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A generalization is presented here for a newly developed approadhitatio molecular dynamics,

where the density matrix is propagated with Gaussian orbitals. Including a tensorial fictitious mass
facilitates the use of larger time steps for the dynamics process. A rigorous analysis of energy
conservation is presented and used to control the deviation of the fictitious dynamics trajectory from
the corresponding Born—Oppenheimer dynamics trajectory. These generalizations are tested for the
case of the CI(H,0),5 cluster. It is found that, even with hydrogen atoms present in the system, no
thermostats are necessary to control the exchange of energy between the nuclear and the fictitious
electronic degrees of freedom. @001 American Institute of PhysickDOI: 10.1063/1.1416876

I. INTRODUCTION slow convergence associated with the multiple-time scales
has resulted in recent advantethat serve to overcome,

The method ofab initio molecular dynamic§AIMD) artially, the computational problems associated with such
relies on a calculation of the electronic potential energy surls3 stemﬁ In somepsense theze new methods mav be consid
face traversed by thé&lassical nuclei “on-the-fly” during Y j y

the dynamics procedure. Both Born—OppenheitB&) mo- ered to facilitate the CP approach, since both provide suitable
lecular dynamicgMD) 1-3 as well as Car—ParrinellécCP) computational alternatives to simulate systems with coupled

molecular dynamids’ fall into this category. The Cp fast—slow subsystems. _ _
scheme differs from the BO dynamics approach in that the We have recently proposed an alternative formalism for
wave functions are propagated together with the classic\/MD.** Our method differs from the standard Car—
nuclear degrees of freedom using an extended LagrangiaRarrinello approacfi;” as we employ atom-centered Gauss-
This, in turn, relies on an adjustment of the relative nucleatan basis sets and the single-particle density matrix within
and electronic time scales, which facilitates the adiabati¢he extended Lagrangian formalism, whereas the Kohn-—
propagation of the electronic wave function in response téSham molecular orbitals in plane-wave basis sets are chosen
the nuclear motion with suitably large time steps. This ad-as dynamical variables in the CP algorithm. The electronic
justment of time scales through the use of a fictitious elecvariables(the density matrix elements in our casme al-
tronic wave function kinetic energy and mass, enables the CPwed to have fictitious masses, which leads to a simple ad-
approach to predict effectively similar nuclear dynamics agustment of the relative time scales, thus facilitating the adia-
MD on the BO surface at significantly reduced cost. In thisbatic propagation of the electronic variables along with the
respect, CP differs from methods which rigorously treat thenuclei.
detailed dynamicgrather than structujef the electrongsee One of the main advantages of using atom-centered
Ref. 8 and references thergin Gaussian basis sets in electronic structure calculations is that
It is also interesting to consider molecular dynamicsthese are quite effective at describing the wave function for a
methods from the perspective of multiple-time scale probglecular system due to their compact and localized nature.
lems which are well-known in statistical mechariicShe  This allows the use of a smaller number of basis functions to
describe the state of a molecular system to within a desired
3Electronic mail: voth@chem.utah.edu degree of accuracy. Furthermore, it is well establisfied
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that molecular calculations with atom centered functions canvhereM, R, andV are the nuclear masses, positions, and
be carried out with computational times that scale linearlyvelocities, respectively. The density matrix, density matrix
with system size in the large-system lifft!* This is  velocity, and the fictitious mass for the density matrix ele-
achieved through the use of Gaussian orbitals in Kohn-ments areP, W and u, respectively. Idempotency and par-
Sham density-functional theoffpFT) calculations, fast mul- ticle number are conserved by the Lagrangian constraint ma-
tipole methods for the Coulomb problem!® and density trix A. Using the principle of stationary actif, the
matrix search alternatives with sparse matrix multiplicationLagrange equations for density matrix and nuclei are ob-
techniques to bypass ti®@N®) Hamiltonian diagonalization tained as

bottleneck!*1"18 For similar reasons, our approach using 2

density matrices and Gaussian basis sets for AIMD has the w P: _[w
fundamental advantage of leading @{N) scaling of com- dt P
putational time with system size. As shown in Ref. 11 and as 5

will be seen in greater detail in this paper, another advantage d_R _ JE(R,P)
of using atom-centered Gaussian basis sets and density ma- dt? IR
trices is the freedom to use smaller values for the fictitiou N .
mass of the density matrix. This is crucial to maintaining thes]jhe termdE(R,P)/ 3P|, above, implies that the partial de-

desired separation in time scales between the nuclear arE? a'::'{vli /l;RtakeEn u?der 2c0nsC}a:;iR, and ;l.ml:grll}/ 1f10;
electronic motionseven for hydrogen nuclewhile main- (R.P)/dR]p. qua_|ons( ) and( )are. Usea in et °
propagate the combined nuclear-density matrix system. Us-

taining significantly large time steps. ; X . )
Our method may be contrasted with other approaches tig the velocity Verlet algorithrf! the propagation of the

CP that use Gaussian basis sets. Gaussian basis functigha!SIy matrixis given by

within the generalized valence bondGVB)**?° and At2[ 9E(R; ,P)
Hartree—Fock' framework, where orbital and wave function Pi+1=Pi+W;At— 20l P
coefficients are propagated, have been used; however, the
scheme has had some difficulty with energy conservafion.

In addition floating Gaussian orbitals have also been Zsed At | 0E(R; ,Py)
in the CP scheme. By contrast, the present approach emploWHm:Wi - ﬂ[T
atom-centered Gaussian basis functions.

