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Ab initio molecular dynamics: Propagating the density matrix
with Gaussian orbitals. II. Generalizations based on mass-weighting,
idempotency, energy conservation and choice of initial conditions
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A generalization is presented here for a newly developed approach toab initio molecular dynamics,
where the density matrix is propagated with Gaussian orbitals. Including a tensorial fictitious mass
facilitates the use of larger time steps for the dynamics process. A rigorous analysis of energy
conservation is presented and used to control the deviation of the fictitious dynamics trajectory from
the corresponding Born–Oppenheimer dynamics trajectory. These generalizations are tested for the
case of the Cl2~H2O!25 cluster. It is found that, even with hydrogen atoms present in the system, no
thermostats are necessary to control the exchange of energy between the nuclear and the fictitious
electronic degrees of freedom. ©2001 American Institute of Physics.@DOI: 10.1063/1.1416876#
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I. INTRODUCTION

The method ofab initio molecular dynamics~AIMD !
relies on a calculation of the electronic potential energy s
face traversed by the~classical! nuclei ‘‘on-the-fly’’ during
the dynamics procedure. Both Born–Oppenheimer~BO! mo-
lecular dynamics~MD!,1–3 as well as Car–Parrinello~CP!
molecular dynamics4–7 fall into this category. The CP
scheme differs from the BO dynamics approach in that
wave functions are propagated together with the class
nuclear degrees of freedom using an extended Lagrang
This, in turn, relies on an adjustment of the relative nucl
and electronic time scales, which facilitates the adiab
propagation of the electronic wave function in response
the nuclear motion with suitably large time steps. This a
justment of time scales through the use of a fictitious el
tronic wave function kinetic energy and mass, enables the
approach to predict effectively similar nuclear dynamics
MD on the BO surface at significantly reduced cost. In t
respect, CP differs from methods which rigorously treat
detailed dynamics~rather than structure! of the electrons~see
Ref. 8 and references therein!.

It is also interesting to consider molecular dynam
methods from the perspective of multiple-time scale pr
lems which are well-known in statistical mechanics.9 The

a!Electronic mail: voth@chem.utah.edu
10290021-9606/2001/115(22)/10291/12/$18.00
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slow convergence associated with the multiple-time sca
has resulted in recent advances10 that serve to overcome
partially, the computational problems associated with su
systems. In some sense these new methods may be co
ered to facilitate the CP approach, since both provide suita
computational alternatives to simulate systems with coup
fast–slow subsystems.

We have recently proposed an alternative formalism
AIMD. 11 Our method differs from the standard Car
Parrinello approach,4–7 as we employ atom-centered Gaus
ian basis sets and the single-particle density matrix wit
the extended Lagrangian formalism, whereas the Koh
Sham molecular orbitals in plane-wave basis sets are ch
as dynamical variables in the CP algorithm. The electro
variables~the density matrix elements in our case! are al-
lowed to have fictitious masses, which leads to a simple
justment of the relative time scales, thus facilitating the ad
batic propagation of the electronic variables along with
nuclei.

One of the main advantages of using atom-cente
Gaussian basis sets in electronic structure calculations is
these are quite effective at describing the wave function fo
molecular system due to their compact and localized nat
This allows the use of a smaller number of basis functions
describe the state of a molecular system to within a des
degree of accuracy. Furthermore, it is well established12–18
1 © 2001 American Institute of Physics
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that molecular calculations with atom centered functions
be carried out with computational times that scale linea
with system size in the large-system limit.12–14 This is
achieved through the use of Gaussian orbitals in Koh
Sham density-functional theory~DFT! calculations, fast mul-
tipole methods for the Coulomb problem,15,16 and density
matrix search alternatives with sparse matrix multiplicat
techniques to bypass theO(N3) Hamiltonian diagonalization
bottleneck.14,17,18 For similar reasons, our approach usi
density matrices and Gaussian basis sets for AIMD has
fundamental advantage of leading toO(N) scaling of com-
putational time with system size. As shown in Ref. 11 and
will be seen in greater detail in this paper, another advant
of using atom-centered Gaussian basis sets and density
trices is the freedom to use smaller values for the fictitio
mass of the density matrix. This is crucial to maintaining t
desired separation in time scales between the nuclear
electronic motions,even for hydrogen nuclei, while main-
taining significantly large time steps.

