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We present a generalization for the atom-centered density matrix propagation (ADMP) approach to ab initio
molecular dynamics that allows for a quantum-mechanical treatment of the nuclear degrees of freedom while
adiabatically time-propagating the electronic degrees of freedom. This generalization uses the Bohmian approach
to quantum mechanics. The regular ADMP equations are seen to arise in the special case of thep f 0 limit
of the current formalism. Semiclassical approximations are also discussed, and rigorous error estimates are
provided to define the accuracy of the current formalism.

1. Introduction

The fundamental equation in nonrelativistic quantum
mechanics is the time-dependent Schro¨dinger equation
(TDSE),1 and this is the starting point for a number of different
methods in both gas-phase2-5 and condensed-phase quantum
dynamics.6 In most cases the Born-Oppenheimer approximation
is invoked, and this allows for propagation of the nuclei
(quantum-mechanically, classically, or semiclassically) on a
fitted adiabatic electronic surface that is obtained either from
highly accurate and demanding electronic structure calculations
or from parametrizations of the associated electronic surfaces.
In the former case, the number of electronic structure calcula-
tions required can be very large depending upon the size of the
system, and it is in this regard that “on-the-fly” approaches to
dynamics of nuclei and electrons7-13 have become popular,
leading to the field of ab initio molecular dynamics. Here,
approximations to the electronic structure are calculated as
needed, as the nuclear configurations are propagated to simulate
dynamics on the Born-Oppenheimer surface.

For performing such direct ab initio classical trajectory
calculations on large systems, Born-Oppenheimer (BO) dy-
namics methods10,11,13,14 and the extended Lagrangian (EL)
approach9,12,15-19 constitute two important categories. Here the
electronic structure is treated simultaneously with nuclear
motion. For BO methods, the electronic structure is converged
at each time step in the propagation. In the EL approach, the
wave function is propagated with the classical nuclear degrees
of freedom using an extended Lagrangian procedure20,21 and
by adjusting the relative time scales of the electronic and nuclear
motions. The Car-Parrinello (CP) method9,15,16 is the best
known example of the extended Lagrangian molecular dynamics
approach.

Traditionally, CP calculations employ Kohn-Sham density
functional theory (DFT) orbitals expanded in plane-wave basis

sets (occasionally augmented with Gaussian orbitals22,23).
Recently12,17-19 we have described the theory, implementation,
and initial applications of an extended Lagrangian molecular
dynamics method that employs atom-centered Gaussian basis
functions and one-particle density matrix propagation. This
method is called atom-centered density matrix propagation
(ADMP). The dynamics of chemical systems such as large water
clusters and gas-phase reactions are more readily described by
atom-centered basis sets than with plane waves. Furthermore,
the calculations scale as O(N) for large systems, whereN is the
number of electrons, because ADMP is based on linear scaling
DFT code.24 The ADMP method has recently been extended
for QM/MM treatments for biological systems25 and for
calculations on periodic systems employing atom-centered
functions.26 Interesting applications such as solvation of excess
protons in water clusters,27 hydroxyl-stretch red-shifts in
chloride-water clusters,18 and product distributions in gas-phase
chemical reactions18 have already been studied. ADMP trajec-
tories of the order of picoseconds show stable dynamics, and
the adiabaticity can be controlled effectively in these systems
without thermostats. The important conceptual and computa-
tional differences between ADMP and other Guassian basis set
based implementations28-31 of the Car-Parrinello formalism
have been discussed in detail in ref 18.

The ADMP method has a number of attractive features.
Systems can be simulated by accurately treating all electrons
or by using pseudopotentials. Through the use of a tensorial
fictitious mass and smaller values of the mass, reasonably large
time steps can be employed, and lighter atoms such as hydrogens
need not be replaced with heavier isotopes. A wide variety of
exchange-correlation functionals can be utilized, including
hybrid density functionals. Atom-centered functions can be used
with the correct physical boundary conditions for molecules,
polymers, surfaces, and solids, without the need to treat
replicated images in order to impose 3D periodicity. Conse-
quently, charged systems and QM/MM models of biological
systems can be treated as easily as neutral molecules, whereas
special handling is needed for charged systems in most
implementations of the plane-wave Car-Parrinello method
because they are treated as periodic systems. Deviation from
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the Born-Oppenheimer surface and the mixing of fictitious and
real kinetic energies can also be rigorously controlled on-the-
fly in ADMP. Because of fewer basis functions per atom, larger
time steps, and its asymptotic O(N) scaling, reasonable com-
putational efficiency can be achieved with the ADMP method.