In this paper we present further generalizations of our Pii1—P
Gaussian-basis density matrix AIMD mettddnd also ana- = TAt ®)
lyze some of its important computational properties. For
completeness, in Sec. Il, some of the basic concepts from At
Ref. 11 are briefly reviewed and a new scheme to maintaifVi+1= Wi+12~ m
idempotency of the density matrix is also provided. In Sec.
[, the concepts in Sec. Il are generalized to include tensorial
fictitious mass. This generalization allows larger time steps
to be used during the propagation. In Sec. IV the conserva-
tion properties of the AIMD method are studied, and an al-  As in the conjugate gradient density matrix sea(Cle-

) X ) . 17,18 Py ;
gorithm is provided to help control the difference between aPMS) method,”~*the energyE(R; ,P;), is calculated using
rigorously adiabatic Born—Oppenheimer trajectory and thathe McWeeny purification transformation of the denény
obtained from the AIMD scheme presented here. In Sec. \=3P?—2P3%. For both DFT and Hartree—Fock, we may
some methods are presented for choosing initial conditiongrrite the expression for the energy as
for the fictitious density matrix velocity, while in Sec. VI _ o -
results are given for the energy conservation and electronic E=Tr[h'P'+ 3G’ (P")P']+Exc+ Van
adiabaticity corresponding to different choices of the ficti- oy
tious mass, time step, and numerical integration method for a =Tr[hP+ 2 G(P)P]+Exc+ Vin- @

chloride—water cluster. In Sec. VII the concluding remarksyere, for both Hartree—Fock and DFT, is the one electron
are given. matrix in the nonorthogonal Gaussian basis. The matrix
G'(P') represents the two electron matrix in the nonorthogo-
nal Gaussian basis for Hartree—Fock calculations, but for
II. BASIC CONCEPTS OF GAUSSIAN-BASIS DENSITY DFT it represents the Coulomb potential. The tdfrg is the
MATRIX AB INITIO MOLECULAR DYNAMICS DFT exchange-correlation functiondbr Hartree—FockE, .

) . . =0), while Vyy represents the nuclear repulsion energy. In
An extended Lagrangian describing the combinedy " rthonormal basis, these matrices areU~Th’U~L

nuclear-density matrix system, in an orthonormal baisisn etc., where the overlap matrix for the nonorthogonal Gauss-
be defined as ian basis,S’, is factorized to yieldS'=UTU. There are a

+ AP+ PA—A}, )
R

()

P

4

R

+AiPi+PiAi_Ai}
R

JE(R+1,Pit1)
JP

+Ai11Pita
R

+Pi+1Ai+1_Ai+1}- (6)

L= 5Tr(VIMV)+ 3 1 Tr(WW)—E(R,P) number of choices for this transformatige.g., U can be
? z ' obtained by Cholesky decompositiGhor U= S’ for Low-
—Tr[A(PP-P)], 1 din symmetric orthonormalizationThe matrixU can also
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include an additional transformation so that overall rotationwhereQ=1—P andl is the identity matrix. The final density

of the system is factored out of the propagation of the den
sity. The density matrix in the orthonormal bash,is re-

matrix velocity needs to satisfy the time derivative of the
idempotency condition, given by

lated to the density matrix in the nonorthogonal Gaussian

basis,P’, by P=UP'UT.

The gradient terms involved in the nuclear and densit
matrix equations of motion, i.e., Eq&) and(3), are given
byll

JE(R,P)
———| =3FP+3PF—-2FP>-2PFP-2P’F (9
P,
and
JE(R,P) T dh'ﬁ,+1ae' TN}
[ — r_ [ —
R |, dR 2 R |,
T F'U—lduﬁ'+ﬁ’—dUTu—TF'
- drR dR
aExc aVNN
R |, R
dh'
— T -1
TrUTT g UTP
1 _dG'(P) ~
T~ 7 -1
+5U e ’U P
P
du . . _duT JE
_ AT -T xc
Tr[FdRU P+PUTT- = Fl+—2 i
R C)

Again, the Fock matrix in the nonorthogonal basis-set

OEye
P,

Flo=h,+G'(P),,+ (10
is related to the Fock matrix in the orthonormal basisFoy
=U"TFuUL

The Lagrangian constraint matrix for time stepA;, in
Egs. (4)—(6) is chosen to satisfy(r[P;,,]=N, and PZ ;
=P,, 1. One can solve directly fd?; , ; by a simple iterative
procedure that minimize®r[ (P2 ,— P, ;)?]. Starting with

JE(R;,P))| ] At
P 2w’

(11)

Pi+l:Pi+WiAt_|:

R

which is obtained by choosing;=0 in Eq. (4), the idem-
potency ofP; . ; is improved iteratively using

Piy1Pi 1t P TP +QiTQ;, (12

whereT=P,,;— P, ;=3P% ,— 2P ,—P,,,. The iteration
converges rapidly and is stopped whe{1Tr[(Pi2+1
—P;,1)2}¥4N<10 2 The above algorithm comprises an
update of only the occupied—occupied and virtual—virtual
blocks ofP;, ;, since the constraint terms satisfy

PiLAPi+PA — A ]Qi= Q[ AP + PiA; — Ai]P=0,
(13

Wi 1Pip1+ P aWi 1= Wiy, (14)
¥rhis can be solved exactly to yield A; 4
=[2P; W} 1P — Wi 1 1(2u/AY), where W[,

=W, 1~ [IE(Ri;+1,P;i 1)/ dP|r](At/2u). With this, Eq.
(6) simplifies to

Wi =W =P Wi P — Qi d Wi 1 Qi e -

Equation(15) estimates the value ok;,;, as required by
Eq. (6). This estimate for\; , ; is refined in the next step of
the propagation, so that idempotency is satisfied for the den-
sity matrix P; ., using Eqs.(11) and (12).

It should be noted that the iterative scheme in Ed$)
and(12) corresponds to starting with;=0 [as can be veri-
fied from Eq.(4)]. This, however, is not the only possible
choice. A better initial value foA; may be obtained from the
second-order Taylor expansion By, |

(15

dw,; At?
Pi+1:Pi+WiAt+WT' (16)
As seen from Eq(2)
dw;  1[JE(R;,P) APAPA A 1
T__;é,—PR'I'ii"_ii_i- 17

To obtain an alternative expression fa\W;/dt), we con-
sider the second derivative of the idempotency constraint,
ie.,

Wi o Wi oW+ Wip 18
gt Prar PAWWE P 18
From Egs.(8), (17), and(18), it is seen that
dw, 1
PiWPi:_ZPi[WiWi]Pi:_;PiAiPiu (19
dw, 1
QiWQiZZQi[WiWi]Qi:;QiAiQi (20)
and
dw, 1 _[9E(R;,P) 1
PiWQi:_;Pi —p A Qi:;PiFiQi- (21)

From Egs.(19), (20) and(4), one obtains
l[Ai Pi+PiA—A]= i[F’i/\ipi —QiAQi]
M “
=2[P;(W;W))P; = Qi(W;W)Q;],

(22

which is accurate to second-order, and can be used as an
initial guess[instead of theA;=0 guess used in Eq11)],
for the iterative scheme in Eq12).

