial fictitious mass schéme. dt? — JR P’ @)
This allows ADMP to be over a factor of 2 superior to )

BOMD, but this estimate is only for cases where the SCF 129P 4, |IE(R,P)

convergence in BOMD is not difficuf® The hard to con- T T T R+AP+ PA=A), @

verge cases would require more SCF steps thus making - -
ADMP more efficient as compared to BOMD for these casesWhe€reR, V, andM are the nuclear positions, velocities, and
Furthermore, computational improvements that speed up th@asses, ané, W, andy are the density matrix, the density

gradient evaluation will tilt this comparison further towards Matrix velocity, and the fictitious mass tensor for the elec-
ADMP. tronic degrees of freedom\ is a Lagrangian multiplier ma-

In this paper we study the effect of basis-set superposiUiX used to impose N-representability of the single particle

tion error (BSSE®% on dynamics (both BOMD and density matrix. The fnerg)E(R,P) is calculated using

ADMP). In ADMP and in the BOMD implementa:gign within McWeeny purificationp=3pP*—2P?,

the Gaussian suite of electronic structure prograratom- _ PR L,y NS,

centered Gaussians are used as electronic basis sets. As at- E=T'P'+ 2G/(P)P ]+ Exet Vi

oms move, the basis functions remain Wit.h the a.toms. This —TrhP+ %G(ﬁ)ﬁ]+Exc+VNN- 3)

has the important advantage that the basis functions are al-

ways present in regions where the density has important cofdere, h’ is the one electron matrix in the nonorthogonal

tributions, however, has the disadvantage that the vectdBaussian basis an@’(P’) is the two electron matrix for

space that represents the molecular orbitals is not constahtartree-Fock calculations, but for DFT it represents the Cou-

and changes with time and could change appreciably, whelomb potential. The termE,. is the DFT exchange-

small basis sets are used. In this paper we analyze this proberrelation functionalfor Hartree-Focke, .= 0), while Vy

lem both analytically and computationally. represents the nuclear repulsion energy. In the orthonormal
The paper is organized as follows: in Sec. Il we firstbasis, these matrices ate=U"Th’U" !, etc., where the

present a brief overview of ADMP to facilitate some of the overlap matrix for the nonorthogonal Gaussian baSis,is

discussion. Further details may be found in Refs. 6, 22—2@actorized to yieldS'=UTU. There are a number of choices

and 30. In Sec. lll, we analyze the primitive Gaussian basidor the transformation matril, e.g.,U can be obtained from
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Cholesky decompositidh of S' or U=S'Y? for Lowdin ~ must monitor the quantities in EqéZ) and (8) to ascertain
symmetric orthogonalization. The matrix can also include that the ADMP dynamics is physically consistent. In all ap-
an additional transformation so that overall rotation of theplications studied to daté***?%?®these conditions are sat-
system is factored out of the propagation of the density. Thésfied thus yielding a computationally efficient and accurate
density matrix in the orthonormal basisis related to the —approach to model dynamics on the Born-Oppenheimer sur-
density matrix in the nonorthogonal Gaussian baZisby  face.

P=UP’U". The gradient terms involved in the equations of

motion are ll. FORMAL ANALYSIS OF PRIMITIVE GAUSSIAN
JE(R,P) BASIS FUNCTIONS: CONNECTIONS TO
T = 3FP+3PF—2FP?2—2PFP—2P?F, (4)  MULTI-RESOLUTION ANALYSIS

R L . .
The general form of the primitive cartesian Gaussian ba-

whereF is the Fock matrix and in the nonorthogonal basis, sjs functions used in ADMP is

Fo—h 4G/ (P, 4 e 5 Xma(N=(x=R)'(y=R)"(z—R,)"exi{ — a(r —R)°],
v,o v,o v,o JP’ (9)
while the orthogonal basis Fock matrix B==U"TF'U"%.  whereR={R,,Ry,R,} is the Gaussian center ahdm, and
The nuclear gradients are n are integers that determine the orbital angular momentum

of the basis function. The following two characteristics are
evident upon inspection of E¢9):