In the current paper we have undertaken a formal description
and generalization of the ADMP approach to treat adiabatic
quantum dynamics of the nuclear degrees of freedom and
electronic variables. BO and EL methods are successful in
simulating classical molecular dynamics. EL methods are more
efficient than BO methods, because they avoid the work of
converging the electronic structure calculation at each step in
the classical trajectory. However, the electronic structure needs
to be propagated in a manner comparable with the nuclei, so
that energy is conserved. Hence, the Lagrangian equations of
motion for the nuclei are extended by adding the electronic
degrees of freedom and giving them a fictitious mass,µ, and
kinetic energy. With an appropriate choice of fictitious mass,
the molecular dynamics can be calculated efficiently and
accurately. In the limit asµ f 0, EL dynamics is identical to
BO dynamics.17-19 Basic features of ADMP are discussed in
section 2. Further details can be found in refs 12 and 17-19.
To develop a comparable conservative dynamics scheme that
simulates the quantum dynamics of nuclear motions, we must
propagate the electronic degrees of freedom using the same
Hamiltonian as that for the nuclear degrees of freedom. Because
of its close relation to classical trajectories, we chose to use the
Bohmian dynamics32-39 approach for this purpose. In recent
years,38,40-50 Bohmian mechanics has been actively studied in
connection with quantum dynamics. In section 3 we follow
Bohm’s approach to quantum mechanics32-39 to extend the
ADMP equations. This generalization of ADMP, discussed in
section 4, allows for a quantum-mechanical treatment of nuclei
on an approximation to the adiabatic electronic surface. The
salient feature of this approach is that it includes simultaneous
propagation of the electronic variables with the (quantum)
nuclear degrees of freedom and is based on a formalism
(ADMP) that scales as O(N) with system size. In the limit as
p f 0, we recover the classical ADMP equations, and as the
magnitude of the fictitious variables introduced in ADMP gets
small, the current approach is equivalent to quantum dynamics
of the nuclei on the Born-Oppenheimer surface. Semiclassical
approximations to this description are outlined, and alternate
initial conditions are also discussed. In section 5, we discuss
some error estimates to bound the formalism, and finally in
section 6 we present our conclusions.

2. Atom-Centered Density Matrix Propagation (ADMP)
Using an Extended Lagrangian Approach

The Lagrangian for propagation of the density matrix is
simplest in an orthonormal basis and can be written as

whereR, V, andM are the nuclear positions, velocities, and
masses, respectively, andP, W, andµ are the density matrix,
the density matrix velocity, and the fictitious mass tensor for
the electronic degrees of freedom, respectively. The Lagrangian
multiplier matrix Λ is used to imposeN-representability (i.e.,
constraints on the total number of electrons and the idempotency
of the one-particle density matrix). The energy is calculated
using the McWeeny purification of the density,P̃ ) 3P2 - 2P3.

The Euler-Lagrange equations of motion for the nuclei and
density matrix are

and

Equations 2 and 3 are classical, in the sense that they are derived
from the Lagrangian in eq 1 by using the stationary action
principle of classical mechanics.51 Correspondingly, as outlined
in ref 17, the conjugate ADMP Hamiltonian for the Lagrangian
in eq 1 is given by

whereW is the conjugate momentum ofP:

andV is the conjugate momentum ofR:

The density and nuclear velocities may also be written using
the Poisson bracket of the Hamiltonian in eq 4:

and

where{..., ...} is the classical Poisson bracket. Equations 7 and
8 will be used in later discussions in this paper. The classical
Liouville operator is also given by the Poisson bracket:51

and eqs 3 and 4 are completely equivalent to the classical
Liouville equation, with the Liouville operator in eq 9. These
equations can be integrated using a Trotter factorization of the
Liouville propagator, exp(-ιL t), and as an example, the third-
order Trotter factorization (the velocity Verlet algorithm52,53)
has the form:

LADMP ) 1
2
Tr (VTMV ) + 1

2
Tr ([µ1/4Wµ1/4]2) - E(R,P) -

Tr[Λ(PP - P)] (1)

M
d2R

dt2
) -

∂E(R,P)
∂R |

P
(2)

µ1/2 d2P

dt2
µ1/2 ) -[∂E(R,P)

∂P |
R

+ ΛP + PΛ - Λ] (3)

HADMP ) Tr (W W) + Tr (V TV) - LADMP

) 1
2
Tr (V TM-1V ) + 1

2
Tr (W µ-1/2W µ-1/2) +

E(R,P) + Tr[Λ(PP - P)] (4)

W )
∂ LADMP

∂W
) µ1/2Wµ1/2 (5)

V )
∂ LADMP
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) [∂HADMP

∂R
∂
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∂HADMP
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∂
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[∂HADMP

∂P
∂

∂W
-

∂HADMP
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) [∂E(R,P)
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∂V
- V

∂
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- W

∂

∂P]
) ι LR + ι LP (9)

7270 J. Phys. Chem. A, Vol. 107, No. 37, 2003 Iyengar et al.



The Lagrangian multiplier matrixes are determined by an
iterative scheme12,17 so thatPi+1 andW i+1 satisfy the idempo-
tency constraint,P2 ) P, and its time derivative,PW + WP )
W.

Equations 10-12 only represent one set of numerical
solutions to eqs 2 and 3. Other (perhaps more accurate) solutions
may be obtained by considering higher order Trotter factoriza-
tions of the Liouville propagator, exp(-ιL t). The higher order
integrator will, however, require higher order derivatives of
energy, and these could, in general, be cumbersome to obtain.

The fictitious electronic kinetic energy in eq 1 (second term)
has been shown17,19 to be proportional to deviations from the
Born-Oppenheimer surface, and it has also been shown that
the fictitious mass is proportional to the commutator of the
electronic Hamiltonian and the density matrix.19 In all current
implementations of the ADMP approach,12,17,18,25,27the fictitious
kinetic energy is a very small fraction of the total energy of the
system, and this leads to a computationally effective and
accurate18,25,27 approach to model dynamics on the Born-
Oppenheimer surface.