Downloaded 28 Nov 2001 to 155.101.19.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



10294  J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 lyengar et al.

IIl. MASS-WEIGHTING AND IDEMPOTENCY To incorporate mass-weighting into our formalism, the
mass-weighted density velocity is defined [as"*W u*].

Consider a partitioning of th®;,; matrix given in Eq.  1pe Lagrangian in Eq(1) may then be generalized as
(4). In particular, consider the projected block®;P; . 1P;],

[PiPi+1Qi], [QiPi+1Pi], and[Q;P;;1Q;]. It is clear from L= 3Tr(VIMV) + 3Tr([z¥Wu?) —E(R,P)
Egs.(4) and(8) that CTHA(PP-P)]. 26
At? which yields the Lagrange equation for the density matrix
PilPi+1IPi=Pi+ 5—PAP;, (23) ; '
24 given by
d?pP JE(R,P
_ At? JE(R;,P) pt g ut= - % +AP+PA-A|, (27
Pi[Pi;1]Qi=P{W;At}Q;— P, 20 P i d R
R (24)  where we have assumed thatdoes not depend oh Eqg.
(27) can be integrated as usual to obtain
and At JOE(RP)
A2 Pi+1=Pi+WiAt—7,l_L T
Qi[PHl]Qi:_ZQiAiQi- (295 R
+AP+PA— A |p 2 28
Note that P[JE(R;,P;)/dP|r]Pi=Qi[JE(R;,P;)/dP|r]Q; MU B (28)

=0 from Eq.(8), and P;W;P;=Q;W;Q;=0 from Eq.(14). At JE(R P
Also, the term[Q;P,.,P,]=[PP,;1Q;]", by definition, Wi, 1= W, — _/_L—llz[ (Ri.P)
since all matrices are real-symmetric. Hence, the Lagrangian ' § oP

constraint matrixA; affects the occupied—occupig¢see Eq.

R

(23)]_and_virtual—virtual[see Eq(25)] blocks of the der_15ity + AP +P A — A, M—1/2:M, (29)
matrix (with reference tdP;), but not the occupied-virtual At

block [Eqg. (24)]. The occupied—virtual block of the density At JE(R 11.P1a)

matrix is free to respond to the fictitious velocity of the den- vy, , =W, ,,— —M_1/2[$

sity matrix, i.e.,W;, and the force on the density matrix, i.e., 2" P R
{-0E(R;,P,)/dP|g}. Furthermore, the force on the density

matrix does not affect the dynamics of the occupied— FA PP A — A YR (30)
occupied and virtual—-virtual blocks.

To understand the dynamics of the density matrix more  jpjike the quantityP{(1/x)[ AP, + P,A; — A 1}Q; [see

clearly, let us consi_der the propagation of the ino_lividuaIEq.(13)] for the scalar mass case, the corresponding quantity
blocks ofP;.; as defined by Eqs23)—(25). The occupied—  tor the mass-matrix case, i.e.,

virtual block, denoted by Eq24), dictates how the virtual _y _y
orbitals at time step couple with the occupied orbitals at P{u AP +PA - Alp 3Q#0, (31)
time stepi to produce the density matrix at€1). This if [u,P;]#0. As a result, mass-weighting allows for the
coupling is, however, governed by the magnitude of the ficidempotency force{u Y AP+ P,A;— AjJu Y2, to af-
titious density velocity(which may be arbitrafyand the fect the occupied—virtual blocks of the density matriX28)
force on the density matrix, as shown in E84). To control  [to control the arbitrary effect ofV; in Eq. (24)]. Hence, by
this arbitrariness in the dynamics of the occupied—virtualappropriate choice of thg matrix, a method is obtained to
block of the density matrix, and in particular the core—virtualcontrol the occupied—virtualand in particular the core-
block, a mass weighting scheme is introduced here by genvrtual) part of the density matrix, since now the total force
eralizing the fictitious mass to a matrix of massgs,(Note  in Eq. (28) (i.e., including the gradient term as well as the
that the fictitious mass matrix is represented by the symbdiorce due to deviation from idempotencgcts on all four
u, wWhereas its scalar counterpart, used earlier in this paperojected blocks
and in Ref. 11, is represented simply@a$As will be seen in At2 L) JE(R;,P)
P|[/:L Z[ ,

the results section, this has the effect of maintaining good P[P, ;]P;=P,— —P, —p

5 +AP

R

energy conservation even for larger time steps, as compared

to those allowed when the fictitious mass is treated as a sca-

lar quantity. +PA — A
Another rationalization for mass-weighting may be ob-

tained from considering the following fact. For dynamics on At2 IE(R; ,P)

the Born—Oppenheimer surface, the density matrix elements P[P 1]Q;=P,{W;At}Q;— TP‘{ M‘l’Z[T

for the core orbitals of an atom change more slowly than for

the valence orbitals since the core is more tightly bound to

the nucleus. Hence, it is useful to have a larger mass for the + AP+ PA; — A

core orbitals and a smaller mass for the valence orbitals in

order to increase integration efficiency. and

M—l/Z Pil (32)

R

L’Ll/z] Qi ) (33)
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At? 1 JE(R;,P;) which is a higher order initial guess fét,; and may be
QilPi+1]Q== = Qiyu | ——5 | AP used in conjunction with the iterative scheme described in
R Eq. (36). The termW, _4,, in Eq. (39) is given by Eq.(29),

for the time step.
—-1/2

+PA—Ajjp

Qi (34

. . IV. ENERGY CONSERVATION AND ADIABATIC
As a consequence of Ed31), an alternate iteration CONTROL

scheme is needed to conserve idempotency for the mass-
weighting case, since the scheme presented in Ref. 11 and in To study the energy conservation properties for the La-
Sec. Il [see Eq.(12)] only updates the occupied—occupied grangian in Eq.(26), one can write down the conjugate
and virtual—virtual blocks of the density matrix, as is seenHamiltonian, which is given by the Legendre transf6irof
from Eq.(13). In this section two new schemes are presentedhe Lagrangian
to preserve idempotency for the mass_-matrix case. HP,W,R V) =THOM) +Tr(VTV) — £(P,W,R,V 1),