Our method may be contrasted with other approache
CP that use Gaussian basis sets. Gaussian basis func
within the generalized valence bond~GVB!19,20 and
Hartree–Fock21 framework, where orbital and wave functio
coefficients are propagated, have been used; however
scheme has had some difficulty with energy conservatio19

In addition floating Gaussian orbitals have also been us22

in the CP scheme. By contrast, the present approach emp
atom-centered Gaussian basis functions.

In this paper we present further generalizations of
Gaussian-basis density matrix AIMD method11 and also ana-
lyze some of its important computational properties. F
completeness, in Sec. II, some of the basic concepts f
Ref. 11 are briefly reviewed and a new scheme to main
idempotency of the density matrix is also provided. In S
III, the concepts in Sec. II are generalized to include tenso
fictitious mass. This generalization allows larger time ste
to be used during the propagation. In Sec. IV the conse
tion properties of the AIMD method are studied, and an
gorithm is provided to help control the difference betwee
rigorously adiabatic Born–Oppenheimer trajectory and t
obtained from the AIMD scheme presented here. In Sec
some methods are presented for choosing initial conditi
for the fictitious density matrix velocity, while in Sec. V
results are given for the energy conservation and electr
adiabaticity corresponding to different choices of the fic
tious mass, time step, and numerical integration method f
chloride–water cluster. In Sec. VII the concluding rema
are given.

II. BASIC CONCEPTS OF GAUSSIAN-BASIS DENSITY
MATRIX AB INITIO MOLECULAR DYNAMICS

An extended Lagrangian describing the combin
nuclear-density matrix system, in an orthonormal basis,11 can
be defined as

L5 1
2Tr~VTMV !1 1

2 m Tr~WW !2E~R,P!

2Tr@L~PP2P!#, ~1!
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whereM , R, and V are the nuclear masses, positions, a
velocities, respectively. The density matrix, density mat
velocity, and the fictitious mass for the density matrix e
ments areP, W and m, respectively. Idempotency and pa
ticle number are conserved by the Lagrangian constraint
trix L. Using the principle of stationary action,23 the
Lagrange equations for density matrix and nuclei are
tained as

m
d2P

dt2
52F]E~R,P!

]P U
R

1LP1PL2LG , ~2!

M
d2R

dt2
52

]E~R,P!

]R U
P

. ~3!

The term]E(R,P)/]PuR , above, implies that the partial de
rivative is taken under constantR, and similarly for
]E(R,P)/]RuP . Equations~2! and~3! are used in Ref. 11 to
propagate the combined nuclear-density matrix system.
ing the velocity Verlet algorithm,24 the propagation of the
density matrix is given by11

Pi 115Pi1W iDt2
Dt2

2m F]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li G ,

~4!

W i 11/25W i2
Dt

2m F]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li G
5

Pi 112Pi

Dt
, ~5!

W i 115W i 11/22
Dt

2m F ]E~Ri 11 ,Pi 11!

]P U
R

1Li 11Pi 11

1Pi 11Li 112Li 11G . ~6!

As in the conjugate gradient density matrix search~CG-
DMS! method,17,18 the energy,E(Ri ,Pi), is calculated using
the McWeeny purification transformation of the density,25 P̃
53P222P3. For both DFT and Hartree–Fock, we ma
write the expression for the energy as

E5Tr@h8P̃81 1
2 G8~P̃8!P̃8#1Exc1VNN

5Tr@hP̃1 1
2 G~P̃!P̃#1Exc1VNN . ~7!

Here, for both Hartree–Fock and DFT,h8 is the one electron
matrix in the nonorthogonal Gaussian basis. The ma
G8(P̃8) represents the two electron matrix in the nonorthog
nal Gaussian basis for Hartree–Fock calculations, but
DFT it represents the Coulomb potential. The termExc is the
DFT exchange-correlation functional~for Hartree–FockExc

50), while VNN represents the nuclear repulsion energy.
the orthonormal basis, these matrices areh5UÀTh8UÀ1,
etc., where the overlap matrix for the nonorthogonal Gau
ian basis,S8, is factorized to yieldS85UTU. There are a
number of choices for this transformation~e.g., U can be
obtained by Cholesky decomposition,26 or U5S81/2 for Löw-
din symmetric orthonormalization!. The matrixU can also
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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include an additional transformation so that overall rotat
of the system is factored out of the propagation of the d
sity. The density matrix in the orthonormal basis,P, is re-
lated to the density matrix in the nonorthogonal Gauss
basis,P8, by P[UP8UT.