3. ADMP Equations with Bohmian Mechanics

Rigorous connections between classical and quantum me-
chanics can be derived from two different perspectives: (a) the
concepts of Bohmian mechanics first derived by Madelung32

and de Broglie,33-36 and later by Bohm,37 and (b) the concepts
of path integrals due to Feynman.54 In the first case, the starting
point is the time-dependent Schro¨dinger equation. Upon invok-
ing the phase-amplitude relation for the time-dependent wave
function, the real and imaginary parts may be separated to yield
(i) an equation of a form similar to the classical continuity
equation, and (ii) an equation that is known as the quantum
Hamilton-Jacobi equation. The latter differs from its classical
counterpart by the presence of a “quantum force” that depends
on p. In the limit thatp f 0, the classical Hamilton-Jacobi
(and hence the Newton) equation is recovered. This presents
one exact approach to obtain the classical equations of motion
from the time-dependent Schro¨dinger equation in thep ) 0
limit. When p is not zero (quantum mechanics), the quantum
force couples the quantum Hamilton-Jacobi equation and the
continuity equation. Solutions to this coupled set of equations
comprise the Bohmian approach to quantum dynamics,40-48

where an ensemble of classical coordinates are propagated, each
obeying the quantum Hamilton-Jacobi equation; however, each
classical system has a probability density given by the continuity
equation, and this probability density enters into the quantum
force. Thus, Bohmian dynamics comprises the propagation of
a set of classical systems with associated time-dependent

probabilities and has been referred to as the “quantum-trajectory
method”41-47 in recent literature. Significant differences between
Bohmian mechanics and the conventional Copenhagen inter-
pretation of quantum mechanics are discussed in a recent
monograph.38

In this section, we exploit the rigorous Bohmian mechanics
framework to obtain a quantum analogue for the ADMP eqs 2
and 3; that is, we will construct a set of equations formally
equivalent to the time-dependent Schro¨dinger equation for the
nuclei within the ADMP approximation. This set of equations
will then be shown to reduce to eqs 2 and 3 asp f 0. Whenp
* 0, the set of equations derived here provides a new quantum
dynamics approach for the simultaneous propagation of “quan-
tum” nuclei and approximate adiabatic electronic states. As in
the classical ADMP method, the dynamics of the electronic
variables is fictitious but its deviations from the Born-
Oppenheimer limit can be controlled. Numerical applications
of our approach will be studied in future publications.

As discussed in the previous section, eqs 2 and 3 are strictly
classical equations of motion, albeit involving parameters such
as the electronic density matrix which give a description of the
quantum mechanical nature of electrons. To generalize these
equations of motion, we start by writing the quantum-mechanical
analogue of the ADMP Hamiltonian in eq 4. This we do by
replacing the classical nuclear and density matrix momenta with
their respective operator forms. It is conceptually straightforward
to write down the quantization of the nuclear momentum
operator in eq 4:

The quantization appropriate for the second term in eq 4, that
is, the fictitious density matrix kinetic energy, is however tricky.
Since the ADMP formalism outlined in the previous section
has been shown to provide a numerically efficient propagation
scheme of classical nuclei and adiabatic electronic parameters
on the Born-Oppenheimer surface, we wish to derive a
quantization scheme that is consistent with ADMP. ADMP
effectively treats the nuclear and density matrix coordinates on
an equal classical footing. To obtain a quantization scheme that
treats the nuclear and density matrix coordinates on a consistent
quantum-mechanical footing, we quantize the density matrix
momentum in eq 4 as

(We will argue that the quantization proposed in eqs 13 and 14
is consistent with Dirac quantization of classical Hamiltonians.53)
This yields a quantum-mechanical analogue for the scalar mass
ADMP Hamiltonian as

We represent the scalar form of the fictitious mass asµ, as in
our earlier publications.12,17Here, the second term on the right-
hand side is the quantum-mechanical form of the fictitious
electronic kinetic energy. Note further that the quantization
scheme introduced in eqs 13-15 is consistent with Dirac
quantization of classical Hamiltonians,55 since the quantum-
mechanical velocity corresponding toP satisfies

V f -ιp
∂

∂R
(13)

W f -ιp
∂

∂P
(14)

H ADMP
QM ) -∑

i
∑
j)1

3 p2

2M i

∂
2

∂Ri,j
2

-
p2

2µ
∑
i,j

∂
2

∂Pi,j
2

+ E(R,P) +

Tr[Λ(PP - P)] (15)

Pi+1 ) Pi + W i∆t - ∆t2

2
µ-1/2[∂E(Ri,Pi)

∂P |R
+

ΛiPi + PiΛi - Λi]µ-1/2 (10)

W i+1/2 ) W i - ∆t
2

µ-1/2[∂E(Ri,Pi)

∂P |R
+

ΛiPi + PiΛi - Λi]µ-1/2 )
Pi+1 - Pi

∆t
(11)

W i+1 ) W i+1/2 - ∆t
2

µ-1/2[∂E(Ri+1,Pi+1)

∂P |R
+ Λi+1Pi+1 +

Pi+1Λi+1 - Λi+1]µ-1/2 (12)
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where [..., ...] is the commutator. Note the similarity between
eqs 7 and 16; eq 16 obeys the{..., ...} f (1/ιp)[..., ...]
correspondence rule of Dirac.55 Thus, eq 15 is the Dirac
quantized55 form of eq 4. Further note that eq 7 is a classical
Hamilton’s equation of motion, whereas eq 16 represents the
corresponding Heissenberg form.