In the first scheme, an approach similar to that in Ref. 11 (40)

is adopted, by starting with ,
where W and V are the conjugate momenta férand R,

* =P+ WAt—(At?/2) respectively, and are given by
-1/ -1/
xX{u Y IE(R; PPl 3. (39 We %:MUZVV/_LUZ (41)
From Eq.(28) it is noted that the correction from the La-
grangian multiplier matrix has the formiu Y?Ax~%?], and
where the matrix A has only occupied—occupied and
virtual—virtual blocks. Using Eq(12) as a guide, one may W% =MV. (42

then iterate N

Using Egs.(41) and(42) in Eqg. (40), one obtains the conju-

PI+1(_PT+1+L'L_1/%PITPI+QITQI]/_'L_1/2! (36) gate Hamlltonlan as
where T=p 4P 1~ P Ju?= pVq3P7, - 2P, H=Tr(VM W)+ iTr(We~ Y2Wu Y2+ E(R,P)
—P* 142 As in the scalar mass case, the iterative scheme
here converges rapidly and is stopped whghr[(P?, +Tr[A(PP=P)]. (43

b 2l ~12 - : - _ .
Pi1)°]}7/N<10"", whereN is the size of the matrices To study the conservation property for the above Hamil-

involved (i.e., N is the number of basis functions tonian, consider the total derivative ®f with respect tat,
To obtainW,, 4, it is necessary to satisfy the time de- ie

rivative of the idempotency condition, i.e., EQ.4). This is
solved iteratively, by first choosing dH r[ﬁH dP JH dW JHdR JH dv}

Gt M at Tawat TR Gt Ty ar
JE(R,P
:Tr{( (R.P)

WL =W, (AL/2)

X{u Y IE(R 1 1,Pis )l dP|Rln Y3, (37)

and then iterating

aP

+ AP+ PA—A)W}
R

T Wd2P . JE(R,P) v
Wi Wi+ YP TPy "V ae R |,
+Qir1Ti+1Qistu M2 (39 d’R
~ - ~ ~ +Tr| VM rral (44)
where T, ;=" W, ;— W}, Jp*? andW;, ;=dP, ,, /dt

=P 11W;11Qi+11+ Qi+ 1W, 1P, 1. Here again, the itera- where the definitions in Eq$41) and (42) have been used
tion converges rapidly and is stopped whenand itis also assumed thatis time independent. Now, using
{Tr(Wi 1P+ P Wi — Wi )2 YIN<10 22 the Lagrange equations of motion, i.e., E(®7) and (3), it

It should be noted that, as in the scalar mass case, thellows that:
initial guess forP,, ; and W, ; above, i.e., the expressions

in Egs. (35 and (37), correspond to choosing\;=0. A d_Hzo_ (45)
higher-order, initial guess for an idempote®t, ; may be dt
obtained by using the fact tha¥;P;+P;W;=W; is already This proves that the Hamiltonian in E3) [and hence

satisfied by the use of Eqe37) and (38), for the previous the Lagrangian in Eq(26) and its special scalar fictitious
time stepi. Since, a solution tdVN;, requires having an mass case in Eq1)] represents a conservative system, i.e.,

approximation toA; [see Eq(30)], this approximation may the total energy associated with this system should always be
be used in generating an initial guess Ry ;. Thus, using 3 constant.

Egs.(28)—(30), one obtains Let us now partition the Hamiltonian such that

P 1=Pi+2W;At—W,;_At, (39 H="Hreart Hict» (46)

Downloaded 28 Nov 2001 to 155.101.19.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



10296  J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 lyengar et al.

whereH,., andHse represent the real and fictitious parts of that it is also possible to check the value of the fictitious
the full Hamiltonian and are defined as kinetic energy at the point whedH;/dt=0, i.e.

1 Tan—1 _

Hiea=2Tr(V' M7 V) +E(R,P)+TITA(PP=P)]  (47) Hiiotl arty e 1at=0= 2T [ " Wu " W]|g3, jar=0-  (50)
and The value of the fictitious kinetic energy on the right-hand
Heier= STr[Wu ™ Y2V~ 12). (48)  side of Eq.(50) represents the maximugor minimum de-

o _ _viation of the fictitious dynamics trajectory from theue
The definitions forH,., andHs., above, are consistent with Born—Oppenheimer energy surface.

the usual definitiorsfor the real and fictitious energy in the The second condition may be checked by evaluating
CP scheme. Using E@27), it then follows that:

t=T dHs
dHfict_T [ T Hfiet dW} ffo dtd_tmeHfict|t:T_Hfict|t:O- (51
dat | oW dt )

] wheret=T represents the total propagation time. The value

=Tr M—llzwﬂ—llzdlv} of the right-hand side in Eq51), along with a chosen set of
L B dt stationary points from Eq50), will help ascertain the oscil-
r d2p latory nature ofHie(t).

