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We present a generalization for the atom-centered density matrix propagation (ADMP) approach to ab initio
molecular dynamics that allows for a quantum-mechanical treatment of the nuclear degrees of freedom while
adiabatically time-propagating the electronic degrees of freedom. This generalization uses the Bohmian approach
to quantum mechanics. The regular ADMP equations are seen to arise in the special cage-of@Henit

of the current formalism. Semiclassical approximations are also discussed, and rigorous error estimates are
provided to define the accuracy of the current formalism.

1. Introduction sets (occasionally augmented with Gaussian orBiads
Recently?1719we have described the theory, implementation,
and initial applications of an extended Lagrangian molecular
dynamics method that employs atom-centered Gaussian basis
functions and one-particle density matrix propagation. This
method is called atom-centered density matrix propagation
(ADMP). The dynamics of chemical systems such as large water
clusters and gas-phase reactions are more readily described by
atom-centered basis sets than with plane waves. Furthermore,
the calculations scale as I®)(for large systems, whefg is the
number of electrons, because ADMP is based on linear scaling
DFT code?* The ADMP method has recently been extended
for QM/MM treatments for biological systerffs and for
calculations on periodic systems employing atom-centered
functions?® Interesting applications such as solvation of excess
protons in water cluste®, hydroxyl-stretch red-shifts in

The fundamental equation in nonrelativistic quantum
mechanics is the time-dependent Sdlinger equation
(TDSE)! and this is the starting point for a number of different
methods in both gas-ph&seé and condensed-phase quantum
dynamics® In most cases the BorrOppenheimer approximation
is invoked, and this allows for propagation of the nuclei
(quantum-mechanically, classically, or semiclassically) on a
fitted adiabatic electronic surface that is obtained either from
highly accurate and demanding electronic structure calculations
or from parametrizations of the associated electronic surfaces.
In the former case, the number of electronic structure calcula-
tions required can be very large depending upon the size of the
system, and it is in this regard that “on-the-fly” approaches to
dynamics of nuclei and electrohd® have become popular,

leading to the field of ab initio molecular dynamics. Here, hlorid ter clusterd® and product distribut . h
approximations to the electronic structure are calculated as®'orde-waler clusters;/and product distributions in gas-phase

needed, as the nuclear configurations are propagated to simulaté;h_em'c‘?c1I Leactlgﬁé h:wg already dbee: StUd'egl' AaDMP trajec- d
dynamics on the BorOppenheimer surface. tories of the order of picoseconds show stable dynamics, an

For performing such direct ab initio classical trajectory wifhad'tatt;]atﬂty (l?atn b$hco?r:ollidriffec;|velyi |n|thcr3]3e syﬁter?s
calculations on large systems, Ber®ppenheimer (BO) dy- i olud'ff €rmos abS.t N Algtlzlllf go tﬁepéa an cg pu a-t
namics method8111314and the extended Lagrangian (EL) .ona Giflerences between and other Luassian basis se

. a1 . :
approach!215-19 constitute two important categories. Here the based implementatioffs 3! of the Car-Parrinello formalism

electronic structure is treated simultaneously with nuclear N2Ve been discussed in detail in ref 18. .
motion. For BO methods, the electronic structure is converged  The ADMP method has a number of attractive features.
at each time step in the propagation. In the EL approach, the Systems can be S|mulatec_i by accurately treating all electro_ns
wave function is propagated with the classical nuclear degreesOr by using pseudopotentials. Through the use of a tensorial
of freedom using an extended Lagrangian proceddteand fictitious mass and smaller values of the mass, reasonably large
by adjusting the relative time scales of the electronic and nucleartime steps can be employed, and lighter atoms such as hydrogens
motions. The CarParrinello (CP) methdt516 is the best need not be replaced with heavier isotopes. A wide variety of
known example of the extended Lagrangian molecular dynamics €xchange-correlation functionals can be utilized, including
approach. hybrid density functionals. Atom-centered functions can be used
Traditionally, CP calculations employ Kokisham density ~ With the correct physical boundary conditions for molecules,

functional theory (DFT) orbitals expanded in plane-wave basis Polymers, surfaces, and solids, without the need to treat
replicated images in order to impose 3D periodicity. Conse-
T Part of the special issue “Donald J. Kouri Festschrift”. quently, charged systems and QM/MM models of biological
* Corresponding author. E-mail: iyengar@hec.utah.edu. Address after systems can be treated as easily as neutral molecules, whereas
July 2003: Department of Chemistry, Indiana University, 800 E. Kirkwood special handling is needed for charged systems in most
Ave., Bloomington, IN 47405-7102. . . .
* University of Utah. implementations of the plane-wave Cd&arrinello method