As the quantum analogue of the fictitious kinetic energy term
goes to zero, the Hamiltonian in eq 15 approximates the
adiabatic quantum Hamiltonian of the system (i.e., quantum-
mechanical nuclei on an approximation to the adiabatic, Born-
Oppenheimer, electronic surface given by the energy functional
E(R,P)). This is seen from the fact that approximations to the
true kinetic energy of the electrons, the electron-electron
repulsion contribution, the electron-nuclear attraction, and the
nuclear-nuclear repulsion, including approximations to electron
correlation effects (all within a single-determinental approxima-
tion such as DFT), are already included in the energy functional
E(R,P). The last term in eq 15 is trivially zero when the density
matrix, P, is N-representable. When the density matrix is not
exactlyN-representable, this term contributes an energy penalty
and hence may be considered to be part of the energy functional.
Hence, eq 15 is as an effective approximation to the adiabatic
quantum Hamiltonian of the system, that gets better as the
second term, the quantum analogue of the fictitious kinetic
energy, goes to zero. A detailed analysis of the expectation of
the quantum analogue of the fictitious kinetic energy and the
conditions under which this quantity may be bounded are
discussed in section 5.

It is also important to mention here that other extended
Lagrangian ideas (with holonomic constraints) may also be
written in a quantum-mechanical form analogous to eq 15. For
example, it may be noted that this is the case for the Car-
Parrinello extended Lagrangian. However, whether an arbitrary
extended Lagrangian is a good approximation to a quantum
Hamiltonian of the system, or not, depends on the nature of the
constraints included in the extended Lagrangian.

If ø is the complex time-dependent wave function given by
the time-dependent Schro¨dinger equation for the Hamiltonian
in eq 15, thenø may be expressed as

whereRR,P andS are scalar real functions of bothR andP. It
should also be noted here that since the wave functionø is a
function of the variablesR andP, the quantityø*ø ) [RR,P]2

≡ [PR,P] reflects the probability density of the classical system,
{R,P}. The quantum system,ø, is created from the classical
system with an associated probability. Hence, we can already
see that in this formalism there will be a need to have many
classical systems, each with associated probabilities to simulate
the quantum system. (Note that in ADMP,R and P are both
free variables, unlike in Born-Oppenheimer dynamics, where
P is fixed by an SCF procedure for a givenR. Hence, the
associated probability function in ADMP needs to be a function
of both R andP.)

Using eqs 15 and 17 in the time-dependent Schro¨dinger
equation

and separating real and imaginary parts, we obtain

from the real part of the time-dependent Schro¨dinger equation
and

from the imaginary part. In the limit asp f 0, eq 19 yields a
form identical to the classical Hamiltonian-Jacobi equation,51

when the functionS is interpreted37,39,56,57as the action variable

Furthermore, whenS is the action variable, using eqs 2 and 3,
we may redefine the partial derivatives involving the action
variable as

and for the scalar fictitious mass case

and hence, the last four terms on the right-hand side of eq 19
are together exactly equal to the ADMP Hamiltonian of eq 4,
that is,

Hence, differentiating eq 19 withR andP, and assuming that
R andP are independent variables as is the case for adiabatic
separation, yields the corresponding Newton-like equations in
matrix form as

and

dP
dt

) 1
ιp

[P, H ADMP
QM ] ) - 1

µ
ιp

∂

∂P
(16)

ø ≡ RR,P exp(ιS /p) (17)

ιp
∂

∂t
ø ) H ADMP

QM ø (18)

∂S

∂t
- [{∑

i
∑
j)1

3 p2

2M i

1

RR,P

∂
2RR,P

∂Ri,j
2 } +

{∑
i,j

p2

2µ

1

RR,P

∂
2RR,P

∂Pi,j
2 }] + [∑i

∑
j)1

3 1

2M i
( ∂S

∂Ri,j
)2

+

∑
i,j

1

2µ( ∂S

∂Pi,j
)2] + {E(R,P) + Tr[Λ(PP - P)]} ) 0 (19)

∂RR,P

∂t
+ {∑

i,j

1

µ(∂RR,P

∂Pi,j
)( ∂S

∂Pi,j
) + ∑

i,j

1

2µ
RR,P

∂
2S

∂Pi,j
2} +

{∑
i
∑
j)1

3 1

M i
(∂RR,P

∂Ri,j
)( ∂S

∂Ri,j
) + ∑

i
∑
j)1

3 1

2M i

RR,P

∂
2S

∂Ri,j
2} ) 0 (20)

S ) ∫LADMP dt (21)

1
M i

( ∂S
∂Ri,j

) ≡ V i,j (22)

1
µ( ∂S

∂Pi,j
) ≡ W i,j (23)

HADMP ≡ ∑
i
∑
j)1

3 1

2M i
( ∂S

∂Ri,j
)2

+ ∑
i,j

1

2µ( ∂S

∂Pi,j
)2

+ E(R,P) +

Tr[Λ(PP - P)] (24)

M
d2R

dt2
) -

∂E(R,P)

∂R |
P

+
∂

∂R[∑i
∑
j)1

3 p2

2M i

1

RR,P

∂
2RR,P

∂Ri,j
2 ] (25)
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where the total time derivatives in eqs 25 and 26 are obtained
from the sum of the partial time derivative ofS in eq 19 and
the gradient terms arising from the fourth and fifth terms in eq
19 (or the first and second terms on the right-hand side of eq
24). The latter terms are similar to the convective forces arising
in computational fluid dynamics,39 and due to this reason the
equations of Bohmian mechanics have been called the hydro-
dynamic formulation of quantum mechanics in recent litera-
ture.43 As p f 0, eqs 25 and 26 yield the classical ADMP
equations of motion.