=Tr W/_Ll’ZF/_L”Z} Equationg49)—(51) together provide a method to gauge
! t the deviation of the fictitious dynamics from theie Born—

Oppenheimer dynamics trajectory. If any of the conditions
. (49 above is not satisfied, then it will be necessary to go back to
the previous time step and re-propagate, but now with either

In accordance with Eq45), d'H,../dt is simply the negative @ Smaller time step or a smaller fictitious mass, chosen such
of dH;./dt. The value ofdH;/dt (and hencalH,.,/dt),  that the above conditions are met to within the user-defined
for the special case of scalar fictitious masses is obtained bBfireshold. Choosing the smaller fictitious mass will result in

noting that in this case.¥?= Y2, wherel is the identity @ Jjump or sharp change in the dynamics trajectory, which is

and 2 is the square root of the scalar fictitious mass see@kin to @ quenching process commonly employed in
in Sec. Il and Ref. 11. molecular-dynamics methods. This kind of method leads to

A few comments regarding E¢49) are now in order(i) anadaptivemolecular dynamics scheme that always remains
Equation(49) represents the rate at which a trajectory gen-Within a specified limit from the Born—Oppenheimer trajec-
erated from the solution to Eq&27) and (3) [or the special torY i.€., the adiabaticity of the trajectory can tentrolled
scalar mass equatiori@) and (3)] deviates from a standard in this fashiorr*

Born—Oppenheimer trajectdry’ (since for a trajectory that The evaluation of all conditions described above in-
exactly follows the Born—Oppenheimer surfad@(,.y/dt volves the trace of a matrix product. The number of opera-
=0). Furthermore, since E¢49) exhibits a dependence on tions here scales a$> multiplications for full matrices and is
w2 the magnitude of the fictitious magsr in the mass- O(N) for sparse matrices, whelis the size of the matrices
weighting case thd.2-norm of the fictitious mass matpix involved, i.e., the number of basis functions used. For the
determines the deviations from the Born—OppenheimeFemaining portion of this section, we will investigate how to
trajectory?’ This is an important result, since as noted laterobtain good estimates to the right-hand side in @) by

in Sec. VI and as seen in Ref. 11, the current method indeedSing computationally faster algorithm&hese will be use-
allows for relatively small values of the fictitious mass, while ful only for the full dense matrix case, since for sparse ma-
maintaining larger time steps. Additionally, in molecular dy- trices the methods described above are alred@y).) Us-
namics it is usually defined that the dynamics of nuclei occuind the concept ot -norm, one may write

- IE(R,P)
=—Tr W(T

+ AP+ PA—A)

R

on the electronic ground state potential energy surfacthe H d2p
. . . ﬁ_Ss L. fict| 1/2 1/2
absence of conical intersectigfis®), hence it is important gt | =N Wtz

to keep the terms in Eq49) small. (i) Since it is also de-
sirable that time averages of various properties derived from d2p
the actual Born—Oppenheimer dynamics be identical to those <N||w|| ‘ /_mez' p?
derived from a fictitious dynamics calculation, like that de-
scribed here, it is necessary that the quantiti#s/dt and
dH,.q/dt oscillate about zero. In the rest of this section, an
algorithm will be derived that is useful to control and moni-
tor the magnitude of the quantities in E@9) during the  where the Schwartz inequalfyhas been used arfav|| rep-
progress of a simulation. resents theL?-norm of the matrixW, i.e., the maximum
The first condition described above may be achieved bybsolute eigenvalue diV. Since it is possible to obtain an
checking the absolute value of the right-hand side in(8§.  upper bound tdW|| (see, for example, Ref. 33and simi-
for every time step. If this absolute value is less than soméarly for || %(d?P/dt?) 7|, and since all matrice®?, W,
user-defined threshold, the dynamics is representative of tha?P/dt?, W, etc. are finite dimensional, it is possible to ob-
Born—Oppenheimer trajectory to within that threshold. Notetain an upper bound to the right-hand side in &) quite

JE(R,P)

=Njw|| =

+ AP+ PA—AH , (52)

R
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easily by using Eq(52). But, first, it is important to ascertain tially thermal equilibration between the density matrix and
under what conditions truly useful bounds can be obtainediuclear degrees of freedom. Such a thermal equilibrium
from Eq. (52). Obviously, could at any time lead to nonphysical electronic surface
d crossings. By avoiding such a situation it is possible to main-
Hfict . . . . .
=0, (53  tain the dynamics on a given electronic state, i.e., close to the
dt associated Born—Oppenheimer surface.

since, as the maximum absolute eigenvalue of a finite- There are two facets to controlling the fictitious elec-

dimensional matrix goes to zero, the trace of the rna,[ri)gronic kinetic energy(i) The choice of initial velocity of the
should also go down to zero Hénce for small values 0]density matrix elements must in some sense be consistent

IW u2(d2P/dt?) w23, it may be expected that Eq52) \c/jwth t.he choi_ce of ini_tigl velocities pf the.nuclei, altid) the .
provides truly “tight” bounds todH;./dt. However, for e_nsny matrix veloc‘|‘t|es at any %Nen “”.‘e.'.””“St be main-
large values off W u22(d2P/dt?) 3], it is conceivable that tained such that the temperat_ure of the flct|t|ouslelectron|c
the bounds obtained from E¢52) are not as tight. In such de.grees.of freedpm are restr_|cted below a certain value. In
cases, the upper bound 1oV uY%(d2P/dt?) u¥3| may di- this section the first problem |s_addr§ssed. The second prob-
rectly be used as an estimate fift;/dt, i.e., lem can be controllgd as exp'lalned n Sec. IV‘. o .
Among the various possible choices for initial density
dHiicy JE(R,P) matrix velocities, one of the conceptually simplest choices
dt P includes choosing a fixed value for the fictitious kinetic en-
ergy at timet=0. The individual elements diV, at timet
The upper bound in Eq52), or the estimate in Eq54), may -0, may, however, be chosen randomly as long as the total
be compared to the user-defined threshold to evaluate thgyitious kinetic energy is constant. In this case, the elec-
accuracy of the trajectory. Alternately, the Frobenius nérm tronic degrees of freedom will need to “catch-up” with the
of the matrix product in Eq(49) may also be used in EQ. nyclei, if the initial choice is not consistent with the choice
(52), since it is an upper bound to the trace. However, theyf the nuclear kinetic energy, and a certain number of simu-
Frobenius norm is not a very tight upper bothith the trace, |ation steps will be expended for this equilibration process.
hence thd_z_-norm has been used in Eq52) and(54). Also  gych an equilibration process will also see some exchange in
the evaluation of thé.?-norm scales abl” additions, which  energy between the nuclear and density matrix parts of the
has a much smaller prefactor as compared to the evaluatioRgstem, before the equilibration is complete. As stated above
of the exact expressions stated above, in @8§). this exchange could give rise to spontaneous excitations de-
In this section a methodology has been presented to e$rending upon the band-gap of the system. Hence, for large
timate the error in the fictitious dynamics trajectory with band-gap systems, like insulators and some semiconductors,

respect to arue Born—Oppenheimer dynamics trajectory. this may be a viable choice but precious simulation time
The quantities in Eqs(49)—(51) provide exact deviations, -quld be lost in the equilibration process.