8 Wayne State University. because they are treated as periodic systems. Deviation from
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the Born—Oppenheimer surface and the mixing of fictitious and The Euler-Lagrange equations of motion for the nuclei and
real kinetic energies can also be rigorously controlled on-the- density matrix are

fly in ADMP. Because of fewer basis functions per atom, larger

time steps, and its asymptotic K)(scaling, reasonable com- M R _ JE(R,P)

putational efficiency can be achieved with the ADMP method. dt? dR
In the current paper we have undertaken a formal description

and generalization of the ADMP approach to treat adiabatic and

quantum dynamics of the nuclear degrees of freedom and 5

electronic variables. BO and EL methods are successful in 1/2d_P 12 _ _[3E(R,P)

simulating classical molecular dynamics. EL methods are more dt? oP

efficient than BO methods, because they avoid the work of

converging the electronic structure calculation at each step in Equations 2 and 3 are classical, in the sense that they are derived

the classical trajectory. However, the electronic structure needsfrom the Lagrangian in eq 1 by using the stationary action

to be propagated in a manner comparable with the nuclei, soprinciple of classical mechaniééCorrespondingly, as outlined

that energy is conserved. Hence, the Lagrangian equations ofin ref 17, the conjugate ADMP Hamiltonian for the Lagrangian

motion for the nuclei are extended by adding the electronic in €q 1 is given by

degrees of freedom and giving them a fictitious massand T )

kinetic energy. With an appropriate choice of fictitious mass, “aomp = TH(7"W) +Tr(7”°V) = Laome

the molecular dynamics can be calculated efficiently and 1

accurately. In the limit ag — 0, EL dynamics is identical to = %‘I’r((/’TMfl‘/’) + zTr(‘//"z[m‘//’gfm) +

BO dynamics-’~1° Basic features of ADMP are discussed in

section 2. Further details can be found in refs 12 ang 1 E(R,P) + TrA(PP—P)] (4)

To develop a comparable conservative dynamics scheme that,nere 77

simulates the quantum dynamics of nuclear motions, we must

propagate the electronic degrees of freedom using the same 3 Laomp v 1w

Hamiltonian as that for the nuclear degrees of freedom. Because W= U Wy ®)

of its close relation to classical trajectories, we chose to use the

Bohmian dynamic&-2° approach for this purpose. In recent and 7’is the conjugate momentum &

years3840-50 Bohmian mechanics has been actively studied in

connection with quantum dynamics. In section 3 we follow 7 = 9 ¢/aDmP _

Bohm's approach to quantum mecha#@ic?® to extend the VA

ADMP equations. This generalization of ADMP, discussed in

section 4, allows for a quantum-mechanical treatment of nuclei  The density and nuclear velocities may also be written using

on an approximation to the adiabatic electronic surface. The the Poisson bracket of the Hamiltonian in eq 4:

salient feature of this approach is that it includes simultaneous . o

propagation of the electronic variables with the (quantum) W = {P, Zapp} 7

nuclear degrees of freedom and is based on a formalism

(ADMP) that scales as Ol with system size. In the limit as

h — 0, we recover the classical ADMP equations, and as the V ={R, Zioup} (8)

magnitude of the fictitious variables introduced in ADMP gets

small, the current approach is equivalent to quantum dynamicswhere{..., ..} is the classical Poisson bracket. Equations 7 and

of the nuclei on the BornOppenheimer surface. Semiclassical g8 will be used in later discussions in this paper. The classical

approximations to this description are outlined, and alternate Ljouville operator is also given by the Poisson bracket:
initial conditions are also discussed. In section 5, we discuss

some error estimates to bound the formalism, and finally in L ={ T pomps -+
section 6 we present our conclusions.
_ [a%’ADMP d 87(ADMPi

R 07 97 oR

)

P

—i—AP—l—PA—A] €)
R

is the conjugate momentum &%

MV (6)

and

+

2. Atom-Centered Density Matrix Propagation (ADMP)

Using an Extended Lagrangian Approach P P
3 nomp 9 9aomp 9
The Lagrangian for propagation of the density matrix is P 97’ 97/ oP
simplest in an orthonormal basis and can be written as
_ [8E(R,P) 9 2] .
= = -V =
aowe = 2THVIMV) + Tr (Wi ) — ERP) - R lpa77 R
IE(R,P) } 3 3
TrA(PP—P)] (1 —_— — -W—=
[A( )1 (1) [{ 5p | TAPHPA—Af =T —W g
whereR, V, andM are the nuclear positions, velocities, and =1 /pt i 9)

masses, respectively, afl W, andyu are the density matrix,

the density matrix velocity, and the fictitious mass tensor for and eqs 3 and 4 are completely equivalent to the classical
the electronic degrees of freedom, respectively. The LagrangianLiouville equation, with the Liouville operator in eq 9. These
multiplier matrix A is used to impos&\-representability (i.e., equations can be integrated using a Trotter factorization of the
constraints on the total number of electrons and the idempotencyLiouville propagator, expfc/t), and as an example, the third-
of the one-particle density matrix). The energy is calculated order Trotter factorization (the velocity Verlet algoritPfid
using the McWeeny purification of the densify= 3P2 — 2P3, has the form:
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A_tzﬂl/z[aE(Ri’Pi)

P, =P +WAt—

2 oP R

AP+ PA; — Ai]#_m (10)

At _.o 0E(R;,P)
Wi, =W; — 7& 1/2’# R
P.,—P
AP+ PA; — Ai]#m = —IHAt : (11)
At _1o OBE(Ri11,Pis)
Wi =W, — 7& 1/2[* R + APy T

P — Ai+1]ﬂ1/2 (12)

The Lagrangian multiplier matrixes are determined by an
iterative schem@&17so thatP,, andW,., satisfy the idempo-
tency constraintP? = P, and its time derivativePW + WP =
W.