The gradient terms involved in the nuclear and dens
matrix equations of motion, i.e., Eqs.~2! and ~3!, are given
by11

]E~R,P!

]P U
R

53FP13PF22FP222PFP22P2F ~8!

and

]E~R,P!

]R U
P

5TrFdh8

dR
P̃81

1

2

]G8

]R U
P8

P̃8G
2TrFF8UÀ1

dU

dR
P̃81P̃8

dUT

dR
UÀTF8G

1
]Exc

]R U
P

1
]VNN

]R

5TrFUÀT
dh8

dR
UÀ1P̃

1
1

2
U2T

]G8~P̃8!

]R
U

P8

UÀ1P̃G
2TrFF

dU

dR
UÀ1P̃1P̃UÀT

dUT

dR
FG1

]Exc

]R U
P

1
]VNN

]R
. ~9!

Again, the Fock matrix in the nonorthogonal basis-set

Fn,s8 [hn,s8 1G8~P̃8!n,s1
]Exc

]Pn,s8
, ~10!

is related to the Fock matrix in the orthonormal basis byF
5UÀTF8UÀ1.

The Lagrangian constraint matrix for time stepi , Li , in
Eqs. ~4!–~6! is chosen to satisfyTr@Pi 11#5Ne and Pi 11

2

5Pi 11 . One can solve directly forPi 11 by a simple iterative
procedure that minimizesTr@(Pi 11

2 2Pi 11)2#. Starting with

Pi 115Pi1W iDt2F ]E~Ri ,Pi !

]P U
R
G Dt2

2m
, ~11!

which is obtained by choosingLi50 in Eq. ~4!, the idem-
potency ofPi 11 is improved iteratively using

Pi 11←Pi 111PiTPi1QiTQ i , ~12!

whereT5P̃i 112Pi 1153Pi 11
2 22Pi 11

3 2Pi 11 . The iteration
converges rapidly and is stopped when$Tr@(Pi 11

2

2Pi 11)2#%1/2/N,10212. The above algorithm comprises a
update of only the occupied–occupied and virtual–virt
blocks ofPi 11 , since the constraint terms satisfy

Pi@LiPi1PiLi2Li #Qi5Qi@LiPi1PiLi2Li #Pi50,
~13!
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whereQ5I2P andI is the identity matrix. The final density
matrix velocity needs to satisfy the time derivative of t
idempotency condition, given by

W i 11Pi 111Pi 11W i 115W i 11 . ~14!

This can be solved exactly to yield Li 11

5@2Pi 11W i 11* Pi 112W i 11* #(2m/Dt), where W i 11*
5W i 11/22@]E(Ri 11 ,Pi 11)/]PuR#(Dt/2m). With this, Eq.
~6! simplifies to

W i 115W i 11* 2Pi 11W i 11* Pi 112Qi 11W i 11* Qi 11 . ~15!

Equation~15! estimates the value ofLi 11 , as required by
Eq. ~6!. This estimate forLi 11 is refined in the next step o
the propagation, so that idempotency is satisfied for the d
sity matrix Pi 12 using Eqs.~11! and ~12!.

It should be noted that the iterative scheme in Eqs.~11!
and~12! corresponds to starting withLi50 @as can be veri-
fied from Eq. ~4!#. This, however, is not the only possibl
choice. A better initial value forLi may be obtained from the
second-order Taylor expansion forPi 11

Pi 115Pi1W iDt1
dW i

dt

Dt2

2
. ~16!

As seen from Eq.~2!

dW i

dt
52

1

m F ]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li G . ~17!

To obtain an alternative expression for (dW i /dt), we con-
sider the second derivative of the idempotency constra
i.e.,

dW i

dt
5Pi

dW i

dt
12W iW i1

dW i

dt
Pi . ~18!

From Eqs.~8!, ~17!, and~18!, it is seen that

Pi

dW i

dt
Pi522Pi@W iW i #Pi52

1

m
PiLiPi , ~19!

Qi

dW i

dt
Qi52Qi@W iW i #Qi5

1

m
QiLiQi ~20!

and

Pi

dW i

dt
Qi52

1

m
PiF ]E~Ri ,Pi !