JE| . dh'ﬁ, 146G’ (P")
RV ART T2TR

P (1) Translation: The basis function in E(Q) has a transla-

VNN tional property which is represented by its dependence
IR on the atom centeR.
(2) Dilation: There is a dilatory characteristic associated

mep e
TP aR" " oR

p

~ ~du - 7TdUT with Eq. (9) wherein for a given value df m, n, andR,

+TIPFI QurY —PU "4 /| (6) the exponenix can have multiple values. For example,

_ _ _ many differente values may be used to construct a con-

whereQ=I—P. Note that as the commutatplP,F]—0, the tracted B-type or X-type Gaussian basis function. The
nuclear forces tend to those used in the standard Born- primitive Gaussians with smallew are simply a “di-
Oppenheimer MD:***°However, in ADMP, the magnitude lated” version of the original for every value of m, n,

of the commutatoP,F] is non-negligible and hence the andR.
general expression for the nuclear gradi&fitsn Eq. (6) is
used. Based on the above observations, we see ttatprimitive
Like CP, ADMP represents fictitious dynamics where theGaussian basis functions used in electronic structure theory
density matrix is propagated instead of being converged. Thare closely related to the theory of multiresolution analysis
accuracy and efficiency are governed by the choice of th¢hat has been well-studied over the last couple of
fictitious mass tensog; hence one must be aware of the decades® ** Multiresolution analysis leads to basis func-
limits on this quantity. We have derived two independenttions called “wavelets” which have, in recent times, been
criterid?®?* that place bounds on the choice of the fictitiousVvery popular in scientific computin=** Since wavelets
mass. First, the choice of the fictitious mass determines thghare a similar property as those highlighted above, the
magnitude of the commutatd®,F] thus determining the wavelets have been broadly described agramslation-

extent of deviation from the Born-Oppenheimer surfdte, dilation basis set. In fact, as we will see below that E).is
an example of anultiwavelef® To understand the similari-

ties between the wavelet theory and the primitive Gaussian
functions in Eq.(9), let us consider the following definitions
for the scaling functionand thewavelet functiorthat form

where|[---]|l¢ is the Frobenius norfi*” of the commutator the basis for multiresolution analysis:

aw
F,P > (T Wu'?— 1’2}
”[ appro>;|||F ||[PapprOX1W]HF [ o dt o

and is defined a$|A||F=\/Ei'in2]j. Second, the rate of & (x)=a R¢xati-i), (10)
change of the fictitious kinetic energy, i o
7 j(x)=a e p(xa™ —i), (11
dHsict 1/2d2P 172 ;
at =TriWg el where §(x) and »n(x) can either be orthogonal or nonor-

thogonal(they are generally orthogonal in all wavelet appli-
JE(R,P) cationg and £(x) is called the scaling function angl(x) is

= —TV[W(T : (8)  called the wavelet function. In most cas{x) constitutes a
function with average lower frequendand hence called a

is to be bounded and oscillatory and this again is determinetbw-pass filtey while the wavelet function is generally a

by the choice of fictitious mass tensor. We have shown thahigh-pass filter since it is generally chosen to have a Fourier

ADMP gives results that are in good agreement with BOMDtransform that is predominantly nonzero in the high-

and is computationally superior to BOMB.However, one  frequency region. Using Eqé10) and(11) a complete hier-

+ AP+ PA—A)

R
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archy of basis functions are constructed and this hierarchicality is generally a maximum at the nuclear certeDue to
representation allows accurate and efficient ways to store inthis similarity between the Gaussian functions and wavelets,
ages and solve partial differential equations wki¢r) and  the Mexican hat wavelef(1—x?)exg —x%/2]} has been used
n(x) are appropriately chosen. The indideandj are gen- in analyzing vision and theMorlet wavelet{exg—1wx]
erally integers although that is not a requirement of thexexd —x%2]} has been used in signal processing. The Mexi-
theory anda is a scaling parameter that specifies the extentan hat wavelet is related to thietype Gaussian basis de-
of “dilation.” Again, in most signal processing applications rived from Eq.(9). Note the similarity between the Morlet
the two-scale versiona(=2) of these equations is common. wavelet and coherent stat¥sand also the periodic form of
Based on Egs(10) and (11) a variety of such hierarchical Eq. (9) which have been used to enforce periodic boundary
wavelet bases have been develof3é8*°and some of these conditions with Gaussian basis functiolis.