Equations 1612 only represent one set of numerical
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probabilities and has been referred to as the “quantum-trajectory
method*1~47in recent literature. Significant differences between
Bohmian mechanics and the conventional Copenhagen inter-
pretation of quantum mechanics are discussed in a recent
monograpl?é

In this section, we exploit the rigorous Bohmian mechanics
framework to obtain a quantum analogue for the ADMP eqs 2
and 3; that is, we will construct a set of equations formally
equivalent to the time-dependent Satirgger equation for the
nuclei within the ADMP approximation. This set of equations
will then be shown to reduce to eqs 2 and Jias 0. Whenh
Z 0, the set of equations derived here provides a new quantum
dynamics approach for the simultaneous propagation of “quan-
tum” nuclei and approximate adiabatic electronic states. As in
the classical ADMP method, the dynamics of the electronic
variables is fictitious but its deviations from the Bern
Oppenheimer limit can be controlled. Numerical applications
of our approach will be studied in future publications.

As discussed in the previous section, eqs 2 and 3 are strictly
classical equations of motion, albeit involving parameters such
as the electronic density matrix which give a description of the

solutions to egs 2 and 3. Other (perhaps more accurate) solutiondlu@ntum mechanical nature of electrons. To generalize these
may be obtained by considering higher order Trotter factoriza- €guations of motion, we start by writing the quantum-mechanical
tions of the Liouville propagator, exp¢/t). The higher order ~ @nalogue of the ADMP Hamiltonian in eq 4. This we do by
integrator will, however, require higher order derivatives of replacing the classical nuclear and density matrix momenta with
energy, and these could, in general, be cumbersome to obtaintheir respective operator forms. It is conceptually straightforward

The fictitious electronic kinetic energy in eq 1 (second term)
has been showf!®to be proportional to deviations from the

Born—Oppenheimer surface, and it has also been shown that

the fictitious mass is proportional to the commutator of the
electronic Hamiltonian and the density mattn all current
implementations of the ADMP approatht’18252the fictitious
kinetic energy is a very small fraction of the total energy of the
system, and this leads to a computationally effective and
accuraté®2527 approach to model dynamics on the Bern
Oppenheimer surface.

3. ADMP Equations with Bohmian Mechanics

to write down the quantization of the nuclear momentum
operator in eq 4:

, 9
g — — —_—
== (13)

The quantization appropriate for the second term in eq 4, that
is, the fictitious density matrix kinetic energy, is however tricky.
Since the ADMP formalism outlined in the previous section
has been shown to provide a numerically efficient propagation
scheme of classical nuclei and adiabatic electronic parameters

on the Born-Oppenheimer surface, we wish to derive a
guantization scheme that is consistent with ADMP. ADMP

Rigorous connections between classical and quantum me-effectively treats the nuclear and density matrix coordinates on
chanics can be derived from two different perspectives: (a) the an equal classical footing. To obtain a quantization scheme that

concepts of Bohmian mechanics first derived by Madetting
and de Brogli€3-36 and later by Bohni/ and (b) the concepts
of path integrals due to Feynm&hin the first case, the starting
point is the time-dependent Sc¢kinger equation. Upon invok-

ing the phase-amplitude relation for the time-dependent wave
function, the real and imaginary parts may be separated to yield

(i) an equation of a form similar to the classical continuity

treats the nuclear and density matrix coordinates on a consistent
qguantum-mechanical footing, we quantize the density matrix
momentum in eq 4 as

0
g — — —
W= —ihos (14)

equation, and (ii) an equation that is known as the quantum (We will argue that the quantization proposed in egs 13 and 14

Hamilton—Jacobi equation. The latter differs from its classical

is consistent with Dirac quantization of classical Hamilton®&is.

counterpart by the presence of a “quantum force” that dependsThis yields a quantum-mechanical analogue for the scalar mass

on A. In the limit thath — 0, the classical HamiltonJacobi

ADMP Hamiltonian as

(and hence the Newton) equation is recovered. This presents

one exact approach to obtain the classical equations of motion

from the time-dependent Schitioger equation in thés = 0
limit. When f is not zero (quantum mechanics), the quantum
force couples the quantum Hamiltedacobi equation and the
continuity equation. Solutions to this coupled set of equations
comprise the Bohmian approach to quantum dynaffics,

R &
R, uTP 2
TI{A(PP - P)] (15)