]P U
R
GQi5

1

m
PiFiQi . ~21!

From Eqs.~19!, ~20! and ~4!, one obtains

1

m
@LiPi1PiLi2Li #5

1

m
@PiLiPi2QiLiQi #

52@Pi~W iW i !Pi2Qi~W iW i !Qi #,

~22!

which is accurate to second-order, and can be used a
initial guess@instead of theLi50 guess used in Eq.~11!#,
for the iterative scheme in Eq.~12!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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III. MASS-WEIGHTING AND IDEMPOTENCY

Consider a partitioning of thePi 11 matrix given in Eq.
~4!. In particular, consider the projected blocks:@PiPi 11Pi #,
@PiPi 11Qi #, @QiPi 11Pi #, and @QiPi 11Qi #. It is clear from
Eqs.~4! and ~8! that

Pi@Pi 11#Pi5Pi1
Dt2

2m
PiLiPi , ~23!

Pi@Pi 11#Qi5Pi$W iDt%Qi2Pi H Dt2

2m

]E~Ri ,Pi !

]P U
R
J Qi ,

~24!

and

Qi@Pi 11#Qi52
Dt2

2m
QiLiQi . ~25!

Note that Pi@]E(Ri ,Pi)/]PuR#Pi5Qi@]E(Ri ,Pi)/]PuR#Qi

50 from Eq. ~8!, andPiW iPi5QiW iQi50 from Eq. ~14!.
Also, the term @QiPi 11Pi #[@PiPi 11Qi #

T, by definition,
since all matrices are real-symmetric. Hence, the Lagran
constraint matrixLi affects the occupied–occupied@see Eq.
~23!# and virtual–virtual@see Eq.~25!# blocks of the density
matrix ~with reference toPi), but not the occupied–virtua
block @Eq. ~24!#. The occupied–virtual block of the densit
matrix is free to respond to the fictitious velocity of the de
sity matrix, i.e.,W i , and the force on the density matrix, i.e
$2]E(Ri ,Pi)/]PuR%. Furthermore, the force on the densi
matrix does not affect the dynamics of the occupie
occupied and virtual–virtual blocks.

To understand the dynamics of the density matrix m
clearly, let us consider the propagation of the individu
blocks ofPi 11 as defined by Eqs.~23!–~25!. The occupied–
virtual block, denoted by Eq.~24!, dictates how the virtua
orbitals at time stepi couple with the occupied orbitals a
time step i to produce the density matrix at (i 11). This
coupling is, however, governed by the magnitude of the
titious density velocity~which may be arbitrary! and the
force on the density matrix, as shown in Eq.~24!. To control
this arbitrariness in the dynamics of the occupied–virt
block of the density matrix, and in particular the core–virtu
block, a mass weighting scheme is introduced here by g
eralizing the fictitious mass to a matrix of masses,mI . ~Note
that the fictitious mass matrix is represented by the sym
mI , whereas its scalar counterpart, used earlier in this pa
and in Ref. 11, is represented simply asm.! As will be seen in
the results section, this has the effect of maintaining go
energy conservation even for larger time steps, as comp
to those allowed when the fictitious mass is treated as a
lar quantity.

Another rationalization for mass-weighting may be o
tained from considering the following fact. For dynamics
the Born–Oppenheimer surface, the density matrix elem
for the core orbitals of an atom change more slowly than
the valence orbitals since the core is more tightly bound
the nucleus. Hence, it is useful to have a larger mass for
core orbitals and a smaller mass for the valence orbital
order to increase integration efficiency.
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To incorporate mass-weighting into our formalism, t
mass-weighted density velocity is defined as@mI 1/4WmI 1/4#.
The Lagrangian in Eq.~1! may then be generalized as

L5 1
2Tr~VTMV !1 1

2Tr~@mI 1/4WmI 1/4#2!2E~R,P!

2Tr@L~PP2P!#, ~26!

which yields the Lagrange equation for the density matr
given by

mI 1/2
d2P

dt2
mI 1/252F]E~R,P!

]P U
R

1LP1PL2LG , ~27!

where we have assumed thatmI does not depend ont. Eq.
~27! can be integrated as usual to obtain

Pi 115Pi1W iDt2
Dt2

2
mI 21/2F]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li GmI 21/2, ~28!