have also been recently used in electronic structure Unlike Egs.(10) and(11), Eq.(9) may have many basic
calculationg??~44 forms [as opposed to just two forms for E¢4.0) and (11),

To illustrate Eqs.(10) and (11) let us consider the ex- one scaling function and one wavelet function; for example,
ample of the two-scale Haar wavelet and scaling functionssee the Haar wavelet discussion abjov@ne can have as
The basic Haar scaling function is a square function wherenany sets ofl,m,n} as required for eacR, each set corre-
&(x) is equal to 1, for B=x<1, and zero otherwise. The sponding to a given angular momentum. In this sense, Eq.
Haar wavelet function is the orthogonal complement of the(9) is a multi wavelef® [In fact, the Cartesian Gaussians in
Haar scaling function and heneg(x) is equal to 1, for 0 Eg. (9) approach aframe in the limit of large angular
<x=<1/2, andy(x) is equal to—1 for 1/2<x=<1, and zero moment&']
otherwise. The translational and dilation properties in Eqs. Equationg10) and(11) can both have real values for the
(10) and(11) are then used to generate a complete hierarchgcaling factora (although real values for the scaling factor
of Haar wavelet basis functiong@€2). Two properties are are seldom used in most wavelet applicatjoard in this
evident upon inspection of the Haar wavelet and scalingase the associated wavelet and scaling functions turn out to
functions: (a) localization: all thez and ¢ functions are lo-  be nonorthogondl’ By contrast, the scaling parameter in Eq.
calized, (b) multiresolution: the wavelet functions with (9) is always real, however, the associated nonorthogonality
higherj values may be used to represent highly oscillatoryof Gaussian basis functions has been known for a long time,
(high frequency functions, or highly oscillatory regions of a before the development of wavelets.
function, while the scaling functions with lowg¢walues may All this is extremely interesting since it has been re-
represent flatteflow frequency regions. Thus, if a given cently realized that wavelets and multiwavelets have great
function displays high frequency behavior in some regionutility in fitting diverse data and in solving partial-differential
and low frequency behavior in another region, the higher equations of various kinds. Wavelet signal processing is also
wavelet functions may be used to represent the high frereplacing the standard digital Fourier transforfused in
guency region and the loyv scaling functions may be used jpeg fileg to become the industry standard in image com-
to represent the lower frequency regions. Intermediate frepression and data storagieOne of the main reasons for this
guency regions may be represented using other componerits when the scaling and wavelet functions are appropriately
of the hierarchical scheme presented in Ef6) and(11). In  chosen, the multiresolution analysis theory provides a frame-
this way an accurate and efficient fit could be obtained fomwork to accurately represent nonuniform functions that may
nonuniform functions and this is the reason wavelets hav@ortray a diverse spatiér temporal frequency dependence.
become popular in various areas of scientific computingWhen a truncated series of plane waves of some d¥dir
Compare this with a fit accomplished using a Fourier seriesused to approximate such functions, the residue is a Fourier
Here using the high-frequency Fourier functions to represerfunction of orderN+ 1, which is a very rapidly oscillatory
the high-frequency region leads to the Gibb's phenomenoffunction. This leads to the so-called Gibb's phenoméfion
or rapid intertwining in the low-frequency region since the where the approximated function constantly intertwines
Fourier functions are not local(This aspect is further dis- around the real function. Wavelets and multiwavelets on the
cussed later in this section. contrary give rise to what are known as “well-tempered” or