3 h2 82

LW‘%AMP == Z_
22

+ E(R,P) +

We represent the scalar form of the fictitious masgaas in

where an ensemble of classical coordinates are propagated, eacbur earlier publication$?17”Here, the second term on the right-

obeying the quantum HamiltenJacobi equation; however, each

hand side is the quantum-mechanical form of the fictitious

classical system has a probability density given by the continuity electronic kinetic energy. Note further that the quantization
equation, and this probability density enters into the quantum scheme introduced in eqs 435 is consistent with Dirac
force. Thus, Bohmian dynamics comprises the propagation of quantization of classical Hamiltoniaf%since the quantum-

a set of classical systems with associated time-dependentmechanical velocity corresponding Bosatisfies
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ap

S h2 1 aWRP
dt

1 - 1.0
= P 7 fowel = = ih 55 (16)

2M i Arp IR 2
where [..., ...] is the commutator. Note the similarity between

+{ER,P) + Tr[A(PP— P)]} =0 (19)

eqs 7 and 16; eq 16 obeys tHe., ..} — (LRH)[..., K2 1 92 3 1 [a.0\2
correspondence rule of Dir&8.Thus, eq 15 is the Dlrac RP + z Bl Wil
guantize® form of eq 4. Further note that eq 7 is a classical , RP 8P 2 : J;2|\/|i aRij
Hamilton’s equation of motion, whereas eq 16 represents the '
corresponding Heissenberg form.

As the quantum analogue of the fictitious kinetic energy term z (_
goes to zero, the Hamiltonian in eq 15 approximates the - 2u
adiabatic quantum Hamiltonian of the system (i.e., quantum-
mechanical nuclei on an approximation to the adlabatlc Born  from the real part of the time-dependent Sainger equation
Oppenheimer, electronic surface given by the energy functional 5,
E(R,P)). This is seen from the fact that approximations to the
true kinetic energy of the electrons, the electretectron

&/ O ! 2 p
repulsion contribution, the electremuclear attraction, and the 3ﬁRP } 8‘/[5R~P 9 I iy) S n
nuclear-nuclear repulsion, including approximations to electron .\ op. Jlop. ZZu ‘rRpP ap. 2
correlation effects (all within a single-determinental approxima- ! H H ! i
tion such as DFT), are already included in the energy functional 3 1 [0%p

matrix, P, is N-representable. When the density matrix is not Ry, L oM

exactlyN-representable, this term contributes an energy penalty "

and hence may be considered to be part of the energy functional.

Hence, eq 15 is as an effective approximation to the adiabatic from the imaginary part. In the limit a — 0, eq 19 yields a
guantum Hamiltonian of the system, that gets better as the form identical to the classical Hamiltoniadacobi equatiof
second term, the quantum analogue of the fictitious kinetic when the function/is interpreted’-39-5%57as the action variable
energy, goes to zero. A detailed analysis of the expectation of
the quantum analogue of the fictitious kinetic energy and the
conditions under which this quantity may be bounded are
discussed in section 5.

It is also important to mention here that other extended Furthermore, when/'is the action variable, using egs 2 and 3,
Lagrangian ideas (with holonomic constraints) may also be we may redefine the partial derivatives involving the action
written in a quantum-mechanical form analogous to eq 15. For Variable as
example, it may be noted that this is the case for the—Car

3 2
E(R,P). The last term in eq 15 is trivially zero when the density ZZ ( 3 j) + z i/)RP S =0 (20)
M; IR, 2

J= [ Lnowe dt (21)

Parrinello extended Lagrangian. However, whether an arbitrary 1({a.\
extended Lagrangian is a good approximation to a quantum M(aRij) = (22)
Hamiltonian of the system, or not, depends on the nature of the '
constraints included in the extended Lagrangian. o
If x is the complex time-dependent wave function given by and for the scalar fictitious mass case
the time-dependent Schdimger equation for the Hamiltonian
in eq 15, thery may be expressed as 1o\ _
=W, (23)
, #(3Pi,i) !
X = RppeXplSih) (17)

+ER,P) +

) . . and hence, the last four terms on the right-hand side of eq 19
where g p and./are scalar real functions of boihandP. It are together exactly equal to the ADMP Hamiltonian of eq 4,
should also be noted here that since the wave fungtiha that is
function of the variable® andP, the quantityy*y = [ %rp]? ’
= [k p] reflects the probability density of the classical system,

{R,P}. The quantum systeny, is created from the classical . 1(aJ)2

system with an associated probability. Hence, we can already Znomp = ZZZM oR;; ZZ g

see that in this formalism there will be a need to have many Y &

classical systems, each with associated probabilities to simulate Tr[A(PP —P)] (24)

the quantum system. (Note that in ADMR,and P are both

free variables, unlike in BornOppenheimer dynamics, where Hence, differentiating eq 19 witR andP, and assuming that

P is fixed by an SCF procedure for a givéh Hence, the R andP are independent variables as is the case for adiabatic
associated probability function in ADMP needs to be a function separation, yields the corresponding Newton-like equations in
of bothR andP.) matrix form as
Using eqgs 15 and 17 in the time-dependent Sdimger
equation

8 3 h? 1 8(/)RP
p E)R ZZZM Rep oR; 2

d’rR oE(R,P)
M (25)

th t% /ADMPX (18) dt’ R

and separating real and imaginary parts, we obtain and
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d’P
/’t —_—
dt?