W i 11/25W i2
Dt

2
mI 21/2F]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li GmI 21/25
Pi 112Pi

Dt
, ~29!

W i 115W i 11/22
Dt

2
mI 21/2F]E~Ri 11 ,Pi 11!

]P U
R

1Li 11Pi 111Pi 11Li 112Li 11GmI 21/2. ~30!

Unlike the quantityPi$(1/m)@LiPi1PiLi2Li #%Qi @see
Eq. ~13!# for the scalar mass case, the corresponding quan
for the mass-matrix case, i.e.,

Pi$mI
21/2@LiPi1PiLi2Li #mI

21/2%QiÞ0, ~31!

if @mI ,Pi #Þ0. As a result, mass-weighting allows for th
idempotency force,$mI 21/2@LiPi1PiLi2Li #mI

21/2%, to af-
fect the occupied–virtual blocks of the density matrix in~28!
@to control the arbitrary effect ofW i in Eq. ~24!#. Hence, by
appropriate choice of themI matrix, a method is obtained to
control the occupied–virtual~and in particular the core
virtual! part of the density matrix, since now the total forc
in Eq. ~28! ~i.e., including the gradient term as well as th
force due to deviation from idempotency! acts on all four
projected blocks

Pi@Pi 11#Pi5Pi2
Dt2

2
Pi H mI 21/2F]E~Ri ,Pi !

]P U
R

1LiPi

1PiLi2Li GmI 21/2J Pi , ~32!

Pi@Pi 11#Qi5Pi$W iDt%Qi2
Dt2

2
Pi H mI 21/2F]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li GmI 21/2J Qi , ~33!

and
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Qi@Pi 11#Qi52
Dt2

2
Qi H mI 21/2F]E~Ri ,Pi !

]P U
R

1LiPi

1PiLi2Li GmI 21/2J Qi . ~34!

As a consequence of Eq.~31!, an alternate iteration
scheme is needed to conserve idempotency for the m
weighting case, since the scheme presented in Ref. 11 a
Sec. II @see Eq.~12!# only updates the occupied–occupie
and virtual–virtual blocks of the density matrix, as is se
from Eq.~13!. In this section two new schemes are presen
to preserve idempotency for the mass-matrix case.

In the first scheme, an approach similar to that in Ref.
is adopted, by starting with

Pi 11* 5Pi1W iDt2~Dt2/2!

3$mI 21/2@]E~Ri ,Pi !/]PuR#mI 21/2%. ~35!

From Eq. ~28! it is noted that the correction from the La
grangian multiplier matrix has the form@mI 21/2AmI 21/2#,
where the matrix A has only occupied–occupied an
virtual–virtual blocks. Using Eq.~12! as a guide, one may
then iterate

Pi 11←Pi 11* 1mI 21/2@PiTPi1QiTQ i #mI
21/2, ~36!

where T5mI 1/2@P̃i 112Pi 11* #mI 1/25mI 1/2@3Pi 11
2 22Pi 11

3

2Pi 11* #mI 1/2. As in the scalar mass case, the iterative sche
here converges rapidly and is stopped when$Tr@(Pi 11

2

2Pi 11)2#%1/2/N,10212, whereN is the size of the matrice
involved ~i.e., N is the number of basis functions!.

To obtainW i 11 , it is necessary to satisfy the time d
rivative of the idempotency condition, i.e., Eq.~14!. This is
solved iteratively, by first choosing

W i 11* 5W i 11/22~Dt/2!

3$mI 21/2@]E~Ri 11 ,Pi 11!/]PuR#mI 21/2%, ~37!

and then iterating

W i 11←W i 11* 1mI 21/2$Pi 11T̃ i 11Pi 11

1Qi 11T̃ i 11Qi 11%mI
21/2, ~38!

whereT̃ i 115mI 1/2@W̃ i 112W i 11* #mI 1/2 andW̃ i 115dP̃i 11 /dt
5Pi 11W i 11Qi 111Qi 11W i 11Pi 11 . Here again, the itera
tion converges rapidly and is stopped wh
$Tr@(W i 11Pi 111Pi 11W i 112W i 11)2#%1/2/N,10212.