On comparing Eqs(10) and (11) with Eq. (9) the fol-  smooth approximatiori&®®to fitted data and this intertwin-
lowing statements are apparent. The exponreim Eq. (9) ing effect is generally not present due to the localized nature
takes the role of a scaling factor similarao’ in Eqgs.(10) of the functions chosen in Eq&10), (11), and(9). [An im-
and (11), which makes it possible to have different spreadsportant difference between a plane-wave fit and a fit based on
for orbitals with different principal quantum numbers. The Egs.(10), (11), and(9) is as follows: While an approxima-
vectorR={R,,R,,R,} takes the role of translation as per- tion to a function based on a plane-wave expansion results in
formed by the index in Egs.(10) and(11). (To be exact, we anormedconvergence to the true function, an approximation
must note that in the atom-centered form of the basis setsased on Eqg10), (11), and(9) results in auniformconver-
noted in Eq(9) the translate® are not uniform. This is also gence to the true functiot. The normedconvergence is a
the case for the scaling factor. In the caseeeén tempered weakconvergence criterion as compared to timform con-
or uniform basis sets, these would be uniform and the atomvergence|. Alternately, such artifacts in the plane-wave bases
centered forms in Eq9) are a subset of sudwven tempered may be eliminated by using a “smoothing” or “windowing”
basis sets. It is advantageous to use this subset in electrorpcocess to reduce the contribution of high frequency
structure theory of molecular systems since the electron demoise>**® Without the “windowing,” this constitutes one of
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g

R/t
-V{l,m,n}

the major impediments in the accurate description of local-
ized systems using plane-waves even when large box sizes
are used.

In ADMP there is an additional complication that arises
from the use of Eq(9) as the primitive basis set. The trans-
lation property of the Gaussian multiwavelet basis is time-
dependent on account of moving nuclei, since basis functions
in ADMP are atom-centered. This, along with the nonor-
thogonal nature of multiwavelets associated with nonintegral
scaling factors gives rise to different levels of basis-set com-
pleteness at different nuclear geometridgnce the “qual-
ity” of the basis set changes as the nuclei moV&is is  FIG. 1. Venn diagram corresponding to the set in @), assuming that the
known as the “basis-set superposition error.” However, wesystem aR is stationary. The shaded area represents(E4), i.e., the set
can now see that this problem is quite general and ShoulE‘omprising the basis vectors.that are absent at'tia‘rw present at timg,

. . o or those that are absent at tirtlebut present at time.
occur in any multiwaveletor wavelej application where the
wavelet centers are not stationary. In the following section
we present a general treatment of such errors.

R/t
Vitmm}

A. Basis-set superposition error  (BSSE): — Vi NV . It is instructive to explain in words
Effect on dynamics what the expressions in Eg€l2) and (13) mean. The sub-

In order to understand the effect of “basis-set Superpoj[ractlons used are set-theoretic subtractions and hence, if

sition error” to dynamics(both ADMP and BOMD using [_A_ B]h's tohpe_ ogtalnegi, as s the Cﬁse n allr:;ﬂ':heselz equa-
basis sets such as those in E9).in particular and any mul- tions, then this Is done by removing the portio atalso

tiwavelets in general, we will study how the basis set spacgXiStS in B. Hence in this sensg,A—B]=[A—-ANB],

changes during a dynamics process. Let us first introduce th‘@hiCh is obtained by the Schmidt orthogonalization of the

SetV{Ff,m,n} to represent the vector space spanned by all thectors inA from the vectors irB. This explains how the

primitive Gaussian basis functions belonging to the atomqu"’mtltles in Eqs(12) an_d(13) are to b.e V|evv.ed(Subtract— .
centered aR. The family of angular momentum indices Ing two vectors spaces is well-known in applied mathematics
{I,m,n} takes on values depending upon the choice OP.nd the difference between two vectors spaces is called the

Gaussian basis set. As a result of moving nuclei in ADMPBe"mam residua).

and BOMD, the overlap of the vector spa¢§ - with the Since, Eq.(13) represents the a_dd|t|<I)naI basis functions

R/ q h S ) that have been addédr removed at timet’, there must also
VECtOr Space/yj ), Centered on another atom, is a time- o yhe gpnosite kind of elements, that is, those in the set,
dependent quantity. Consider the set

