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Abstract. In the context of the recently developed Atom-centered Density
Matrix Propagation (ADMP) approach to-ab initie molecular dynamics, a formal
analysis of the deviations from the Born-Oppenheimer surface is condueted. These
deviations depend on the fictitous mass and on the magnitude of the commutator of
the Fock and density matrices. These quantities are found to be closely interrelated
and the choice of the fictitious mass provides a lower bound on the devigtions from
the Born-Oppenheimer surface. The relations are illustrated with an example calcu-
lation for the CI(H,O),, cluster. We also show that there exists a direct one-to-one
correspondence between approximate Bom-Oppenheimer dynamics, where SCF
convergense is restricted by a chosen threshald value for the commutator of the Fock
and density matrices. and extended Lagrangian dynamics performed using a finite
value for the fictitions mass: The analyvsis is extended to the nuclear forces used in
the ADMP approximation, The forces are shown to be more general than those
standardly used in Bom-Oppenheimer dynamics, with the addition terms in the
nuclear forees depending on the conimutator mentioned abhove.

L. INTRODUCTION
The Born-Oppenheimer (BO) dynamics methods'™ and
extended Lagrangian (EL) approach®™" constitute two
major categories of direet classical trajectory calcula-
tions for the simulation of molecular dynamics.™ For
EO metheods, the electronic structure calculation s con-
verged at each time step in the propagation. In the EL
approach, the wave function is propagated along with
the classical nuclear degrees of freedom by using an
extended Lagrangian procedure'" "% and by adjusting the
relative time-scales of the electronic and nuclear
motions. The Car—Parrinella (CP) method® is the prime
example of the extended Lagrangian approach, Tradi-
tionally, CP calculations employ Kohn—Sham orbitals
expanded in a plane-wave basis set (occasionally aug-
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mented with Gaussian orbitals?*'*). Recently* " we have
deseribed the theory, implementation. and initial appli-
cations of an extended Lagrangian molecular dynamics
method that employs atom-centered Gaussian basis
functions and density matrix propagation. This method
is called Atom-centered Density Matrix Propagation
(ADMP). The dynamics of chemical systems such as
clusters and gas-phase resctions are more readily de-
scribed with atom-centered basis sets than with plane
waves., Furthermore, the calculations will scale as O{N)
for large systems, where N is the number of electrons,
because ADMP is based on linear sealing DFT code B
The ADMP method 15 being extended o QM/MM
* Author to whom cormespondence should be addressed. E-mail:
voth@chemistry.chem,utah.edu
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treatments for biological systems,'® and to calculations
on periodic systems employing atom-centered func-
tions.'” Interesting applications such as solvation of
cxcess protons in water clusters.™ hydroxyl-stretch red-
shifts in chloride—water clusters, and product distribu-
tions in gas-phase chemical reactions™ have already
been studied. ADMP trajectories of the order of picosee-
ands show stable dynamics and adiabaticity can be con-
tralled effectively in these systems without thermostats,

The ADMP method has a number of attractive fea-
tures, Systems can be simulated by accurately treating
all electrons or by using pseudopotentials. Through the
use of a tensonal fictitious mass and smialler vilues of
the mass, reasonably large time-steps can be employed
and lighter atoms such as hydrogens need not be re-
placed with heavier isotopes, A wide variety of ex-
change—correlation functionals can be utilized, includ-
ing hybrid density functionals. Atom-centered fanctions
can be used with the correct physical boundary condi-
tiens for molecules, polymers, surfaces, and solids,
without the need to treat replicated images in order to
impose 3D periodicity. Consequently, charged systems
and QOM/MM models of biological systems can be
treated as easily as neutral molecules, whereas special
handling is needed for charged systems in most imple-
mentations of the plane-wave Car-Parrinello method
because they are weated as periodic systems. Deviation
from the Born-Oppenheimer surface and the mixing of
fictitious and real kinetic energics can be rigorously
controlled on-the-fy. Because of fewer basis functions
per atom, larger time steps. and asymptotic O(N) scaling
using established technigues, good computational effi-
ciency can be achieved with the ADMP method.

In the current paper we have undertaken a formal
analysis of several issues involved in the ADMP meth-
odalogy. This paper is organived as follows. In Section 2
we present a briel overview of the ADMP approach. In
Section 3 we analyze the conceptual similarities berween
an extended Lagrangian molecular dynamics scheme and
an approximate Bormn-Oppenheimer molecular dynamics
scheme, which leads us to interesting relations between
the fictitious mass in the extended Lagrangian formal-
ismand the commutator of the Fock and density matri-
cesin the Born—-Oppenheimer formalism. We show that
the fictitious mass fully determines the minimum devia-
tion of the trajectory frem the Born—Oppenheimer sur-
face by limiting the magnitude of the commutator of the
Fock and density matrices. Furthermore, we also show
that for every approximate Born-Oppenheimer dynam-
ics trajectory, an extended Lagrangian can be con-
structed with an appropriately chosen magnitude of the
fictitious mass, such that both have identical deviations
from the Bom-Oppenheimer surface. In Section 4 we
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show that the nuclear forces used in ADMP are, in fact,
more general than those standardly used” in Born-
Oppenheimer dynamics, since they include additional
terms thal are dependent on the commutator of the Fock
and density matrices (which address the limited conver-
gence of the density matrix required within the extended
Lagrangian formalism). The nuclear forces used in
ADMP reduce to the standard form' in the limit as the
commutator of the Fock and density matrix goes to zero.
In Section 5 we présent pur conclusions.