It should be noted that, as in the scalar mass case
initial guess forPi 11 andW i 11 above, i.e., the expression
in Eqs. ~35! and ~37!, correspond to choosingLi50. A
higher-order, initial guess for an idempotentPi 11 may be
obtained by using the fact thatW iPi1PiW i5W i is already
satisfied by the use of Eqs.~37! and ~38!, for the previous
time step i . Since, a solution toW i , requires having an
approximation toLi @see Eq.~30!#, this approximation may
be used in generating an initial guess forPi 11 . Thus, using
Eqs.~28!–~30!, one obtains

Pi 115Pi12W iDt2W i 21/2Dt, ~39!
Downloaded 28 Nov 2001 to 155.101.19.23. Redistribution subject to A
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which is a higher order initial guess forPi 11 and may be
used in conjunction with the iterative scheme described
Eq. ~36!. The termW i 21/2 in Eq. ~39! is given by Eq.~29!,
for the time stepi .

IV. ENERGY CONSERVATION AND ADIABATIC
CONTROL

To study the energy conservation properties for the
grangian in Eq.~26!, one can write down the conjugat
Hamiltonian, which is given by the Legendre transform23 of
the Lagrangian

H~P,W,R,V,t !5Tr~WW!1Tr~V TV!2L~P,W,R,V,t !,
~40!

where W and V are the conjugate momenta forP and R,
respectively, and are given by

W5
]L
]W

5mI 1/2WmI 1/2 ~41!

and

V5
]L
]V

5MV . ~42!

Using Eqs.~41! and~42! in Eq. ~40!, one obtains the conju
gate Hamiltonian as

H5 1
2Tr~V TM21V!1 1

2Tr~WmI 21/2WmI 21/2!1E~R,P!

1Tr@L~PP2P!#. ~43!

To study the conservation property for the above Ham
tonian, consider the total derivative ofH with respect tot,
i.e.,

dH
dt

5TrF]H
]P

dP

dt
1

]H
]W

dW
dt

1
]H
]R

dR

dt
1

]H
]V

dV
dt G

5TrF S ]E~R,P!

]P U
R

1LP1PL2LDWG
1TrFW d2P

dt2 G1TrF ]E~R,P!

]R U
P

VG
1TrFVM

d2R

dt2 G , ~44!

where the definitions in Eqs.~41! and ~42! have been used
and it is also assumed thatmI is time independent. Now, usin
the Lagrange equations of motion, i.e., Eqs.~27! and ~3!, it
follows that:

dH
dt

50. ~45!

This proves that the Hamiltonian in Eq.~43! @and hence
the Lagrangian in Eq.~26! and its special scalar fictitiou
mass case in Eq.~1!# represents a conservative system, i.
the total energy associated with this system should alway
a constant.

Let us now partition the Hamiltonian such that

H5Hreal1Hfict , ~46!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereHreal andHfict represent the real and fictitious parts
the full Hamiltonian and are defined as

Hreal5
1
2Tr~V TM21V!1E~R,P!1Tr@L~PP2P!# ~47!

and

Hfict5
1
2Tr@WmI 21/2WmI 21/2#. ~48!

The definitions forHreal andHfict , above, are consistent wit
the usual definitions5 for the real and fictitious energy in th
CP scheme. Using Eq.~27!, it then follows that:

dHfict

dt
5TrF]Hfict

]W
dW
dt G

5TrFmI 21/2WmI 21/2
dW
dt G

5TrFWmI 1/2
d2P

dt2
mI 1/2G

52TrFWS ]E~R,P!

]P U
R

1LP1PL2LD G . ~49!

In accordance with Eq.~45!, dHreal/dt is simply the negative
of dHfict /dt. The value ofdHfict /dt ~and hencedHreal/dt),
for the special case of scalar fictitious masses is obtaine
noting that in this casemI 1/2[m1/2I , whereI is the identity
andm1/2 is the square root of the scalar fictitious mass s
in Sec. II and Ref. 11.