4. Discussion of the Quantum ADMP Equations

To proceed further with the discussion whenp * 0, we first
make the substitutionP R,P ) R R,P

2 in eq 20 to obtain

which has a form identical to that of the continuity equation
(or conservation of flux equation) of classical mechanics. This
can be seen from the fact thatPR,P is the probability density
measuring the probability of the nuclear positions being atR
and the density matrix beingP. Hence, the quantitiesPR,PV
and PR,PW represent the probability flux of the nuclei and
density matrix, respectively.

It is important to note here the significance of the probability
function in eq 27. This function represents the probability of
the classical event{R,P}. Thus, each nuclear configuration is
free to have its own density matrix (and hence its own electronic
structure configuration which could, in general, be different from
those realized by other nuclear configurations), the probability
of which is given byPR,P. It may be noted here that other
approaches in the literature58 also allow simultaneous propaga-
tion of multiple electronic wave function states along with
multiple nuclear configurations, one electronic wave function
state per nuclear configuration, to simulate quantum dynamics
on an adiabatic electronic surface. In this sense there is an
appealing similarity between the current approach and path
integral based approaches.58

Now, using the definition of the total time derivative as the
sum of the partial time derivative and gradient terms, we may
rewrite eq 27 as

which can be integrated to obtain

Using the probability density, we may rewrite eqs 25 and 26 as

and

As stated earlier, eqs 30 and 31 yield the ADMP equations
when p f 0. However, whenp * 0, eqs 29-31 provide the
nucleus of an alternate approach to perform quantum dynamics
within the approximation to the quantum Hamiltonian specified
in eq 15; hence, these equations provide a quantum generaliza-
tion for ADMP in the Hamilton-Jacobi form. Whenp * 0, by
comparing eqs 30 and 31 with eqs 2 and 3, we observe that the
nuclear and density matrix dynamics are influenced by additional
p-dependent “quantum forces”

and

where, for simplicity, we have presented the results in terms of
R R,P. A few comments regarding eqs 32 and 33 are now in
order. Equation 32 allows the instantaneous shape of the nuclear
wave packet (determined by the classical configurations and
the associated probabilities) to determine the dynamics of each
classical component comprising the wave packet. That is, the
nuclear wave packet configuration at timet determines the
nuclear wave packet at the next instant by constraining the
dynamics of the nuclear coordinates through the quantum force
in eq 32 and the associated probabilities through eq 29. The
interpretation of eq 33 is as follows. In classical ADMP,P
and R are both free dynamical variables, as compared to

µ
d2P

dt2
) -[∂E(R,P)

∂P |
R

+ ΛP + PΛ - Λ] +

∂

∂P[∑i,j p2

2µ

1

RR,P

∂
2RR,P

∂Pi,j
2 ] (26)

∂[PR,P]

∂t
+ [∑i,j ∂

∂Pi,j

(PR,PW i,j)] + [∑i
∑
j)1

3 ∂

∂Ri,j

(PR,PV i,j)] ) 0

(27)

dPR,P

dt
+ PR,P[∑

i,j

∂W i,j

∂Pi,j

+ ∑
i
∑
j)1

3 ∂V i,j

∂Ri,j
] ) 0 (28)

PR,P(t+δt) ) exp{-δt[∑
i,j

∂W i,j

∂Pi,j

+ ∑
i
∑
j)1

3 ∂V i,j

∂Ri,j
]}PR,P(t)

(29)

M
d2R

dt2
) -

∂E(R,P)

∂R
|
P

+

∂

∂R[∑i
∑
j)1

3 p2

4M i
{ 1

PR,P

∂
2PR,P

∂Ri,j
2

-
1

2PR,P
2(∂PR,P

∂Ri,j
)2}] (30)

µ
d2P

dt2
) -[∂E(R,P)

∂P
|
R

+ ΛP + PΛ - Λ] +

∂

∂P[∑i,j p2

4µ{ 1

PR,P

∂
2PR,P

∂Pi,j
2

-
1

2PR,P
2(∂PR,P

∂Pi,j
)2}] (31)

QRi′, j′
)

∂

∂Ri′,j′[∑i
∑
j)1

3 p2

4M i
{ 1

PR,P

∂
2PR,P

∂Ri,j
2

-
1

2PR,P
2(∂PR,P

∂Ri,j
)2}]

) ∑
i
∑
j)1

3 p2

4M i[ 1

RR,P
2(RR,P

∂
3RR,P

∂Ri′,j′ ∂Ri,j
2

-

∂
2RR,P

∂Ri,j
2

∂RR,P

∂Ri′,j′ )] (32)