2. ATOM-CENTERED DENSITY MATRIX
PROPAGATION (ADMP) USING AN EXTENDED
LAGRANGIAN APPROACH
To assistin subsequent discussions, a brief outline of the
ADMP method is given in this section. Details of the
ADMP method have been described in our earlier pa-
pers.®” The Lagrangian for propagation of the density
mairix is simplest in an orthonormal basis and can be

writlen as

Lapup =

1 T Lo (102 =

E TrI:V Mv] +E T (l_EI 4WE1H] )

-~ E(R,P) — Tr[A(PP - P)] (1)

whers R, ¥V, and M are the nuclear positions, velocities,
and masses, respectively; and P, W, and u are the den-
sity matrix, the density matrix velocity, and the fictitious
mass lensor for the electronic degrees of freedom, re-
spectively, Thé Lagrangian multiplicr matrix A is used
te impose N-representability (i.¢.. constraints on the total
number of electrons and the idempotency of the one
particle density matrix). The energy is calculated using
the McWeeny purification of the density, P = 3P-2P".
The Euler-Lagrange equations of motion for the nuclei
and density matrix are:

@R _ PE(RP)
dtz dR

(2)

P
and

I'=
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These can be integrated using the velocity Verlet algo-
rithm:*"
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The Lagrangian multiplier matrices are determined
by an iterative scheme® so that Py, and W, | satisfy the
idempotency constraint, P° = P, and its time derivative,
PW+WP =W.

J. A UNIFIED FRAMEWORK FOR BORN-
OPPENHEIMER AND EXTENDED LAGRANGIAN
MOLECULAR DYNAMICS
In Bom-Oppenheimer (BOY* molecular dynamics,
the electronic structure must be converged at every
nuclear configuration. A measure of this convergence is
obtained from the commutator of the Fock and density
matrices, i.e., [F,P]. The smaller the magnitude of this
commutator {magnitude being defined in terms of the
L*-norm or the Frobenius norm of [F,P]), the closer the
resultant electronic structure is 1o the Bormn—Oppenheimer
surface. Using the converged wave function (or the
associated single-particle density matrix) the forces on
the nuclel, &F(R.PVER, are determined using standard

technigues, '

Consider an approximate BQ dynamics methodology
where the requirement of convergence of the electronic
structure 1o the BO surface is relaxed. Specifically, the
electronic structure is partially converged up 1o a pre-
defined magmitude of the commutator. Tn this case, the
wave function (and hence the associated electronic
structure) is a fictitious state that is off the Bom-—
Oppenheimer surface, and the chosen value of commu-
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tator, [F,P] {orits norm), represenis, in some sense; how
far this approximate state is from the true Born—
Oppenheimer wave function. If this state were to be
vsed in the dynamics procedure, the force on the nuclei
al the given configuration would be different from that
used in standard BO dynamics, since the wave function
is not converged. An altermative expression for the force
may be obtained (see egs 14 and 15 inref 8, or Section 4
in the current paper, for a more detailed exposition) that
does not require the commutator [F.P] to be zero. Using
this force, the nuclei may be propagated. This scheme
then provides an alternative approach to approximate
Bormm—Oppenheimer dynamics.

In this section we will analyze the similarities be-
tween the aforementioned approximate Born-
Oppenheimer dynamics scheme and the extended
Lagrangian approach to molecular dynamics described
in refs 5, 8-10. Consider the total Hamilionian within a
Born-Oppenheimer dynamics framework:

(1)

:|'_1]

where M. R, and V are the nuclear masses, positions,
and conjugate momenta, respectively, while P is the
electronic single-particle density matrix. V,; represents
J-th momentum component for the i-th nucleus. E(R,P)
is the Hartree—Fock, DFT or semi-empirical enéroy
functional. The change in the total derivative of the
Hamiltonian for an approximate Born-Oppenheimer
methodology with respect to the true Born-
Oppenheimer dynamics trajectory is then given by eg 8,
below, where Eg-( R P) is the total energy of the system
obtained using exact BO dynamics (i.e.. the electronic
structure 15 exactly converged at every instant), while
Eppric ol BaPy) tepresents the total energy of the sys-
tem using an approximate BO dynamics scheme like the
ong described above. The set {R, ;| represents the set of
nuclear coordinates (for example, the j-th coordinate of
the i-th atom may be represented as R,). Equation 8

d [Hagproz. 50 — Hpa) _ E i me-EGM D]
T T .3 i "I—T dtc
+ Tr [aEnpprm.saiﬁi Pupproz) | dPoprer E]
ap n @ oF g
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n e dHl.._J P dt