which can be readily evaluated. However, for dense matrix — p better, but more expensive, choice is to obtain the
systems, approximations to these res_ults are provided, Whic\ﬂelocity from converged or approximately converged self-
may be calculated at lower computational cost. These resuligynsistent field SCPH calculations. In this case, the initial
can be used to control the deviation of the fictitious dynamyclear positions are propagated forward in time for exactly
ics trajectory from the true Born—Oppenheimer dynamicsyne time step using the exact gradients of the converged
trajectory (and hence the adiabaticjityo within physically jnitial density matrix. At the new nuclear conformation either
enforced limits. For all the techniques described above, thg f,II SCF calculation could be performed or a limited num-
number of operations required scales linearly with systenpgr of conjugate gradient density matrix search
size for sparse matrices. (CG-DMS)*"*8steps could be used to obtain a converged or
When dealing with metals and other small band-gap sysapproximately converged density matrix. In a similar fash-
tems, the above formalism will limit the size of the fictitious ion, the initial nuclear positions may be propagated back-
mass, and hence the time step, in order to achieve propgfards in time for again one time step, and a fully converged,

not computationally as efficient. Hence, for small band-gagne three density matrices at times —At, t=0 andt=

systems, it will be necessary to use an alternative scheme to ¢, one may obtain the density matrix velocity &t 0

lim
WM d2Pidt?) 3]0

~[wl

+AP+PA-A|. (54)
R

enforce adiabaticity’ using a finite difference approximatiotto the derivative of

a function. Higher order, and hence more accurate, approxi-
V. CHOICE OF INITIAL CONDITIONS FOR THE mations could also be used by obtaining more converged or
DENSITY MATRIX VELOCITY approximate densities at different times suchtas— 2At,

The choice of initial velocities for the nuclei are gov- t=-+2At and so on.

erned by the temperature at which the simulations are to be
performed. However, the choice of initial density matrix ve- VI COMPUTATIONAL TESTS

locity is not as intuitively obvious. There are restrictions on Solvation of ions in agueous medium is of great practical
such a choice. For one it is necessary to maintain the densiipterest and has recently attracted considerable attention,
matrix “temperature” to be as low as possible, since a highetboth from theoreticdf~*?> and experiment&i—*° groups.
temperature would give rise to energy exchange and poterHere, the dynamics of a C{H,0),5 cluster is considered.
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TABLE I. Trajectories for the CI(H,0),5 cluster with no thermostafsysing the scalar mass formalism.

Conservation of Conservation of
MP Time step Trajectory time total energy real energy
(amu bohf) (femtosecony (femtosecony (hartree® (hartregd
0.1 0.01 20 0.0002 0.003
0.1 0.03 30 0.0004 0.002
0.1 0.06 120 0.0024 0.002
0.15 0.06 105 0.0022 0.005
0.2 0.06 100 0.0022 0.005
0.2 0.07 80 0.0017 0.005

@All calculations used DFT with the PBE exchange-correlation functiRef. 51, while the basis set used was

3-21G" (number of basis function344). Cholesky orthogonalization procedure was used in all calculations
to obtain the orthonormal basis gete Ref. 11 for details

®1 amu bot#=1823 a.u.

‘Maximum deviation of the total energy of the systédefined as the sum of the total potential enefgythe
nuclear kinetic energy and the fictitious kinetic energy of the density mattixing the trajectory.

YMaximum deviation of the real energy of the systéfefined as the sum of the total potential eneEgnd the
nuclear kinetic energy, i.e., the total energy described above minus the fictitious kinetic energy of the density
matrix) after equilibration. The initial equilibration process, discussed in the text, involved exchange of energy
between the nuclear and electronic degrees of freedom where the electrons “catch-up” with the nuclei.

AIMD trajectories are obtained using three different tech-the other hand, scales only B even for full-matrices and
nigues: The scalar mass equations presented in Ref. 11 amstrictly O(N) for the sparse matrix case. Furthermore, the
here in Sec. Il, the mass-weighting scheme presented in Sease of Lavdin symmetric orthogonalization does not provide
I, and by using pseudo-potenti&fs*®to replace the core- any noticeably different trajectories from those obtained by
electrons. The effect of the magnitude of the fictitious mass<Cholesky orthogonalization, as was demonstrated in Ref. 11.
on energy conservation, adiabaticity, and allowable timeStarting nuclear geometries for all trajectories were obtained
steps were studied. The all-electron calculati¢fts both  from an MM3 minimization. All calculations were per-
scalar mass and mass-matrix schemesre performed using formed using a development version of tBaussianseries

an all electron double zeta basis set with polarization funcef electronic structure cod&sand with density-functional
tions on the chloride iofthe 3-21G basis seét The pseudo- theory using the PBE exchange-correlation functichdlhe
potential calculations are performed using the CEP#81t§  results are shown in Tables I-III.

basis set, where a valence double zeta basis set with polar- For the mass-weighting scheme, a diagonal fictitious
ization functions on the chloride ion are used along withmass-matrixu was chosen. The diagonal representation im-
appropriate pseudopotentials to replace the oxygermrd plies that the orthonormal basis set vect¢@holesky or
the chlorine 5, 2s, and 2 core functiond®~*8Further, we  Lowdin, depending upon the choicare the eigenstates of
chose the Cholesky decomposition sch&hte obtain the the mass-matrix? Since these basis set vectors, in general,
orthonormal basis s€see Ref. 11 or Sec.)lin all our cal-  will never be the eigenstates of thg matrix, this choice
culations. The reason for this choice has to do with the mor¢rivially yields [ u,P;]#0. There are, of course, other pos-
expensiveN® computational scaling in obtaining théwdin  sible and more general choices far and these will be in-
symmetricS' *2 matrix*® The Cholesky decomposition, on vestigated in future publications. Here, the value of a particu-

TABLE II. Trajectories for the CI(H,0),5 cluster with no thermostafsysing the mass-weighting schefhe.