QPi′, j′
)

∂

∂Pi′,j′[∑i,j p2

4µ{ 1

PR,P

∂
2PR,P

∂Pi,j
2

-
1

2PR,P
2(∂PR,P

∂Pi,j
)2}]

) ∑
i,j

p2

4µ[ 1

RR,P
2(RR,P

∂
3RR,P

∂Pi′,j′ ∂Pi,j
2

-
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Born-Oppenheimer dynamics, whereR is free but P is
determined from an SCF procedure for every givenR, and is
hence not free. Therefore, in a Bohmian implementation in
Born-Oppenheimer dynamics, the corresponding density matrix
dynamics is influenced by the quantum force on the nuclei,
which in turn affects the SCF procedure, by yielding wave
functions that are different from those in the absence of the
quantum force. Equation 33 performs a similar function in the
current formalism by restricting the density matrix dynamics
and the nuclear dynamics in a unified fashion. These quantum
forces make the eqs 29-31 equivalent to the time-dependent
Schrödinger equation for the Hamiltonian in eq 15. Of course,
in large systems it is not necessary that all components be treated
quantum-mechanically, and in such cases the appropriate values
for the quantum forces (zero or otherwise) may be chosen.

We may construct a propagation scheme based on eqs 29-
31 as follows. Since eq 29 represents the propagation of the
probability density of a classical system,{R,P}, which in turn
is obtained from solving eqs 30 and 31, it is important to note
that we may consider here an ensemble of classical systems
given by{RI,PI}, each system having an associated probability
of PRI,PI. The collection of these classical systems and their
probabilities together provide an approximation to the time-
dependent wave functionø, at any given time. Each element of
the ensemble,{RI,PI}, is to be propagated according to eqs 30
and 31, with the associated quantum forces to be determined at
every instant by eq 29. Thus, we may consider an ensemble of
initial nuclear configurations{RI

t)0} with corresponding initial
velocities {VI

t)0}. We may further assume that each nuclear
configuration has an associated density matrix, leading to the
family of initial density matrixes {PI

t)0} with velocities
{WI

t)0}. (Note that the uppercase subscripts refer to the
configuration number in the ensemble, the superscript refers to
the time index, and elsewhere in the paper we have used lower
case subscripts to refer to the matrix elements of nuclear and
density matrixes.) The probability for each nuclear-density
matrix state isP RI

t)0,P I
t)0, which may be chosen by associating

Boltzmann weights to each nuclear-density matrix configuration
(i.e., all density matrix elements belonging to the same nuclear
configuration have the same probability). Together,P RI

t)0,P I
t)0

along with {RI
t)0} and {PI

t)0} represent an approximation to
the initial wave packet of the nuclear-electronic system. To
obtain the system configuration at the next time step, it is first
necessary to calculate the quantum forces in eqs 32 and 33 and
the probability densityP RI

t)∆t,P I
t)∆t from eq 29, which is re-

quired to construct the velocities at time∆t, as will be seen
below.

The quantum forces may be obtained from numerical dif-
ferentiation of the multidimensional surface ofP RI

t)0,P I
t)0 using

well-known approximations such as the DAFs59 or the moving
weighted least squares (MWLS) approach60 to differentiate
functions on an unstructured grid. (Note that the probability
density is a (3N + MM) dimensional surface forN atoms and
M basis functions.) For this purpose it may be required to obtain
a suitable fit of the probability function with respect to the
nuclear coordinates and density matrix elements using some
basis functions whose derivatives are already known (for
example, Gaussians or DAFs). At this point, it would also be
important to evaluate if appropriate sampling of the probability
density P RI

t)0,P I
t)0 is maintained; if not, a larger number of

classical systems,{RI
t)0,PI

t)0}, would have to be chosen. Once
the fit and the derivatives are obtained, the quantum forces may
be calculated. (It is important to note that mixed third derivatives

are necessary to determine the quantum forces; hence, this
calculation is perhaps the most critical part of the algorithm
for both accuracy and computational efficiency.) To obtain
P RI

t)∆t,P I
t)∆t, it is necessary to propagate eq 29. This again is to

be achieved from (3N + MM), one-dimensional fits to obtained
derivatives of the kind (∂W i,j/∂Pi,j) and (∂V i,j/∂Ri,j). (Note that
these fits are each one-dimensional.) Once the quantum forces
and P RI

t)∆t,P I
t)∆t are determined, eqs 30 and 31 may be inte-

grated using the velocity Verlet procedure. For the density
matrix propagation, these equations are

Note that, to getW I
i+1, an approximation toQPI

(i+1), that is,
the quantum force on the density matrix at the next time step,
is necessary. This is obtained by first propagating the density
using eq 29 to obtainPRI

t)∆t,P I
t)∆t. Then the new density may be

differentiated with respect toPI
i+1, as outlined above to yield

the new quantum force. This process is to be repeated for the
nuclear coordinates to obtain