IE(R,P)
P

+AP+PA — Al +
R

K hzla(/l’

ap IJZ“WRP 8P 2

(26)

where the total time derivatives in eqs 25 and 26 are obtained
from the sum of the partial time derivative ofin eq 19 and

the gradient terms arising from the fourth and fifth terms in eq

19 (or the first and second terms on the right-hand side of eq
24). The latter terms are similar to the convective forces arising
in computational fluid dynamic¥ and due to this reason the

equations of Bohmian mechanics have been called the hydro-

dynamic formulation of quantum mechanics in recent litera-
ture®® As h — 0, egs 25 and 26 yield the classical ADMP
equations of motion.

4. Discussion of the Quantum ADMP Equations

To proceed further with the discussion wher 0, we first
make the substitutior’r p = #Zrp? in eq 20 to obtain

A, p]
ot

39
z_( /)R pWi ,) | ;a?u(-@R,Pvi,j) =0
(27)

which has a form identical to that of the continuity equation

(or conservation of flux equation) of classical mechanics. This 2

can be seen from the fact thadk p is the probability density
measuring the probability of the nuclear positions being at
and the density matrix beinB. Hence, the quantities’k pV
and gk pW represent the probability flux of the nuclei and
density matrix, respectively.

It is important to note here the significance of the probability
function in eq 27. This function represents the probability of
the classical evertR,P}. Thus, each nuclear configuration is
free to have its own density matrix (and hence its own electronic
structure configuration which could, in general, be different from
those realized by other nuclear configurations), the probability
of which is given by g p. It may be noted here that other
approaches in the literatifealso allow simultaneous propaga-
tion of multiple electronic wave function states along with
multiple nuclear configurations, one electronic wave function
state per nuclear configuration, to simulate quantum dynamics
on an adiabatic electronic surface. In this sense there is an
appealing similarity between the current approach and path
integral based approaches.

Now, using the definition of the total time derivative as the
sum of the partial time derivative and gradient terms, we may
rewrite eq 27 as

d%:p W, 3 0V
+ Prpl Yy —+ —=0 (28)
dt "4 0Py S10R;;
which can be integrated to obtain
3 0V
Frplttot) = ex 5t ZZBR P plt)
(29)

Using the probability density, we may rewrite egs 25 and 26 as
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d2
h2 1 PR Zs 1 (8-0/1)??2
Z (30)
8R T =14M, | Srp 3Ri'12 Mﬁ,PZ\ R
and
&P |ERP)
=- +AP+PA— A+
dt? oP IR
a| A% 1 32—%,13 1 (a—éfR,P z
— ; - (1)
OP| T 4u| Yrp 8P”-2 ZK/Q/{QVPZ\ P

As stated earlier, eqs 30 and 31 yield the ADMP equations
whenh — 0. However, wherh = 0, eqs 29-31 provide the
nucleus of an alternate approach to perform quantum dynamics
within the approximation to the quantum Hamiltonian specified
in eq 15; hence, these equations provide a quantum generaliza-
tion for ADMP in the Hamilton-Jacobi form. Whet = 0, by
comparing eqgs 30 and 31 with egs 2 and 3, we observe that the
nuclear and density matrix dynamics are influenced by additional
h-dependent “quantum forces”

0 z 3R 1 & Srp 1 (3ﬁR,P2
R\' i T e .
! aRi',j' T JZ4M RP R 2 Z(Z’RPZ\ aRi,j
SR 1
I ]Z4M l(} 3Ri11j. 8Ri,j2
P ARpp dRpp
(32)
BRLJ-Z IR j
and
oo 9 h2 1 & Prp 1 (a-@R,PZ
=P o )
! aPl JI 4# /)RP 8P Z@R'PZ\ P
h? i 83‘%)R,P BZ%R,P 0Arp
=2 Arp -
A .ff/?,R,PZ\ P, 9P op7 Py
(33)

where, for simplicity, we have presented the results in terms of
R rp. A few comments regarding eqs 32 and 33 are now in
order. Equation 32 allows the instantaneous shape of the nuclear
wave packet (determined by the classical configurations and
the associated probabilities) to determine the dynamics of each
classical component comprising the wave packet. That is, the
nuclear wave packet configuration at timmedetermines the
nuclear wave packet at the next instant by constraining the
dynamics of the nuclear coordinates through the quantum force
in eq 32 and the associated probabilities through eq 29. The
interpretation of eq 33 is as follows. In classical ADMP,

and R are both free dynamical variables, as compared to
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Born—Oppenheimer dynamics, wher@ is free butP is are necessary to determine the quantum forces; hence, this
determined from an SCF procedure for every gi®rand is calculation is perhaps the most critical part of the algorithm
hence not free. Therefore, in a Bohmian implementation in for both accuracy and computational efficiency.) To obtain
Born—Oppenheimer dynamics, the corresponding density matrix %’R::Agp}:m, it is necessary to propagate eq 29. This again is to
dynamics is influenced by the quantum force on the nuclei, be achieved from (8 + MM), one-dimensional fits to obtained
which in turn affects the SCF procedure, by yielding wave derivatives of the kinddW; ;/oP;;) and @V;;/0R;;). (Note that
functions that are different from those in the absence of the these fits are each one-dimensional.) Once the quantum forces
quantum force. Equation 33 performs a similar function in the and K/Rl_mpl_m are determined, egs 30 and 31 may be inte-
current formalism by restricting the density matrix dynamics grated usmg the velocity Verlet procedure. For the density
and the nuclear dynamics in a unified fashion. These quantummatrix propagation, these equations are