= PRE=E
dEgo(R, P}‘ dH”;]
E JE_‘: IRy |p di (8)
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represents how the physical nature of the trajectory
obtained from the approximate BO dynamics scheme
deviates from that obtained from a true BO dynamics
calculation. Clearly. if the total derivative in eq § is zero,
all physical aspects involved in the two trajectories are
identical, even if the magnitude of [E oproe s—Eogo) 15 Targe.
Invoking the classical Hamilton's equations of mo-
tion for both approximate and true BO dynamics, i.e.,

O _ dRy;
v, - d 1
and
dH - _iﬂf’u
R, = {1m
one obtains
'C_t;[?{ ppro. Y l?1.:-5'11:"] .=
dt
T é‘EWm.aa{E Pappra.t:' dPﬂ.l'i‘-ﬂF
,
apP . dt
_ 9Eso(R.P)| 4P (11
P r Gt

It 15 interesting to note here that first and third terms
in eq 8 cancel out upon invoking the equations of mo-
tion. This indicates that the expressions for forces on the
nuclei for exact and approximate BO dynamics are not
identical, as discussed above, on account of the non-
zero commutator, [F.P], in the case of the later. This
aspect is further substantiated by the two different ex-
pressions obtained in ref ¥ for the forces, and is also
discussed in Section 4 in more detail.

Froceeding further with our analysis of eq 11, we
simplify the expression by using the gradient terms
provided in ref 8, i.e.,

aEﬂWﬂr.Bﬂ
ap

"

8FPagprae + 3PspprosF — 2FP?

APPreT

T EPI'IPPTDIFPEFPFGI = 2P§1PF"“1F [ 11]’
where F ig the Fock manix, For DFT and Hartree—Fock
calculations, F is constructed using P,,,.. Since the
density and Fock matrices commute for a converged BO

calculation,

dEgo

p | 0

& (13)
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Hence, for an idempotent density matrix

d [ Hoappror.80 — Hpol Ly

dt
: dP,
Tr [EF, Poaporoz) 1 2P aporoe — I} —dﬁii”"E -

apP

Ir {[F1 Popproc] [Pﬂwwr —;T'E] } (14)

Clearly, in the limit as [E.P o] = 0, the right-hand
side above goes fo zero, thus minimizing any differences
between the approximate and exact Born-Oppenheimer
dynamics procedures, The term {/P,_ /dt}, in general,
contains the non-Hellmann-Feynman contributions to
the dynamics. However. an approximation to this may
be obtained from finite-difference or, as will be seen
Tater, by drawing the analogy to an extended Lagrangizn

dynamics scheme.

An alternative procedure to approximate BO dynam-
ics was introduced by Car and Parrinello,” based on an
extended Lagrangian procedure. Here, the introduction
of a fictitious wave function mass and a fictitious wave
function velocity allows for the electronic and nuclear
degrees of freedom to be propagated together, by an
adjustment of the relative electronic and nuclear time-
scales. In essence, the Car-Parrinello “wave function™
is rarely on the BO dynamics surface, but oscillates
about it, so that long time average quantities obrained
from this scheme provide good agreement with more
traditional methods.” In' this sense. the Car—Parrinello
“wave function” is quite similar to the approximate Born-
Oppenheimer state described above. Our alternate
ADMP scheme™" to extended Lagrangian dynamics of
electrons and nuclei is based on the use of the single
particle density matrix and atom-centered Gaussian
basis functions. This method has been described in
refs 8-10 and a brief discussion may be found in
Section 2.

In ref 9 we have also analyzed the conjugate Hamil-
tonian of the ADMP Lagrangian to obtain deviations
from Born-Oppenheimer dynamics, Briefly, the conju-
gate ADMP Hamiltonian, obtained from a Legendre
transformation™ of the ADMP Lagrangian in eq 1, is
given by

Hapup =

TrWW) + Tr(VEV) — Capup =

1 f
TTI:IVTM‘_I'V:I i E T (WE—JJEWE—I.- 2}

[ =N

+E(R,P) + Tr[A(PP - P)] (15)




where W is the conjugate momentum of P

W= aﬁ.&ﬂ;‘.{P i

W (16}

&UEWEHE

Using the result” that the Hamiltonian in eq 15 is conser-
vative, we have shown that the fictitious dynamics
obtained from the ADMP scheme converges to the real
BO dynamics trajectory in the limit that the magnitude
of the fictitious mass tends lo zero. Specifically, the
deviation of the extended Lagrangian trajectory from
the BO dynamics trajectory is bounded and given hy®