A few comments regarding Eq.~49! are now in order.~i!
Equation~49! represents the rate at which a trajectory ge
erated from the solution to Eqs.~27! and ~3! @or the special
scalar mass equations~2! and ~3!# deviates from a standar
Born–Oppenheimer trajectory1–3 ~since for a trajectory tha
exactly follows the Born–Oppenheimer surfacedHreal/dt
50). Furthermore, since Eq.~49! exhibits a dependence o
mI 1/2, the magnitude of the fictitious mass~or in the mass-
weighting case theL2-norm of the fictitious mass matrix!
determines the deviations from the Born–Oppenheim
trajectory.27 This is an important result, since as noted la
in Sec. VI and as seen in Ref. 11, the current method ind
allows for relatively small values of the fictitious mass, wh
maintaining larger time steps. Additionally, in molecular d
namics it is usually defined that the dynamics of nuclei oc
on the electronic ground state potential energy surface~in the
absence of conical intersections28–30!, hence it is important
to keep the terms in Eq.~49! small. ~ii ! Since it is also de-
sirable that time averages of various properties derived f
the actual Born–Oppenheimer dynamics be identical to th
derived from a fictitious dynamics calculation, like that d
scribed here, it is necessary that the quantitiesdHfict /dt and
dHreal/dt oscillate about zero. In the rest of this section,
algorithm will be derived that is useful to control and mon
tor the magnitude of the quantities in Eq.~49! during the
progress of a simulation.

The first condition described above may be achieved
checking the absolute value of the right-hand side in Eq.~49!
for every time step. If this absolute value is less than so
user-defined threshold, the dynamics is representative o
Born–Oppenheimer trajectory to within that threshold. No
Downloaded 28 Nov 2001 to 155.101.19.23. Redistribution subject to A
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that it is also possible to check the value of the fictitio
kinetic energy at the point wheredHfict /dt'0, i.e.

HfictudHfict /dt50[ 1
2Tr@mI 1/2WmI 1/2W#udHfict /dt50 . ~50!

The value of the fictitious kinetic energy on the right-ha
side of Eq.~50! represents the maximum~or minimum! de-
viation of the fictitious dynamics trajectory from thetrue
Born–Oppenheimer energy surface.

The second condition may be checked by evaluating

E
t50

t5T

dt
dHfict

dt
[Hfictu t5T2Hfictu t50, ~51!

wheret5T represents the total propagation time. The va
of the right-hand side in Eq.~51!, along with a chosen set o
stationary points from Eq.~50!, will help ascertain the oscil-
latory nature ofHfict(t).

Equations~49!–~51! together provide a method to gaug
the deviation of the fictitious dynamics from thetrue Born–
Oppenheimer dynamics trajectory. If any of the conditio
above is not satisfied, then it will be necessary to go bac
the previous time step and re-propagate, but now with eit
a smaller time step or a smaller fictitious mass, chosen s
that the above conditions are met to within the user-defi
threshold. Choosing the smaller fictitious mass will result
a jump or sharp change in the dynamics trajectory, which
akin to a quenching process commonly employed
molecular-dynamics methods. This kind of method leads
anadaptivemolecular dynamics scheme that always rema
within a specified limit from the Born–Oppenheimer traje
tory, i.e., the adiabaticity of the trajectory can becontrolled
in this fashion.31

The evaluation of all conditions described above
volves the trace of a matrix product. The number of ope
tions here scales asN2 multiplications for full matrices and is
O(N) for sparse matrices, whereN is the size of the matrices
involved, i.e., the number of basis functions used. For
remaining portion of this section, we will investigate how
obtain good estimates to the right-hand side in Eq.~49! by
using computationally faster algorithms.~These will be use-
ful only for the full dense matrix case, since for sparse m
trices the methods described above are alreadyO(N).) Us-
ing the concept ofL2-norm, one may write

UdHfict

dt U<NIWmI 1/2
d2P

dt2
mI 1/2I

<NiWi ImI 1/2
d2P

dt2
mI 1/2I

[NiWi I ]E~R,P!

]P U
R

1LP1PL2LI , ~52!

where the Schwartz inequality32 has been used andiWi rep-
resents theL2-norm of the matrixW, i.e., the maximum
absolute eigenvalue ofW. Since it is possible to obtain a
upper bound toiWi ~see, for example, Ref. 33!, and simi-
larly for imI 1/2(d2P/dt2)mI 1/2i , and since all matrices,P, W,
d2P/dt2, W, etc. are finite dimensional, it is possible to o
tain an upper bound to the right-hand side in Eq.~49! quite
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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easily by using Eq.~52!. But, first, it is important to ascertain
under what conditions truly useful bounds can be obtai
from Eq. ~52!. Obviously,

lim
iWmI 1/2~d2P/dt2!mI 1/2i→0

dHfict

dt
50, ~53!

since, as the maximum absolute eigenvalue of a fin
dimensional matrix goes to zero, the trace of the ma
should also go down to zero. Hence, for small values
iWmI 1/2(d2P/dt2)mI 1/2i , it may be expected that Eq.~52!
provides truly ‘‘tight’’ bounds todHfict /dt. However, for
large values ofiWmI 1/2(d2P/dt2)mI 1/2i , it is conceivable that
the bounds obtained from Eq.~52! are not as tight. In such
cases, the upper bound toiWmI 1/2(d2P/dt2)mI 1/2i may di-
rectly be used as an estimate fordHfict /dt, i.e.,

UdHfict

dt U'iWi I ]E~R,P!