forces make the eqs 281 equivalent to the time-dependent

Schralinger equation for the Hamiltonian in eq 15. Of course, At aE(R',p) o
in large systems it is not necessary that all components be treate(P'Jrl =P+ WAt — —p IR D, + AP+
guantum-mechanically, and in such cases the appropriate values 2“

for the quantum forces (zero or otherwise) may be chosen.
We may construct a propagation scheme based on egs 29
31 as follows. Since eq 29 represents the propagation of the :
probability density of a classical systeqR,P}, which in turn W2 = i _ At IE(R;,P) P) o tAPAPA -
is obtained from solving egs 30 and 31, it is important to note ! I 2,4 T 9P IR Pi I I
that we may consider here an ensemble of classical systems ] pitl_ pi
A

Pl A} — Ai] (34)

given by{R|,P;}, each system having an associated probability if=_t 1 (35)
of “&,p. The collection of these classical systems and their At
probabilities together provide an approximation to the time- _ _

dependent wave function at any given time. Each elementof ., At[OE(RITP)
the ensemblg[R,,P;}, is to be propagated according to eqgs 30 Wim=w, 2“ P
and 31, with the associated quantum forces to be determined at

every instant by eq 29. Thus, we may consider an ensemble of Ai|+l pi|+1 4 pi|+1 Ai+1 — Aiﬂl (36)
initial nuclear configurationsR}:O} with corresponding initial

veIocities{V}:O}. We may further assume that each nuclear
configuration has an associated density matrix, leading to the
family of initial density matrixes{P}=°} with velocities
{WI™%. (Note that the uppercase subscripts refer to the
configuration number in the ensemble, the superscript refers to
the time index, and elsewhere in the paper we have used lower,
case subscripts to refer to the matrix elements of nuclear and
density matrixes.) The probability for each nuclear-density
matrix state |s{/RI_ P, which may be chosen by associating [

R Zpipu T

Note that, to geis/V'Jrl an approximation tozpom that is,
the quantum force on the density matrix at the next time step,
is necessary. This is obtained by first propagating the density
using eq 29 to obtauzs/’Rt ap=at, Then the new density may be
differentiated with respect té"+1 as outlined above to yield
'the new qguantum force. This process is to be repeated for the
nuclear coordinates to obtain

IE(R],P)

Boltzmann Welghts to each nuclear- -density matrix configuration i+1_ NG o,
R, R Ip “ZR} (37)

(i.e., all density matrix elements belonging to the same nuclear R + V At= TM

conﬂguratlon have the same probability). Togeth@’rt 0pt-0

along with {R["% and{P\"% represent an apprOX|mat|on to At _JoER P RI*T— R

the initial wave packet of the nuclear-electronic system. To V'“’2 VI — |, LR
) . . ) s 2 orR Ip ! At

obtain the system configuration at the next time step, it is first (38)

necessary to calculate the quantum forces in eqs 32 and 33 and

the probability densitys’g (= pi=at from eq 29, which is re- [

IE(R P

quired to construct the velocmes at tind, as will be seen i1\ it12 _ At 1
V"=V, =M R

below. 2
The quantum forces may be obtained from numerical dif-
ferentiation of the multidimensional surface @f-op-ousing ~ Here again, 2 is obtained by differentiating the new
well-known approximations such as the DAFer the moving density.
weighted least squares (MWLS) appro#cho differentiate One choice of initial conditions for the probability function
functions on an unstructured grid. (Note that the probability was discussed above, whereint at 0, the probability of the
density is a (8 + MM) dimensional surface fax atoms and classical{R,P} system was chosen according to Boltzman
M basis functions.) For this purpose it may be required to obtain weight. Another, perhaps conceptually more appealing, set of
a suitable fit of the probability function with respect to the initial conditions may be obtained as follows. Suppose we
nuclear coordinates and density matrix elements using somerequire that the quantum force in eq 31 be zero for the density
basis functions whose derivatives are already known (for matrixes at timg = 0. This may be achieved by requiring
example, Gaussians or DAFs). At this point, it would also be

. )R('“> (39)

important to evaluate if appropriate sampling of the probability 1 32_(;/3R o 1 {3_@R 0|2
density Sropro is maintained; if not, a larger number of 7 > 2\ 5P = constant (40)
classical system:{Rt_ Pt_o} would have to be chosen. Once “rRP 0P 2WR,P\ i

the fit and the derivatives are obtained, the quantum forces may
be calculated. (It is important to note that mixed third derivatives for all i, j, which makes the quantum force on each density
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matrix zero at the initial step. Equation 40 is a second-order alleviate such problems. It is important to note that this situation
nonlinear differential equation, but it is possible to reduce this is, however, different from the one discussed in the previous
to a first-order Bernoulli-type equation of power ), which paragraph which considers the dynamics of many density
can be solved analytically. The solution is matrixes, each satisfying the initial condition in eq 40. In that
case, completely neglecting the quantum force on the density
matrix gives rise to a deviation proportionaldband depending

) exp{CP;; — E}
Py g = —————— on the energy functional.