Hpict _ o |THpia V] _
dt g dt
; dw dW .
T Lyt 128V 1/28%Y g
IT[E Wi d.t} Tr [WE o g ]

JE(R,P)|
~7r (W (R L xpipaoa (17)
P |,

where

H i % Tr [WE" "'HEWE_ “2]

T ([Ea,qum]z)

is the fictitious kinetic energy. Note that this expression
is also valid for a plane-wave Car—Parrinello implemen-
tation with density matrices, Also note that Tangney and
Scandolo™ have subsequently derived a similar expres-
sion for the Car—Parrinello scheme by using the {act tha
additional terms {(non-Hellmann—Feynman) should be
included in the forces since the wave function is not
exactly converged. In the standard Car—Parrinello
method, these additional terms are not included.

We will now compare the two bounding expressions
eqs 17 and 14 obtained for the two different approxima-
tions to Born-Oppenheimer dvnamics. Since egs 17 and
14 measure the deviations of two different approximare
Born—Oppenheimer dynarmics methodologies, namely
the extended Lagrangian and the previously discussed
approximare BO approach, from the true Born-
Oppenheimer dynamics trajectory, we can conclude that
for the two approXimale trajectories to deviate identi-
cally from the true BO dyvnamics trajectory the quanti-
ties on the right side of eqs 17 and |4 must be equal:
Henee,

I

(18)

Ty [WEU?%E”!J =

Tr {[F‘1 P oopis] [Pwm) d—P&"}Fﬁ ]} (19}
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Note that [F.P, .| and [P dP, . /dt] are anti-
Hermitian and hence the trace of their product is purely
real. asis required from the fact that the left-hand side in
the expression above is purely real. Equation 19 yields a
relation between the fictitious mass W, the commutalor
[F.P,,...]. and the term {dP /). The latter, as stated
carlier, may be obtained from a finite difference ap-
proximation, for example, (4P, ./df) = [Pt} —
Pt =A0VAL Alterately, we make the connection that
since the two approximate BO methodologies deviate
identically from the true BO trajectory, {dP, .. Adr] =W,
In either case the quantity is well defined.

It must, however, be noted that eq 19 represents only
one equation. Hence, the matrix i is not uniquely deter-
mined by ¢q 19, If the matrix Y can, however, be written
as a product of a scalar times a matrix, i.e., J = gA (note
that for A =1, the identity matrix, this reduces to the
scalar ficlitious mass case treéated in refs 8 and 9, or
more generally, matrix A may represent a mass-weight-
ing scheme, like the one used in ref 9), then

: o
Tr [WAL2E A1/2]

p=

Tr { [P, Poprres] [Pn,,,m, ﬂﬁ""’ﬁﬂ]} (20

Equation 20 provides a rigorous connection between
the two approximate BO dynamics methodologies. This
also provides a further validation of our previous study”
showing that the magnitude of the | presents an esti-
mate of the deviation from the BO dynamics trajectory,
Here, however, we show that the g is in fact related to
the commutator, [F.P,...l. by egs 19 and 20. This
implies that for 4 given approximate BO dynamics
trajectory. there always exists an extended Lagrangian
trajectory where the comresponding fctiious mass is
given by eq 20, However, since the guantities on the
right-hand side of eq 20 are time-dependent, it is pos-
sible that for an approximate BO trajectory with a fixed
criteria of convergence for the value of the commutator,
IF.P....]. the comesponding extended Lagrangian dy-
namics in fact has a time-dependent fictitious mass. By
corollary, an extended Lagrangian dynamics trajectory
with a fixed fictitiovs mass should correspond 10 an
approximate BO trajectory that has the crierda [F.P,__.]
to be a time-dependent quantty, that is, a consant
Sictitions moss extended Lagrangian frajeciory corre-
sponds to having different values for the converpence
criterig at different portions of the porenrial energy
surface. This could be an exiremely powerful distin-
suishing feature between the two methods.

The preceding analysis also suggests that there may
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exist two different ways to perform extended Lagrangian
dynamics: {a) the standard Car—Parrinello or ADMP
approach, or (b} the standard approximate RO approach,
but now by letting the convergence criterion [EP, ]
change depending upon the region of the potential en-
ergy surface.” In the second case, proper choice of the
convergence criteria could lead to effective sampling of
the surface, as should, by extension, be the case for the
first strategy. Therefore, we may proceed to state that
for every approximate BO dynamics trajectory. there
exists an ADMP trajeciory with scalar fictitious mass
given by

1

P i e, |
Cruppres & Fappras
Tr [ ot it J

o=

A v
T {11:, Poppres] {wa, —-de_] } (1)

where the first and second derivatives may be obtained
from a Mnite difference approximation.