VR = Vi mm NV ], that are not in the set,
R/ R/ R ! ! ’ ’ !
Vi~ Vi mnVimn; - (12 pvRE VR AVRL LT Hence the quantity
The quantityVf} , y AV . is the intersection between the P Rt R Rt'
m mny 1S = - v
two vector spaces, by which is meant the orthogonal set of RR = Vimn = Vi mm O Viime)

vectors that span the space of the overlap matrix of the vec- _ (VR',t _yRt AR )N
. R R’ . . . {l,m,n} {l,m,n} {l,m,n}
tors inVy o andVy o, . The subtraction in Eq12) is a , ,
set-theoretic subtraction that implies the removal of the {(V] = Vi Vi )
space spanned by the overlap matrix from the original space. R R -
The difference in Eq(12) may be obtained from a Schmidt = (V= Vi V) b (14)

orthogonalization of the vectors M, ,, from the vectors  represents how the quality of the basis set changes in the

in Vi .0y - The quantity in Eq(12) is, however, time depen- yicinity of R between times andt’. A Venn diagram rep-

dent asR and R’ move with time during dynamics. The resenting Eq(14) is presented in Fig. 1(For dynamicst’

difference between the quantity in E42) at timet’ and the may be chosen as+At.) The terms in Eq(14) are to be

same quantity at time, that is obtained from the direct-sum: The quantityf A@ B] is sim-

{(VR’*V VR AVRY ply the union of all the elements in both sets. Hence an
{mn} - ¥{Lmnpt t L mon} orthogonal set belonging {cA@ B] may be obtained from a
Rt (SRt Rt QR decomposition of the vectors A& andB, together.

Vi = Vil o Vitimm) b (A3 The projection of the orbitals at timeonto the vector
where we have used the superscript index to identify the timgpace represented by E44) determines how the change in
dependence, represents how the basis-set space changes wié quality of the basis-set expansion due to the moving na-
time in the neighborhood dR. In fact, Eq.(13) represents ture of the atom-centered basis functions affects the physical
the additional basis functions that have been adaede- process. This is because the basis vectors in the Spé}f@
moved at timet’, since the set-theoretic subtractior) in Ed. 5re those vectors that are not present either at tirop at
(13 represents the removal of elements [V},  timet’. Hence the existence of a sizable component of the
Vi aNVihyl  from  the  set [V,  orbital in this vector space would ensure that the orbital is
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these calculations for a finite basis set, if the Wannier basis
functions were time-dependent or nuclear coordinate
dependent®

To proceed further with our discussion of Ed4), we
note that since the overlap of the Qekf’R, with the orbitals
is crucial in determining the extent of the superposition error,
an upper bound to such error for normalized orbitals may be
written as

) Vtht’
R/, m
V{l.mt,n}' i} tt e
. . . IV erlz, (16)
FIG. 2. Venn diagram corresponding to E@5), assuming that the system '
at R is stationary. The shaded area represents the set ifi1Bg.This is where we have also used the Holder inequality and the no-
similar to the case in Fig. 1 except the basis set on each atom are orthonqr- .. e .
mal as seen in the discussion in the paragraph beforél5y. Ciatlon ” ”2 represents a constraindd norm, Wher.e the
constraint comes from the fact that we want to consider only
the domain in space where a given orbital, whose basis-set
superposition error we are interested in, is numerically non-
treated incompletely at either tinteor at timet’. Thus the  zero. An unconstrained norm should present a weak upper
projection of the orbitals onto the spatg 5, completely ~bound. _ _ _
quantifies basis-set superposition error for a given problem. It is interesting to now consider how the above discus-

It is interesting to consider the nature of the sp}azéé,;, sion can be specialized for the case of calculating dissocia-

when the basis functions centered on each atom becon%lé)n energies that have been well-studied using the counter-

poise correctiod In such a case the two time frames being
large and effect|vely complete When this happens the |nterused in Eqs(14) and (16) would bet=0 (the undissociated

SeCt'O”[V{I,m,n}mV{I,m,n}:V{l,m,n}:,V{l,m,n}] at both timet  gystem andt’ = (the dissociated systemSince the over-
and att’. Hence the quantity tF;fR, in Eq. (14) becomes lap of the two spaces would be zero for the dissociated sys-
zero(null sed. In Fig. 1, this represents the fact that when alltem, the expression in E¢l4) becomes

circles become suitably large, the size of the shaded portion 00

goes to zero. This implies that basis set superposition erroris  V grr' = {V{| mn} (V{| m,n} V{| mny) {| m, n})}

completely absent for large enough atom-centered basis sets.