Pap = 5 [D? exp{ —2(CP,; — E)} +1] (41)

We conclude this section by stating one critical feature in
the above formalism. The variabléin eq 17 is not defined
when the probability function/k p becomes zero at some point
during the trajectory (i.e., when a node develops in the wave
function during the propagation scheme). This does not, in
principle, present any probleffisince a trajectory that is started
with &k p # 0 can never pass through a nodal surface. However,
this does present a problem of optimal sampling of the
probability function; that is, the two regions separated by a node
that develops during a propagation may not have the same
to a Lagrangian (rather than an Eulerian) frame of reference. sampling, in terms of the presence of the classical trajectory
The solution in eq 41 reflects a new frame of reference elements, and in some cases it is foreseeable that regions beyond
where the quantum force on the density matrix is zero. the node may not have the requisite sampling. This problem
However, at subsequent time steps the probability function may be alleviated by (i) using the probability density fit to
is propagated as per eq 29, and the probability function at determine the development of a new node during the calculation
all times does not, in general, satisfy eq 41. This is because theor (ii) evaluating the fit on all sides of the node and resampling
probability flux terms in eq 29 will in general allow the the distribution with more classical poiftR,P} to spawn new
probability function to deviate from an internal rotation trajectories, if necessary.

and viscosity-free environment. The continuity equation Alternate, approximate, computational schemes may also

allows for viscous and rotational dynamics depending upon pe ohtained by invoking semiclassical approximations to eqgs
the nature of the flux term, which is determined by the energy >9 31 o to eq 15 directly. For example, WKB-type ap-

functional, E(R,P). Hence, the quantum force deviates from ,4yimations for eqs 2931 may be obtained by ignoring the
zero during the propagation, and in fact it deviates by an amountqu‘.jmtum forces in eqs 30 and 31, and solutions to evéry

proportional todt. Therefore, only in the limit of very small 5y e ohtained by invoking the stationarity condition. How-
time steps, and with initial conditions for the probability ever, complex boundary matching algorithms will be required

whereC, D, andE are constants; is related to the right-hand
side in eq 40, wheread andE are constants of integration.
Initial conditions similar to those of eq 40 can also be obtained
for the nuclear degrees of freedom.

The fact that the condition for zero quantum force corre-
sponds to a Bernoulli-type differential equation is a rather
intriguing physical result. Since the Bernoulli equation in
fluid dynamics corresponds to a fluid devoid of any rotations
and viscosity, it is possible to negate this flow by transforming

distribution as in eq 40, the solutions to eqs—24 yield

trajectories that are identical to those obtained when the
nuclei are propagated as per the Bohmian dynamics eq 30 an
the density matrix elements follow the classical ADMP dynam-
ics eq 3 (with no quantum force). Hence, for finite time steps,
the forces on a propagation scheme that allows Bohmian
dynamics of nuclei as per eq 30 but only accounts for the density
matrix dynamics within the classical ADMP equations (i.e.,

to obtain dynamical behavior as a continuous function of

oint.

cJFl)wcident energy, even at energies close to the classical turning

Another semiclassical scheme can be derived by invoking
the Ehrenfest theorem, which allows the center of the nuclear-
density matrix wave packet to move under the influence of an
average force, with the average force being calculated from all

without any quantum force, by assuming eq 40 to be valid at the points on the classical s¢R,P}. However, the sum of

all times) deviate from those of a conservative system by an the quantum forces over the entire trajectory is prc_nportlonal

amount proportional tast and hence will not conserve the ©nly to the time stepot, and hence, only the classical part

energy. of the potential in eqs 30 and 31 is required to calculate such
A consequence of this argument is as follows. Consider an average. Hence, this approach should provide a reasonable

an alternate form of eq 15 where the second term is substituted?nd (I‘pmputalﬂonladllyl efftl)ment Zpﬁrox'lm?]nonhto fthe sbove
by the fictitous kinetic energy in eq 4. (That is Dirac quantization ormalism. It should also be noted that, in the Ehrentest theorem

is only invoked for the nuclear degrees of freedom but not M where the center of the wave packet is propagated under
for the density matrix degrees of freedom.) This Hamiltonian the influence of an average force, the current approach shares
will give rise to precisely the same equations discussed in the conceptual similarities with the centrouj m_olecular dynamics
preceding paragraph, where the nuclear dynamics follows (CMD) approach-*to quantum dynamics in the condensed
the Bohmian eqgs 30 and 29, while the density matrix dynamics Phase:

is given by the classical ADMP eq 3. From the arguments

discussed above, such a scheme will not conserve energys. Analysis of the Quantum Fictitious Kinetic Energy