For an ADMP or a Car-Parrinello dynamics trajec-
tory, the value of the fictitions mass is known. In addi-
tion, the Fock matrix is also known at every point on the
trajectory and hence the value of the commutator is
exactly known. Hence, an ADMP trajectory corre-
sponds to a BO dynamics trajectory with the appropriate
value for the commutator. However, eq 19 also allows
one to estimate this value. We will now proceed 1o
estimate the commutator [F,P_ . | correspondin 2 to the
chosen fictitious mass as allowed by eq 19. Equation 19
readily simplifies to

!Tr Wp”zﬁguz <
| ST |
db T :
I Ppproa] |l [wa- ‘%} (22)
F

where ||[...]|l5 is the Frobenius norm®?" of the commu-
tator and is defined as

Al = 3 A

l\.I

[23)

Equation 22 uses the Cauchy-Schwarz inequality.
Hence

IF Pagprez]ll =

1 oW
—_— | T | W ‘1;2 1;"2-]
"[Pnppmz-W;”F [ £ di £ (24)
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where we have made the connection that { aP,,.../dt} =W,
as discussed above. A generalization to eq 24 can be
readily obtained by exploiting the Holder inequality:*

<

Tr [Wﬁifrz%iflﬁJ

dP,
I, Parecl | [P, o] | e
where the quantity ||[...]|] is defined as
1fp
4l = {Zﬂ.d”}, (26)
LT%)

and 15 not to be confused with the Lr-norm of the
matrix A. Equation 26 may, in fact, be viewed as the
L#-norm of the vector created from all the elements in
the matrix A. Equation 25 holds true for all p and g that
satis{y

11
T

=1 (27)

It is readily seen that eq 22 is a special case of eq 25

for p = ¢ = 2. Equation 25 maybe used to obtain alter-
nate bounds on the commutator,

IF Pagprealll, >

1 o TW
== LAt lfd
[[im— T [WE di £ ” (28)

It is important o realize the implications of egs 24
and 28. We already know that for a given ADMP trajec-
tory with a given fictitious mass, the value of the com-
mutator at each point en the trajectory is known. How-
ever, ¢qs 24 and 28 only provide a lower hound to such a
value as a function of the fictitious mass. This implies
that. in ADMP and Car—Parrinello dynamics, the instan-
taneous commutator is not fully determined by the value
of the fictitious mass (as is obvious from the fact that the
commutator does depend upon other guantities, such as
nuclear coordinates, which are completely independent
of the fictitious mass), but the fictitious mass only pro-
vides a lower bound to the commutator; that is, the
fictitious mass restricts the dynamics 1o be al least a
certain “distance” from the true BO dynamics. This
relation provides a “physical” meaning for the “ficti-
Lious™ mass u.

Finally, it should be noted that the equations derived
in this section hold for any single-particle density matrix
representation within the extended Lagrangian formal-
ism regardless of basis set choice, ie. for Gaussian




basis sets and plane-waves., For an occupied orbital
representation of electronic structure, as is the case in
the extended Lugrangian Car-Parrinello approach, simi-
lar relations can be easily derived,

To illustrate the lower bound presented in eq 24, we
present both the lower bound in eq 24 and (he Frobenius
norm of the commutator [F.P,...] obtained from an
ADME simulation of a CIH(H,0)., cluster, in Fig. 1. The
trajectory was obtained with the mass-tensor scheme
provided in ref 9 using a valence fictitious mass value of
0.1 amu bohr® = 180 a.u. and an integration time-step of
0.25 fs. The total encrgy and adiabaticity were well
controlled during the dynamics, and the simulation was
performed using the 3-21G* Gaussian basis'set and the
PBE exchange-correlation functional™ in a develop-
ment version of the Gaussian series of electronic strue-
wre codes™ As is seen from the figure, eq 24 indeed
provides a lower bound to the commutator. (It is impor-
tant to note here that, generally, for a converged elec-
tronic structure calculation, the valug for the Frabenius
norm of [F.P,,,,..] is of the order of 107, as is the case
here for the first step of the dynamics where a full
elecironic structure calculation was performed.) In
Fig. 2 we provide the progeess in the adiabaticity index
derived in ref 9, i, eq 17. It is seen that the index
satisfies both conditions required for adiabaticity as de-
rived in ref 9, i.e., (2) the index should be oscillatory,
and (b) the index should be bounded in magnitnde.