It is also negligible whenvjj . and Vﬁfm'n} are large and @{(V{' m.n} V{' ey Vi mny) V{' )
not complete, but the com onent of an orbital in the space ,
P P P V{I m, n}@(VU m,n} V{| m, n}mvﬁ,(r)n,n})' (17)

VtF;t;{, is small. In this case the vector spac‘éﬁm ny and .
' - We obtain the second expression above from the fact that the

R’ . . .
Viimn areeffectivelycomplete for a given problem. This is, {bltals localized arounR for the undissociated system will
of course, system dependent and chemistry dependen

(which is why the orbital at timé enters into the discussipn have no overlap W'th/{l mn (Which is infinitely far fromR
If an orthonormal multi-wavelet unlike that described in &t t'=%, the dissociated systgmThis expression implies

Eq. (9) were to be used, then the quanﬁt\yﬁ . n}ﬂV{| - that the _d|ssomated system atnoo_ is to be corre(ited by
would be zero at all times, and, from E@.A),’ it would be  @ugmenting additional basis functions from theB%tR, for

the overlap of the orbitals at timtewith the space, the system aR. _ o
It is useful to compare this last expression in E&j7)

[VR’,t’ —\R ]EB[V _WyRY ] (15) with the standaro counterpoise correcﬁ‘oused- in most cal-
fann= Vil o fimoy = Vit culations. Here, in the spasé;s, , (the dissociated system

that contributes to the superposition error. This is shown irthe basis functions localized dR, and also basis functions
Fig. 2. Clearly, this is small wheti —t=At is small within  localized on all othelR' are included. Note now that Eqg.

a dynamics settind.This is also the case for the quantity in (17) suggests that the orthogonal portmn\(ﬁ mny» that is
Eq. (14).] However, wherm is not negI|g|bIe this quantity VR ! m o V{| o n}ﬁV{| o n} be included along with the basis

remains finite, whewvfi ., and Vi1, o are not effectively ¢ ncrione orR andvR I iy - (The latter would have no over-
complete It should be noted that when bdlﬁ Ty and  |ap with an orbital Iocalized aR and hence would not be
V{| mm 0o approach completenes:{[v{I .y V{| . n}] expected to contribute mughln this sense Eq(17) is dif-
@[V{, Vi mn}]} is a null set as in the nonorthogonal ferent from the standard counterpoise correction, in that it
case discussed above. This is, however, not the case wha¥0ids redundancy, by including only the orthogonal compo-
V{| . andV{| ) @re not effectively complete. Thus, it is nent. However, it is important to note that the space spanned

only the local and time-dependent nature of the basis funcdy adding basis funct|ons from{l moy or by adding basis
tions that causes this kind of an error, and the orthogonaunctions fromV/; 0, mn V{I mn}ﬂv{l,m,n} is essentially the
nature of the basis set has limited bearing on the error. Thisame.(Although, the former strategy may present some nu-
is especially interesting since recently orthonormal, but localmerical problems where large basis sets are used for tightly
Wannier function®'’ have been used to perform Car- bound systemsSince a space analogous to Etj7) is added
Parrinello dynamic$® A similar error may be expected in in as part of\/ﬁ"‘ﬁm} the basis-set superposition error is for-
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TABLE |. Comparison of optimized geometries for water dimer.

B3LYP BLYP PBE

6-31+G** 6-31+G* 6-31G*? 6-31+G** 6-31+G* 6-31G 6-31+G** 6-31+G* 6-31G

rms deviation(A)° 0.0288 0.009 0.4605 0.0308 0.009 0.4789 0.0277 0.007 0.4601
Error in dissociation 0.816 1.105 0.835 1.114 0.900 1.216
energy(kcal/mo)°©

%6-31G" basis set optimizes to the double bridge water structure with B3LYP, PBE, and BLYP in the absence of counterpoise correction. Optimizes to the
correct structure when counterpoise correction is included.

bDistance matrix RMS difference between the optimized structures obtained with and without counterpoise correction.