Here again,QRI
i +1 is obtained by differentiating the new

density.
One choice of initial conditions for the probability function

was discussed above, wherein, att ) 0, the probability of the
classical{R,P} system was chosen according to Boltzman
weight. Another, perhaps conceptually more appealing, set of
initial conditions may be obtained as follows. Suppose we
require that the quantum force in eq 31 be zero for the density
matrixes at timet ) 0. This may be achieved by requiring

for all i, j, which makes the quantum force on each density

PI
i+1 ) PI

i + W I
i∆t - ∆t2

2µ [∂E(RI
i,PI

i)

∂P |R - QPi
I
+ ΛiPI

i +

PI
i ΛI

i - ΛI
i] (34)

W I
i+1/2 ) W I

i - ∆t
2µ[∂E(RI

i,PI
i)

∂P |R - QPi
I
+ ΛI

i PI
i + PI

i ΛI
i -

ΛI
i] )

PI
i+1 - PI

i

∆t
(35)

W I
i+1 ) W I

i+1/2 - ∆t
2µ[∂E(RI

i+1,PI
i+1)

∂P |R - QPi+1I +

ΛI
i+1 PI

i+1 + PI
i+1 ΛI

i+1 - ΛI
i+1] (36)

RI
i+1 ) RI

i + VI
i∆t - ∆t2

2
M-1[∂E(RI

i,PI
i)

∂R |P
- QRI

i] (37)

VI
i+1/2 ) VI

i - ∆t
2

M-1[∂E(RI
i,PI

i)

∂R |P
- QRI

i] )
RI

i+1 - RI
i

∆t
(38)

VI
i+1 ) VI

i+1/2 - ∆t
2

M-1[∂E(RI
i+1,PI

i+1)

∂R |P
- QRI
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1
PR,P

∂
2PR,P

∂Pi,j
2

- 1

2PR,P
2(∂PR,P

∂Pi,j
)2

) constant (40)
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matrix zero at the initial step. Equation 40 is a second-order
nonlinear differential equation, but it is possible to reduce this
to a first-order Bernoulli-type equation of power (-1), which
can be solved analytically. The solution is

whereC, D, andE are constants;C is related to the right-hand
side in eq 40, whereasD and E are constants of integration.
Initial conditions similar to those of eq 40 can also be obtained
for the nuclear degrees of freedom.

The fact that the condition for zero quantum force corre-
sponds to a Bernoulli-type differential equation is a rather
intriguing physical result. Since the Bernoulli equation in
fluid dynamics corresponds to a fluid devoid of any rotations
and viscosity, it is possible to negate this flow by transforming
to a Lagrangian (rather than an Eulerian) frame of reference.
The solution in eq 41 reflects a new frame of reference
where the quantum force on the density matrix is zero.
However, at subsequent time steps the probability function
is propagated as per eq 29, and the probability function at
all times does not, in general, satisfy eq 41. This is because the
probability flux terms in eq 29 will in general allow the
probability function to deviate from an internal rotation
and viscosity-free environment. The continuity equation
allows for viscous and rotational dynamics depending upon
the nature of the flux term, which is determined by the energy
functional, E(R,P). Hence, the quantum force deviates from
zero during the propagation, and in fact it deviates by an amount
proportional toδt. Therefore, only in the limit of very small
time steps, and with initial conditions for the probability
distribution as in eq 40, the solutions to eqs 29-31 yield
trajectories that are identical to those obtained when the
nuclei are propagated as per the Bohmian dynamics eq 30 and
the density matrix elements follow the classical ADMP dynam-
ics eq 3 (with no quantum force). Hence, for finite time steps,
the forces on a propagation scheme that allows Bohmian
dynamics of nuclei as per eq 30 but only accounts for the density
matrix dynamics within the classical ADMP equations (i.e.,
without any quantum force, by assuming eq 40 to be valid at
all times) deviate from those of a conservative system by an
amount proportional toδt and hence will not conserve the
energy.

A consequence of this argument is as follows. Consider
an alternate form of eq 15 where the second term is substituted
by the fictitous kinetic energy in eq 4. (That is Dirac quantization
is only invoked for the nuclear degrees of freedom but not
for the density matrix degrees of freedom.) This Hamiltonian
will give rise to precisely the same equations discussed in the
preceding paragraph, where the nuclear dynamics follows
the Bohmian eqs 30 and 29, while the density matrix dynamics
is given by the classical ADMP eq 3. From the arguments
discussed above, such a scheme will not conserve energy
unless the time steps are very small. Furthermore, there would
be just one density matrix being propagated as per eq 3,
whereas eqs 30 and 29 would allow many different nuclear
configurations to be propagated. This would imply that the
electronic structures in all the separate nuclear configura-
tions at a given time are described by the same density
matrix whose dynamics is given by eq 3. This is clearly
nonphysical. The current quantization scheme in eq 15 helps

alleviate such problems. It is important to note that this situation
is, however, different from the one discussed in the previous
paragraph which considers the dynamics of many density
matrixes, each satisfying the initial condition in eq 40. In that
case, completely neglecting the quantum force on the density
matrix gives rise to a deviation proportional toδt and depending
on the energy functional.