This proves that there is indeed a direct one-to-one
correspondence between trajectories obtained from an
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approximate Born-Oppenheimer dynamics procedure
and those obtained from extended Lagrangian proce-
dures such as those outlined in refs 3, 8, and 9. Hence
chemically useful dynamics information should be ob-
taindble from both procedures up to similar extents, as
has been shown in ref 10, although it has also been
shawn in ref 10 that the extended Lagrangian scheme is
computationally advantageous. It is also seen that the
extended Lagrangian method provides the added feature
that the associated convergence criterion is a time-
dependent quantity, which is not the ease in standard
Bom-Oppenheimer dynamics implementations,

It is also useful to add here that, in practice, devia-
tions from the Born-Oppenheimer supface occur due 1o
non-adiabatic conpling between the adiabatic electronic
states, ™ and a measure of this is obtained from

Fp = (6| Talgn) = LnAul0)

£ — €

(7 # &)
(29)

where [ ] are the set of adiabatic electronic states with
energies (€ ). and H, is the elécironic Hamiltonian (or
Fock matrix in our carlier discussion). Since both ex-
tended Lagrangian and approximate BO have states that
are off the Borm—Oppenheimer surface, it is possible to
expand each of these in terms of the adiabatic electronic
states (which form a complete set):

X= Et’iﬂﬁs (30)
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Fig. |. Time evolution of |||[F.P,__..
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of the commutator for o converged caleulation 15 approximately 1071,

B0

1|y and the tower bound in eq 24 for the C1 (H.O). cluster. Note that the Frobenius norm
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Fig. 2. The oscillatory nature of the adiabaticity index in eq (17) s well depicted here for the Ci{Ha0),, cluster. This illustrates

the conditions of adisbaticity derived in ref 9.

where X is the approximate state obtained from ap-
proximate BO or extended Lagrangian dynamics. For
the case where non-adiabatic coupling is small, the
quantity in eq 29 is small, and the expansion in eq 30 is
dominated by the lowest energy state. This is, of course,
the case only when the approximale state X is well
converged for BO dynamics (i.e., when the correspond-
ing ||[F.P,,..||- is small) and the quantity in eq 17 (or
the fictitious kinetic energy) is small with respect to the
HOMO-LUMO gap, as is requried from eq 29, for
cxtended Lagrangian ADMP dynamics. In fact, for
ADMEP, the ratio of the fetitious kinetic energy and the
HOMO-LUMO gap may be used as an estimate of the
level of dominance of an excited state in the expansion
in eq 30. When this ratio is small, clearly the dynamics
is strictly adiabatic. However, in the event that this ratio
becomes large, as will be the case when an unnecessar-
ily large value for the fictitious mass 1s chosen or in the
vicinity of a conical intersection, ™ the approximate
state X will be a linear combination of two or more

states (comprising ground and one or more of the ex-
cited states). To maintain reasonable dynamics in this
region, it will be necessary to reduce the fictitious mass
in ADMP calculations so as to maintain the aforemen-
tioned ratio to within reasonable limits. This will also be
the case for approximate Born-Oppenheimer dynamics,
where the value of the [|[F.P,__ ]|, will need to be
maintained small in the vicinity of a conical intersec-
tion. The behavior and seneralization of ADMP for such
cases will be the subject of future publications.

4. A DISCUSSION OF THE NUCLEAR FORCES IN

THE ADMP FORMALISM
As discussed in Section 3, the nuclear forces for the
approximate and true BO dynamics schemes should be
different becanse the commutatar is not zero in the case
of the former, This is also seen from the fact that in ref &
the nuclear forces derived for the purpose of ADMP are
different from those standardly used."” and are given by
eq 31, below.

5'Eupprox.ﬂ'{3 dh’ ; 1 SGF(PLpp:m;] . ~|
) = Tr _"-Pn o B X
IR gy Lm,” PR 8 AR e
= dt{‘ﬁ =y dIJT. — Ty
Tr [Fru idRq.jP;Fme-f_Pappmﬁ',jU F] -
9E.. " Vv
aFLJ Paypres aghﬁ {31}

lirael Jowrnal of Chemisery 42 2002




Here P= 3P° -~ 2P" is the McWeeny purified™ density
matrix, For both Hartree-Fock and DFT, h' is the one
electron matrix in the non-orthogonal Gaussian basis,
The matrix G'(P") represents the two-electron matrix in
the non-orthogonal Gaussian basis for Hartree—Fock
calculations, but for DFT it represents the Coulomb
potential. The term E,, is the DFT exchange~correlation
functional (for Hartree—Fock E, = 0), while Vi Tepre-
sents the nuclear repulsion energy. In the orthonormal
basis, these matrices are h = UTh'U, etc., where the
overlap matrix for the non-orthogonal Gaussian basis,
§'.is factorized to yield §' = UTU. Thers are a number of
choices for this transformation (e.g., U can be oblained
by Cholesky decomposition.” or U = §7* for Lawdin
symmetnc orthonormalization). The matrix U can also
mclude an additional transformiation so that overal rota-
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tion of the system is factored out of the propagation of
the density. The density matrix in the orthonormal hasis,
P, is related to the density matrix in the non-orthogonal
Gaussian basis, P, by P= UP'UT,

From eq 31, eq 32 follows (see eq 32 below).

For an idempotent density matrix, the second term on
the right-hand side in eqg 32 can be further simplified to
obtain eq 33, where Q... = 1 — P For the case
where the Fock and density matrices commute (i.e., for
converged Born-Oppenheimer calculations), the last
term in eq 33 is zero, which yields eq 34.