“The difference in the dissociation energy of the water dimer with and without counterpoise correction. The dissociation energy is calculatetiasslime

two times monomer energy.

mally zero in such calculations. The corrected energy for argy in Eq.(18) was used, and in the other case the standard
system comprisingl monomer units within the counterpoise energy expression, without counterpoise correction, was

scheme then has the form used. The geometries and harmonic frequencies thus ob-
N tained were compared. Dynamics calculations were also per-
Ecounterpoise E(A)_Ei [E/(A)—E;(a)]. (18) formed using ADMP, Born-Oppenheimer dynamics with

(and withouj counterpoise correction, and the velocity-
Here E(A) is the energy of the full system using a certain Velocity correlation function obtained from these were com-

basis setrepresented a8), E;(A) is the energy for théth pared with that obtained from a Car-Parrinello calculation
1 | . .

monomer using the basis set for the full systangwhich is ~ USiNg plane-wave basis sets. o _

analogous to including basis functions localized on all other _ !N Table I, the geometries and dissociation energies ob-

R’ in the space\/ﬁ*‘” | as noted aboveand E;(a;) is the tained from optimization with and without counterpoise cor-
,m,n 1 i

energy for theith monomer using only the basis functions 'ection at the 6-31G, 6-31+G*, and 6-31G** levels of
localized on theith monomer. For a system containiig basis set using B3LYP, BLYP, and PBE density functionals

monomers, for example, a water cluster withwater mol- are_cc_)mpared. There is very little diﬁerence in the RMS
ecules, the energy in EGL8) requires one to calculateN2 deviations betwee;n the structures obtained beypnd the 6-31
+1 different energy values that go into the right-hand side of " G* level of basis set. 6-31G on the contrary is too low
the equation to obtain a counterpoise corrected value for th@ 1€vel for the water dimer system, since while the
total energy of the system. The\2- 1 different energy val- counterpmse-correcte_d 0pt|m|zat|on_y|gld§ the correct struc-
ues correspond to a single calculation for the full system andtire for all three functionals, the optimization without coun-
two different calculations for each monomer, one with all the!€TPoisé correction leads to a double-bridge water-dimer
basis functions and the other with only the monomer basi§tructure for all three functionals. Diffuse functions are evi-
functions. In this fashion the total energy is corrected bydently critical to get the right chemistry in this case. _
introducing the over-stabilization of the monomer due to the _ 1he harmonic frequencies are calculated at the opti-
presence of basis functions localized on other monomers iftized geometries and these are presented in Fig. 3. We
the full calculation [E;(A)—E;(a;)]. This contribution Present here only the results from the 6+3%" calcula-
[E;(A)—E;(a;)] gets smaller as the basis set localized ontions- It suffices to note that abovand including this level _
monomeri gets more complete and this aspect is evidenPf basis set, the agreement is good between the counterpoise-
from our earlier formal discussion. It is also important to corrected values and those without the counterpoise correc-
note that the energy expression in Ha8) only depends tion. From the figures it is seen that the Iow—frequepcy modes
upon the nuclear coordinates of the system and hence gradi€ss than 300 ci) do not agree as well as the higher fre-
ents with respect to these can be obtained to perform botiUency bending, stretching, and some of the librational
geometry optimizations as well as Born-Oppenheimer dy_modes. This is because the low-frequency modes involve

namics on this corrected surface, which is the subject of th8igh-amplitude motions which cause large change in overlap
fllowing section. and hence these are more susceptible to basis-set superposi-

tion error. All the hydrogen bond stretching modésa.
3500 cm 1), the bending modes and some of the higher fre-
quency librational modes are in good agreement between the
To test the effect of basis-set superposition error on enealculations including counterpoise and those without, im-
ergy, geometry, and frequencies, we consider the weaklplying a lesser degree of sensitivity to basis-set superposition
bound water dimer. This system is chosen du@tdts com-  error.
putational simplicity, andb) the existence of nonbonded in- The Fourier transform of the velocity-velocity autocor-
teractions which makes this an important system for basis-seelation function obtained from ADMP, Born-Oppenheimer,
superposition error. Calculations are performed with andand Car-Parrinello dynamics simulations are presented in
without counterpoise corrections at various levels of theoryFig. 4. Here the Born-Oppenheimer dynamics forces are de-
and basis set. The dimer geometry was optimized in twaived from Eq.(18) and hence include counterpoise correc-
different ways: in one case the corrected expression for ertion. As can be seen, the ADMP results are close to the