We conclude this section by stating one critical feature in
the above formalism. The variableS in eq 17 is not defined
when the probability functionPR,P becomes zero at some point
during the trajectory (i.e., when a node develops in the wave
function during the propagation scheme). This does not, in
principle, present any problem,39 since a trajectory that is started
with PR,P * 0 can never pass through a nodal surface. However,
this does present a problem of optimal sampling of the
probability function; that is, the two regions separated by a node
that develops during a propagation may not have the same
sampling, in terms of the presence of the classical trajectory
elements, and in some cases it is foreseeable that regions beyond
the node may not have the requisite sampling. This problem
may be alleviated by (i) using the probability density fit to
determine the development of a new node during the calculation
or (ii) evaluating the fit on all sides of the node and resampling
the distribution with more classical points{R,P} to spawn new
trajectories, if necessary.

Alternate, approximate, computational schemes may also
be obtained by invoking semiclassical approximations to eqs
29-31 or to eq 15 directly. For example, WKB-type ap-
proximations for eqs 29-31 may be obtained by ignoring the
quantum forces in eqs 30 and 31, and solutions to everyPR,P

may be obtained by invoking the stationarity condition. How-
ever, complex boundary matching algorithms will be required
to obtain dynamical behavior as a continuous function of
incident energy, even at energies close to the classical turning
point.

Another semiclassical scheme can be derived by invoking
the Ehrenfest theorem, which allows the center of the nuclear-
density matrix wave packet to move under the influence of an
average force, with the average force being calculated from all
the points on the classical set{R,P}. However, the sum of
the quantum forces over the entire trajectory is proportional
only to the time step,δt, and hence, only the classical part
of the potential in eqs 30 and 31 is required to calculate such
an average. Hence, this approach should provide a reasonable
and computationally efficient approximation to the above
formalism. It should also be noted that, in the Ehrenfest theorem
form where the center of the wave packet is propagated under
the influence of an average force, the current approach shares
conceptual similarities with the centroid molecular dynamics
(CMD) approach61,62 to quantum dynamics in the condensed
phase.

5. Analysis of the Quantum Fictitious Kinetic Energy

The algorithm presented in the previous section becomes
exact as the expectation value of the quantum analogue of the
fictitious kinetic energy tends to zero, as was discussed in the
paragraphs following eq 15. In this section we conduct a detailed
analysis of the second term in eq 15, that is, the quantum
fictitious kinetic energy. Using eqs 15, 17, and 23, the
expectation value of the quantum fictitious energy is given by

PR,P )
exp{CPi,j - E}

2
[D2 exp{-2(CPi,j - E)} + 1] (41)
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where we have used the fact that the sum over all the classical
trajectories is equivalent to the integral over all space. The
absolute expectation value of the quantum fictitious energy is
then given by

The second, third, and fourth terms in the above equation are
proportional toµ, W, and the derivative ofW. Let us compare
this with the adiabaticity index obtained in refs 17 and 19, that
allows us to ascertain the deviations of ADMP trajectories from
the Born-Oppenheimer surface:

It has been shown in ref 19 that this quantity is proportional to
deviations from the Born-Oppenheimer surface in ADMP
simulations, and in the limit that the quantity on the right-hand
side of eq 44 goes to zero, the ADMP simulation attains the
Born-Oppenheimer dynamics limit. Interestingly, the last three
terms in eq 43 are proportional to the same quantities as the
quantity in eq 44. The first term in eq 43 is also proportional to
the same quantities, and this can be seen from the following
analysis. Using eq 29, under the condition of small time steps

When the magnitudes ofδt andµ are simultaneously reduced,
the above expression is proportional toδt and other higher order
derivatives ofW, which are required to be finite, as for the
quantity in eq 44. All the terms in eq 43 are proportional to the
same quantities that determine the deviation of classical ADMP
from Born-Oppenheimer dynamics, that is,µ, W, and the

derivative ofW as seen in eq 44. All of these quantities can be
calculated at every instant during the dynamics to ascertain the
required deviations, just as in normal ADMP simulations, where
eq 44 is used to ascertain the deviations of ADMP from Born-
Oppenheimer dynamics.

Another important conclusion that can be derived from eq
45 is based on the following expression for the quantum force
on the density matrix,

Again the magnitude of the quantum force depends on the same
parameters that determine the magnitude of the quantum
fictitious kinetic energy and the adiabaticity index in eq 44.

6. Conclusions

In this paper we have (i) proved that the recently developed
ADMP approach to ab initio molecular dynamics is the classical
analogue of a special approximation to the quantum Hamiltonian
and (ii) derived a new approach based on this connection that
allows the study of quantum nuclear dynamics on an adiabatic
electronic surface. The new approach, being based on ADMP,
allows for accurate treatment of the electronic variables within
the formalism of DFT, while simultaneously propagating the
same with the nuclear degrees of freedom. Semiclassical
development of the resultant equations is also an interesting
and computationally efficient possibility.

The computational scaling of the classical ADMP procedure
is O(N) for large systems, whereN is the number of electrons.
As a result, the approach derived here scales as O(N) times the
number of classical trajectories required to sample the quantum
potential energy surface. The latter is a function of the
ruggedness of the potential energy surface and is determined
on the basis of the accuracy required for the quantum potentials.

The calculation of the quantum forces is expected to be one
major computational bottleneck in the methodology. This
requires a multidimensional fit that could be cumbersome to
achieve. However, such problems have been addressed to some
degree in computational fluid dynamics and may not present
an intractable problem in the current approach. Furthermore,
this problem may be circumvented to a certain extent using
semiclassical approximations to the current approach. These
issues will be explored in future publications.
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