It is eg 34 that is commonly used for the energy
derivative in converged SCF calculations."” Equation 33,
of course, holds even in the general case where the Fock
and density matrices do not commute, as in the extendad
Lagrangian formalism®*' and the approximate BO

aEﬂFPfD:.EL} dhi = I aGr[P; mtj =
— = 'Tr|l—P + = E P -
5'3.-,_5 il [thJ Bpprox 7 Ei‘R.,J F;pm PRrox
- dJ - aedUT
Tr [FPnppmx (HJU B 0 Tdﬂqd)’ +
- atl
Tr ([P F —U‘I) +
([ BRPRTON ]dR-;IJ
8E., BV
an‘id Pappres BHF"J (22
BEHW-HG dh’ o/ 1 EGJ[PL rmc} =1
——arproz A0 = S S B g SE Tk appeaid P =
aR"‘j Pappros { i [dﬂé'i R z aR""? Pipprox A
= a5t =, 8E;. IViw
T:I" [E‘rpnppmdﬂ‘d P;pprm: 2y HH,‘:J Fvwnﬂ -+ a'Rl"' = ==
L 2 dU -~ duT
| AT w=— U = P =T )] (33)
Tr [[ approx: ](qw iR, PP dR,;
T - I
?ﬂ!ﬁ T'r[ dh’ =L EE\'G (P') f"] — Ty [F'P’ﬁp'] +
GRyy |, diy; " 2 Ry | i
k.| 5H”ﬁ
fm«u[p IR, ; i34)
IEspirsr. O e
BH*E-_T' Biiwroi ER"J Pugieas
. z dif = = pdUt
= Tr [;PnPPIM1 F] (Quwmu T P,,WU CfR-iJ'
i s dU - JUT
" =1 = LT et Wit
= Tr [[U'P;FPL'WH F'l, | B ] (QﬂpprdeTIJU Pap;m'v.ru dﬂ,‘a)J {35:
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methodology discussed in the previous section. The
difference between the two is simply given by the com-
mutator (see eq 35), where we have introduced the
notation for higher-order commutators:
[A.B.CD] = ABCD-DTCTBYAT (36)

The second part of eq 35 will be used later, in the
Appendizx,

From the first equality in eq 35, it is seen that the
difference between the force on the nuclei is propaor-
tional to the commutator, which is a measure of the
convergence of the electronic subsystem, Furthermore,
since the commutator is related to the fActitious mass
chosen in the extended Lagrangian formalism, as given
in eq 19, it is also seen that the difference in eq 35 is in
fact proportional to the magnitude of the fictitious mass.
This Is particularly interesting since the greater the mag-
nitude of the fictitious mass, the farther the approximate
trajectory (approximate Bom-Oppenheimer or extended
Lagrangian) from the true Born-Oppenheimer result,
and the greater the difference between the nuclear force
for the true Born-Oppenheimer case from the approxi-
mate methods. Hence. the force in eq 33 has the impor-
tant feature that it adapts to any deviations from the
Born-Oppenheimer result,

The presence of the transformation matrix, U, in all
of the above equations for the forces raises the important
guestion of dependence of the nuclear forces on choice
of orthonormal basis. Consider a time-independent uni-
tary transformation matrix, G, such that

U =GU (37)

The nuclear farces are, however, invariant to such a
transformation, as is revealed by inspection of the sec-
ond term in eq 31 where

¥ L o
Tr [F‘U"' ;; Pl + PLFFM% U’"TF‘] =
J )
T T dU - 0 dut —T
Tr |:F' U 1mP;ppmx + PLPPEWEU F:| (38)

This proves the invarance of the nuclear forces in
e 33 with respect to time-independent unitary fransfor-
mations, The issue of time-dependent unitary transfor-
mations is considered in the Appendix,

5. CONCLUSIONS
In this paper, we have analyzed the relation between the
fictitions mass in the newly developed ADMP molecu-
lar dynamics approach and the commutator of the Fock
and density matrices, We find that the fictitious mass is
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proportional 1o the commutator and hence determines
the deviations of the ADMP trajectory from the true
Bora-Oppenheimer trajectory, Furthermore, the choice
of the fictitious mass limits the magnitude of the com-
mulator, hence providing a lower bound on the devia-
tions from the Born—Oppenheimer surface. We also note
that for every approximate Born—Oppenheimer dynam-
ics trajectory, there exists an extended Lagrangian or
ADMP trajectory that deviates identically from the
Born-Oppenheimer surface and hence contains the
same information as the approximate Bom—Crppenheimer
dynamics trajectory. However, standard approaches 1o
the Borm—Oppenheimer dynamics limit the size of the
convergence criteria (the commutator of the Fock and
density matrix) uniformly over the entire surface. This
corresponds to an ADMP trajectory with time-depen-
dent fictitious mass, By corollary, a constant (time-
independent) fictitious mass ADMP trajectory corre-
sponds to having different values for the convergence
criterion at different points in the potential energy sur-
face. This is an important property in extended Lagrangian
approaches to molecular dynamics (both CP and
ADMP), since it is generally not necessary to converge
the electronic structure to the same extent at different
areas in the potential energy surface.