Conservation of Conservation of
ML Time step Trajectory time total energy real energy
(amu bohf) (femtosecong (femtosecong (hartree® (hartreed
0.05 0.20 320 0.0027 0.005
0.1 0.20 400 0.0027 0.005
0.1 0.25 500 0.0025 0.005
0.15 0.20 400 0.0025 0.005
0.15 0.25 500 0.0025 0.007

2All calculations used DFT with the PBE exchange-correlation functioRaf. 51, while the basis set used is
3-21G" (number of basis function344). Cholesky orthogonalization procedure was used in all calculations
to obtain the orthonormal basis 4eee Ref. 11 for details

P1 amu boh¥=1823 a.u.

‘Maximum deviation of the total energy of the systédefined as the sum of the total potential enetythe

nuclear kinetic energy and the fictitious kinetic energy of the density mattixing the trajectory.

dMaximum deviation of the real energy of the systéfefined as the sum of the total potential eneEggnd the
nuclear kinetic energy, i.e., the total energy described above minus the fictitious kinetic energy of the density
matrix) after equilibration. The initial equilibration process, discussed in the text, involved exchange of energy
between the nuclear and electronic degrees of freedom where the electrons “catch-up” with the nuclei.
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TABLE lIl. Trajectories for the CI(H,0),5 cluster with no thermostafsiising pseudopotentials.

Conservation of Conservation of
MP Time step Trajectory time total energy real energy
(amu bohf) (femtosecong (femtosecony (hartreg® (hartregd
0.1 0.05 55 0.0001 0.001
0.1 0.10 45 0.0001 0.001
0.1 0.15 230 0.0002 0.002

2All calculations uses DFT with the PBE exchange-correlation functitRaf. 51, while the basis set used is
CEP-31G(Refs. 46 to 48(number of basis function314). Cholesky orthogonalization procedure was used in

all calculations to obtain the orthonormal basis (s&te Ref. 11 for details

b1 amu boht=1823 a.u.

‘Maximum deviation of the total energy of the systédefined as the sum of the total potential enekgythe

nuclear kinetic energy and the fictitious kinetic energy of the density mattixing the trajectory.

9Maximum deviation of the real energy of the systétefined as the sum of the total potential enefggnd the
nuclear kinetic energy, i.e., the total energy described above minus the fictitious kinetic energy of the density
matrix) after equilibration. The initial equilibration process, discussed in the text, involved exchange of energy
between the nuclear and electronic degrees of freedom where the electrons “catch-up” with the nuclei.

lar diagonal element oft was chosen based on the value of deterioration in electronic adiabaticity. This aspect is also
the corresponding element in the Fock matrix at the initialnoted in our calculations, where it was found that, for the
time step. Particularly, it was assumed that if the diagonamass-weighting case, increasing the valueAdf, in Egs.
Fock matrix element; ;<—2 a.u., at the initial time step, (55) and(56) results in a drift in the fictitious kinetic energy.
the corresponding orbital is a core orbital, andFf;= For example, compare the drift in the fictitious kinetic energy
—2 a.u., at the initial time step, the corresponding orbital isin Fig. 1(b), obtained from a value of\{o=0.2 amu bohfr
valence. The mass-matrix chosen has the following constant 364 a.u., as opposed to its more steady behavior after
form: equilibration in Fig. 1a), obtained forM,=0.1amu botr
12_ _ ~182 a.u. Both figures are for a time step of 0.25 fs and total
s VMe, F=-2au., 69 propagation time of 500 fs=£0.5ps). The deviations are
M}f: M2 \/m+ 1], Fi<-2au, (56)  even greater for larger values 8f(,. A reduction in the size
2 o of the fictitious mass.{,=0.05 amu botr=91 a.u.) results

i =0, 1], (57 in a reduction of allowable time step sit® 0.2 f3.
where M, is a constant and may be considered as the mass Another interesting observation from the tables is that
of the valence orbitals, as seen from E5f). The choice of the real energy is conserved to a lowbut acceptablede-
the functional form in Eq.(56) is based on a harmonic- 9ree in the mass-weighted calculation as compared to the
oscillatorlike assumption for the orbital energies. The resulcalar mass and pseudopotential calculations. There are two
of including the mass-weighting factor in EG6) is that the ~ factors that contribute to this. Firstly, the time steps used in
core orbital oscillations get adjusted to roughly the saméhe mass-weighted calculations are higher than those used in
frequency as that for the valence orbitals. Note that, in genthe scalar mass and pseudopotential calculations. Secondly,
eral, the above choice fqr may not be the most effective, as seen from Eq(56), the core orbitals in the mass-
since it is hard to fix a universal energy criterion for separaWweighting scheme are “heavier” than the valence orbitals.
tion between core and valence orbitals for all at§fhand  This yields a larger value for tHe?-norm of thew /> matrix,
also the harmonic oscillator approximation, while reason-and as is seen from Eqgl9) and(52), this in turn leads to a
able, may not be the most effective choice in many casedarger value of (dH;/dt) |, and hence poorer conservation
The current choice of is used here only to demonstrate the of the real energy in the mass-weighted propagation scheme.
applicability of our mass-weighting scheme, and as will beln any case, the conservation of the real energy is found to be
seen later in this section, it is useful for the application stud-acceptable since the deviations seen in Table Il are of the
ied here. More general approaches to the mass-matrix will berder of 0.0002% with respect to the total energy of the
considered in future publications. system(see Fig. 1 and captignlt should also be noted here

The most striking aspect seen from the tables is the sigthat, as stated after E(57), the quantityM, has the “physi-
nificantly larger time steps that are accessible due to the uggl” interpretation of being the fictitious mass of the valence
of the mass-weighted propagation scheme presented in thigbitals in the mass-weighting scheme. This should be com-
paper. Needless to say, this results in being able to propagag@red with the notation used in the plane-wave Car—
longer and more stable trajectories. Employing pseudopoteriRarrinello method, where fictitious mass stands for the mass
tials permits time steps larger than those allowed in the scalaif the valence orbitalenly, since pseudopotentials are used
mass case, but smaller than allowed by the use of the mask replace the core.
matrix scheme. Apart from the discussion in Sec. Il and the results seen