unless the time steps are very small. Furthermore, there would

be just one density matrix being propagated as per eq 3, The algorithm presented in the previous section becomes
whereas eqs 30 and 29 would allow many different nuclear exact as the expectation value of the quantum analogue of the
configurations to be propagated. This would imply that the fictitious kinetic energy tends to zero, as was discussed in the
electronic structures in all the separate nuclear configura- paragraphs following eq 15. In this section we conduct a detailed
tions at a given time are described by the same density analysis of the second term in eq 15, that is, the quantum
matrix whose dynamics is given by eq 3. This is clearly fictitious kinetic energy. Using eqs 15, 17, and 23, the
nonphysical. The current quantization scheme in eq 15 helpsexpectation value of the quantum fictitious energy is given by
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u h & 2 8 ﬁR p
— %R P_
2uf; aP 2 Z ' Z oP, 2
X MR.P. A L) RS
hoor, oPy 2 \opy R 2
hZ 32%R|PI
=—) %rp )|
Z ' Z . 9p,?
ha%)R"P'W oW, 2+ R My (42)
L —C C
P, 2 RiPl 2 "RPp

i i

where we have used the fact that the sum over all the classical

trajectories is equivalent to the integral over all space. The
absolute expectation value of the quantum fictitious energy is
then given by

)

h2

2u

-

B} E)P”-2

2,7 2
h2 7 d %RI'P u , )
ZZ _%RI’PI 5 - _'(ﬁR|vP| WI,J +
|2 22
) a%Rl,Pl ) 28Wiyj ?
ZZ hZg p Wi EWR,,P, — | 43)
] ij i

The second, third, and fourth terms in the above equation are
proportional tou, W, and the derivative o#V. Let us compare
this with the adiabaticity index obtained in refs 17 and 19, that
allows us to ascertain the deviations of ADMP trajectories from
the Born—Oppenheimer surface:

A fiey _ Tr[a‘Wf}ct d7/1 _ Tr[Wﬂllz aw &1/2] (44)
dt

dt a7/ dt

It has been shown in ref 19 that this quantity is proportional to
deviations from the BornOppenheimer surface in ADMP
simulations, and in the limit that the quantity on the right-hand
side of eq 44 goes to zero, the ADMP simulation attains the
Born—Oppenheimer dynamics limit. Interestingly, the last three
terms in eq 43 are proportional to the same quantities as the
quantity in eq 44. The first term in eq 43 is also proportional to
the same quantities, and this can be seen from the following
analysis. Using eq 29, under the condition of small time steps

R e g2 of 9 W2
—Arp, :5t—~W'R,,P,2__ —) -
2u aPkf 2u 4| 0Py, 4T 0P
1| 9 Wi
—1| 49
2 BPKJZIJ 9P

When the magnitudes @it andu are simultaneously reduced,
the above expression is proportionabteand other higher order
derivatives ofW, which are required to be finite, as for the
quantity in eq 44. All the terms in eq 43 are proportional to the
same quantities that determine the deviation of classical ADMP
from Born—Oppenheimer dynamics, that ig, W, and the

lyengar et al.

derivative ofW as seen in eq 44. All of these quantities can be
calculated at every instant during the dynamics to ascertain the
required deviations, just as in normal ADMP simulations, where
eq 44 is used to ascertain the deviations of ADMP from Born
Oppenheimer dynamics.

Another important conclusion that can be derived from eq
45 is based on the following expression for the quantum force
on the density matrix,

hz 1 a ﬁRI PI 82(Ki/RI’PI
S ;—w z
2u Rg WPy 8Pk| fR WPy Py
BWLJ-
1 82 aWi,j
— 1| 48
2 8Pk’|2 T Py

Again the magnitude of the quantum force depends on the same
parameters that determine the magnitude of the quantum
fictitious kinetic energy and the adiabaticity index in eq 44.

6. Conclusions

In this paper we have (i) proved that the recently developed
ADMP approach to ab initio molecular dynamics is the classical
analogue of a special approximation to the quantum Hamiltonian
and (ii) derived a new approach based on this connection that
allows the study of quantum nuclear dynamics on an adiabatic
electronic surface. The new approach, being based on ADMP,
allows for accurate treatment of the electronic variables within
the formalism of DFT, while simultaneously propagating the
same with the nuclear degrees of freedom. Semiclassical
development of the resultant equations is also an interesting
and computationally efficient possibility.

The computational scaling of the classical ADMP procedure
is O(N) for large systems, whend is the number of electrons.

As a result, the approach derived here scales &5 tes the
number of classical trajectories required to sample the quantum
potential energy surface. The latter is a function of the
ruggedness of the potential energy surface and is determined
on the basis of the accuracy required for the quantum potentials.

The calculation of the quantum forces is expected to be one
major computational bottleneck in the methodology. This
requires a multidimensional fit that could be cumbersome to
achieve. However, such problems have been addressed to some
degree in computational fluid dynamics and may not present
an intractable problem in the current approach. Furthermore,
this problem may be circumvented to a certain extent using
semiclassical approximations to the current approach. These
issues will be explored in future publications.
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