We have also analyzed the forces used in ADMP and
shown that these are more general than those commonly
used in Bom-Oppenheimer dynamics on account of
terms included that are non-zerg when the commutator
of the Fock and density matrices is non-zero (as is the
case in ADMP and other approximations te Bormn-
Oppenheimer dynamics),

Using the analyses in the current paper, it may he
possible to derive a new method to perform ab initio
molecular dynamics wherein the computational effec-
tiveness of ADMP (cr CP extended Lagrangian dynam-
ics) is further enhanced by partial convergence of the
density matrix. The extent of partial convergence may
be determined based on the relations between the ficti-
tious mass and the commutator derived here. The gener-
ality of the ADMP nuclear forces due to inclusion of
additional terms that depend on the commutator (and
hence the fictitious mass) allows for correction due to
such partial convergence and may, in fact, facilitate
larger time steps o be used within a modified formal-
tsm. This aspect will be studied in future publications,
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It is important to note that partial convergence as out-
lined in (b} has been exploited by a number of authors
previously, as for example in the conjugate gradient
methodology emploved in ref 3. In the present discus-
sion, however, the convergence criterion is time-depen-
dent. Furihenmore, the use of plane-waves as basis sets
in ref 3 ensures thal the approzimate wave function
always lags behind 115 exact counterpari. This aspect
may be gencrally circumvenied by the use of atom-
centered basis functions that do not allow for charge
“sloshing™ us they move with the nuclei
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APPENDIX: UNITARITY OF PROPAGATION
SCHEME FOR LOWDIN AND CHOLESKY
ORTHONORMAL BASES
In this section we evaluate the behavior of the propaga-
tion scheme under unitary rransformations. In particular
we will concentrate on the effect of unitary ransforma-

nons on eqgs 4, 12, and 33,

{. Nuclear Forces

The unitary transformation, G, defined in eq 37 is
coordinate-dependent (and hence time-dependent) in
the case for transformations between Léwdin and
Cholesky bases, where

G =51F = 35127 (AT}

for U"= 8", To analyze the effect of this on the nuclear
torces for Léwdin and Cholesky propagation schemes,
we consider the difference in forces berween the two
separate representations using eqs 33 and 35 (see
eq A2).
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This implies that the differences in the forces be-
tween Lowdin and Cholesky bases for ADMP are pro-
portional to the commutator and hence proportional to
the fictitious mass, as seen in Section 3. However, since
the dynamics in both orthonormal bases are only ap-
proximations to Born-Oppenheimer dynamics (which
i independent of choice of orthonormal bases, as is
clear fror eq 34) and since these approximations can be
adaptively controlled by the choice of fictitious mass, as
seen in eq 20, to improve their “closeness™ to the Born-
Oppenhetmer surface, this difference does not present a
computational problem in the limit of acceptable values
for the fictitious mass. This aspect has been well-demon.
strated in ref 10 for a wide range of chemical applications,

2. Density Matrix Propagation Scheme
Consider the Cholesky form of the density propaga-
tion scheme in eq 4:

At? JE(R,, PY)
i c Lo - \BaE
Pi, = PE+W! ar._Ta_E, lﬁ[____

+AFPE + PEAC — .&F] = (A3)
where the letter C in subseript (and superseript) is used
to designate the Cholesky form, Since, Pt = GPGT
where G, is the transformation matrix of eq Al at time
step 1, unitary transformation of eq A3 yields eq Ad

Sl Ut
dR, ;

J i

Ly ym dSIY3
- el 1f289 77

J L
u —TS.II,.-'Z) J

where {...}% and {..}* represent Cholesky and Liswdin
forms of the respective operators, and

(A2)

OE(R\PL)| _ . BER,PY)| ..
—apc | TG LG @)

which is clear from eq 13,

Al = GASGT (A6)

and

ji]_ 2 = GJ:I.-L' ].".'.'GTI {h?]

For the case of the non-mass-weighted dvnamics

H{‘.!;.' =i 12 (AR)

The left hand side in eq A4 may be used to obtain the
Lowdin density matrix at time-step (i + 1) if G.. =G,
which is the case for suitably small time-steps. FHence,
the density matrices do satisfy the conditions of
unitarity,

G:P5,GT; = P+ What -
i E(R;;PS)| .
&Tt {Gu 6 ) |a, %’5"—” G*, +{GiAfG™} {G.PCaT) +
— H

{eh ley {aare™) - {aafem} {Guc a7}

A2 L TAE .P!‘ —ifz
= PL .y wWlat— gy [_{é%’ﬂ_J + AFPE + PEAL — AV (Ad)
R
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