Increasing the fictitious mass is another way to obtainn our study, another important reason to keep the value of
larger time steps. However, as pointed out in Sec. Ill this ighe fictitious mass of the density matrix elements small, is
not in general advisable, since larger fictitious masses lead tihat the mass of a single hydrogen atom is 1836 a.u.
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0.03 T T T T T T

™ rotal Enorgy — culation), are nearly twice the time steps commonly used in
0.025 | Fictitious Kinetic Energy - - plane-wave Car—Parrinello studies of solvatior' The dif-
002 Total Energy - Ficitious Kinetic Energy -~~~ | ference between the present AIMD implementation and that
3 0015 in the plane-wave Car—Parrinello scheme is the use of local-
g 0.01 ized Gaussian orbitals and the single particle density matrix
g 0.005 |+ g here, as opposed to global plane-waves and the occupied
s ' Kohn—Sham wave functions in the CP method. The other
2 important difference is the use of pseudopotentials in plane-
5 0005 wave Car—Parrinello scheme, whereas the present method
-0.01 has the freedom to either treat all electrons rigorou#e
-0.015 scalar mass formalism discussed in Ref. 11 and in Sec. Il in
002 560 400 600 800 1000 1200 1400 1600 1800 2000 this pape}, weigh thg core (_jifferentl)_/ from the val-enc_e to
(@) Simulation Steps reduce core-unoccupied orbital couplifige mass-weighting
scheme discussed in Sec.)]lbr to use pseudopotentials.
042 . . . . ' . . . . For the scalar mass case, again, it is found that larger
ol Fctious K;Zilacl E:z:g; — vaIL_Jes of the fictitious mass resulted in !arger f|ct|t|0L_Js k|-_
Total Energy - Fictitious Kinetic Energy —---- netic energies, and hence greater deviations from adiabatic-
et ] ity. A fictitious mass of~0.1 amu botf~182 a.u. allowed a
3 oo v time step of 0.06 fs within this schentef. Table ). Further
p ooty e o it v increase in the fictitious ma$8.15 and 0.2 amu bofjrdoes
G 002f s 1 not, in this case, provide any reasonable gain in the size of
; 4 the time step to be chosef@As may be noted from Table |, a
5 larger fictitious mass of 0.2amubdh(~364a.u.) allows
© ooal only a slightly larger time step. Increasing the time step any
oosl furth_er results in complete Iqss of iQemp(_)tency of the density
i matrix, and hence nonphysical trajectorjes.
0085200 400 600 800 1000 1200 1400 1600 1800 2000 For all calculations the total angular momentum of the
®) Simulation Steps system was conserved to a very high degree ¢40) for the

FIG. 1. AIMD trajectories for the CI(H,0),5 cluster dynamics calculation durztlon of the Slml.'gatl?n' Smlce fprg{ée;;tlon methods were
using the mass-weighting scheméa) fictitious electronic massM, used to remove residual angular Pr .empOtenCy Was
—0.lamubot~182a.u., (b) fictiious electronic mass, M, always conserved to better than 18 using the iterative
=0.2 amu botf~364 a.u. In both figuredt=0.25fs and total simulation ~scheme presented in Eq86) and(38) (with fewer than 10
time= 0.5 ps. The average electronic energy and average total energy for ”l?erations necessary in all cagek was found that the guess
full duration of both simulations is of the order of 2355 a.u. Note the . - L .
gradual drift in the fictitious kinetic energy i) (although small compared in Eq. (39 prowded an mltla"?i +1 for Eq. (36) t_hat was in
to the total electronic enerigyas opposed to the more steady behaviqggin ~ MOSt cases an order of magnitude or better in idempotency as
after equilibration. compared to the guess in E@5).
It was found that a fictitious mass of0.1amu bohfr
~ 182 a.u. is an appropriate choice for the water—cluster sys-

(=1.008 amu). Hence, as the value of the fictitious elecieM for both mass-weightingwhere M, is chosen to be

tronic mass gets closer to this number, the separation in timg'l_am.u boti gnd _sqalar mass schemgs. The mass-
scales between electronic motions and motions of hydrog?ﬁe'ghtmg case Is defllnltely qdyantageous since ,'t a”OWS for
and hydrogenlike systems becomes smaller, and the fictitio groer time steps, while providing stable dynamics trajecto-
system deviates further away from the real system due tges:
energy exchange. The value &M, used in our calculations
is small as compared to the mass of the hydrogen ator_n\m_ CONCLUSIONS
hence a good degree of separation of time scales is main-
tained through all of the simulations. It is useful to note that,  In this paper, the approach &b initio molecular dynam-
typically®*~*! in order to utilize time steps of reasonable ics introduced in Ref. 11, has been generalized by consider-
size, the magnitude of the fictitious mass chosen in planeing nonscalar fictitious masses. The conservation properties
wave Car—Parrinello  calculations for water is of this AIMD scheme have been rigorously studied by em-
~0.6 amubohfr (=1100a.1*°*Y, i.e., six times larger in ploying the Hamiltonian formalism. This allows us to estab-
magnitude as compared to outM.=0.1amuboht lish, on-the-fly, if a given fictitious dynamics trajectory ob-
~182a.u. calculation. The associated effects of the largetained from the present scheme is close enough tdrtle
electronic mass in the CP calculations are often countered bgorn—Oppenheimer trajectoryo within user-specified lim-
using Deuterium nuclei instead of Hydrogen nuclei in waterits). Approximations to the exact expressions have also been
simulations. This, however, is not necessary here, since thaderived that may be useful to evaluate the accuracy of the
fictitious electronic masses used are much smaller. trajectories for dense matrix systems. The exact expressions,
The time steps allowed in the mass-weighted scheme iin addition to being useful in general, are computationally
this study(0.25 fs for theMe=0.1amubohr~182a.u. cal- O(N) when systems become sparse.
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