IV. COMPUTATIONAL TESTS
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FIG. 3. Harmonic frequencies from optimized structures obtained with and without counterpoise corrections using the B3LYP, BLYP, and BPBE and the
6-31+ G* basis set. For counterpoise corrections optimization was performed on the modified surface denoted 8y Eq.

BOMD results. As a further example we have also presentetb those from counterpoise-corrected BOMD, the results

a comparison between the oxygen-oxygen radial distributiofirom the CP simulations are uniformly red-shifted. Such sys-

functions obtained from ADMP and BOMD simulations in tematic bias in frequencies in the CP calculations has been

Fig. 5. As can be seen, these are in good agreement as walloted previously;'®?3and this is the result of the larger fic-
The Car-Parrinello calculations were performed usingtitious mass used in standard CP simulatidisirthermore,

deuterium atoms instead of hydrogen atoms, as is standard our formal analys®& has shown that deviations from the

current literaturé, and by using a plane-wave cutoff of 90 Born-Oppenheimer surface is directly proportional to the

Ryd. The fictitious mass was chosen to be 1100 @om-  size of the fictitious mass.Nuclear mass rescalifiy has

mon in current simulatio¥s with a time step of about 0.1 fs. been suggested as an approach to overcome this problem if

The corresponding ADMP fictitious mass was lower values for the fictitious mass are not uSdthwever,

0.1 a.m.u. botr=180 a.u. with a time step of 0.25 fs which we have not used this in the current CP simulations.

is possible due to the tensorial mass-weighting scheme used

in ADMP.?2 The frequencies thus obtained from the Car-

Parrinello simulations were harmonically correcteg mul-

tiplying by a factor ofv2) to obtain the corresponding hy- v CONCLUSIONS

drogen spectrum(While this is based on a harmonic bond

approximation, clearly anharmonic forces are sampled dur- In this paper we have performed a rigorous analysis of

ing a molecular dynamics simulation. As a result this is onlyprimitive Gaussian basis sets and the effect of using such

an estimated correction factpithe fictitious mass was cho- functions within an atom-centereéb initio dynamics

sen based on previous studi¢s allow for reasonably large scheme. Our analysis has led to important connections be-

time steps, however, recent studiésdicate that a lower tween the Gaussian basis functions and the wavelet theory

fictitious mass would have to be chosen to allow for morethat is now popular in computational fluid mechanics, digital

accurate dynamics. The lower fictitious mass would necesssignal processing, and other areas of applied mathematics

tate smaller time steps in the Car-Parrinello approach. It isnd scientific computing. These connections lead to a general

also seen from Fig. 4 that while the ADMP results are closdreatment of the basis-set superposition error; we find that
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quency ¢ FIG. 5. Radial O-O distribution function from BOMD and ADMP simula-
tions.

BOMD/B3LYP/6-31+G** b——
BOMD/B3LYP/6-31+G**/Counterpoise #--------

ST ] analysis also rigorously leads to the expected result that as
the size of the atom-centered Gaussian basis set increases,
the basis set superposition error goes to zero.

We have carried out computational tests on the weakly
bound water-dimer system to critically ascertain the limits of
ab initio dynamics approaches that use atom-centered Gauss-
ian basis functions insofar as basis set size and superposition
error are concerned. We find that beyond 6+%3* the er-
rors in geometry, energy, frequency, and structure distribu-

AL e . . tion are within the accuracy of the density functional used.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 For more strongly bound chemically reactive systems one

frequency (cm™) could expect to use a slight_ly lower level of basis set. _
Our analysis also provides new ways to ascertain the
10 . ' ' . , ' . . quality of a basis set during dynamics. This will be used, in
. Car-Parrinello/90 Ryd/BLYP —— | future publications, to adaptively control and change the
quality of the basis set during dynamics.
8 L
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