]P U
R

1LP1PL2LI . ~54!

The upper bound in Eq.~52!, or the estimate in Eq.~54!, may
be compared to the user-defined threshold to evaluate
accuracy of the trajectory. Alternately, the Frobenius norm32

of the matrix product in Eq.~49! may also be used in Eq
~52!, since it is an upper bound to the trace. However,
Frobenius norm is not a very tight upper bound33 to the trace,
hence theL2-norm has been used in Eqs.~52! and~54!. Also
the evaluation of theL2-norm scales asN2 additions, which
has a much smaller prefactor as compared to the evalua
of the exact expressions stated above, in Eq.~49!.

In this section a methodology has been presented to
timate the error in the fictitious dynamics trajectory wi
respect to atrue Born–Oppenheimer dynamics trajector
The quantities in Eqs.~49!–~51! provide exact deviations
which can be readily evaluated. However, for dense ma
systems, approximations to these results are provided, w
may be calculated at lower computational cost. These res
can be used to control the deviation of the fictitious dyna
ics trajectory from the true Born–Oppenheimer dynam
trajectory ~and hence the adiabaticity! to within physically
enforced limits. For all the techniques described above,
number of operations required scales linearly with syst
size for sparse matrices.

When dealing with metals and other small band-gap s
tems, the above formalism will limit the size of the fictitiou
mass, and hence the time step, in order to achieve pr
adiabaticity. This may result in a propagation scheme tha
not computationally as efficient. Hence, for small band-g
systems, it will be necessary to use an alternative schem
enforce adiabaticity.34

V. CHOICE OF INITIAL CONDITIONS FOR THE
DENSITY MATRIX VELOCITY

The choice of initial velocities for the nuclei are go
erned by the temperature at which the simulations are to
performed. However, the choice of initial density matrix v
locity is not as intuitively obvious. There are restrictions
such a choice. For one it is necessary to maintain the den
matrix ‘‘temperature’’ to be as low as possible, since a hig
temperature would give rise to energy exchange and po
Downloaded 28 Nov 2001 to 155.101.19.23. Redistribution subject to A
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tially thermal equilibration between the density matrix a
nuclear degrees of freedom. Such a thermal equilibri
could at any time lead to nonphysical electronic surfa
crossings. By avoiding such a situation it is possible to ma
tain the dynamics on a given electronic state, i.e., close to
associated Born–Oppenheimer surface.

There are two facets to controlling the fictitious ele
tronic kinetic energy:~i! The choice of initial velocity of the
density matrix elements must in some sense be consis
with the choice of initial velocities of the nuclei, and~ii ! the
density matrix velocities at any given time must be ma
tained such that the ‘‘temperature’’ of the fictitious electron
degrees of freedom are restricted below a certain value
this section the first problem is addressed. The second p
lem can be controlled as explained in Sec. IV.

Among the various possible choices for initial dens
matrix velocities, one of the conceptually simplest choic
includes choosing a fixed value for the fictitious kinetic e
ergy at timet50. The individual elements ofW, at time t
50, may, however, be chosen randomly as long as the t
fictitious kinetic energy is constant. In this case, the el
tronic degrees of freedom will need to ‘‘catch-up’’ with th
nuclei, if the initial choice is not consistent with the choic
of the nuclear kinetic energy, and a certain number of sim
lation steps will be expended for this equilibration proce
Such an equilibration process will also see some exchang
energy between the nuclear and density matrix parts of
system, before the equilibration is complete. As stated ab
this exchange could give rise to spontaneous excitations
pending upon the band-gap of the system. Hence, for la
band-gap systems, like insulators and some semiconduc
this may be a viable choice but precious simulation tim
could be lost in the equilibration process.

A better, but more expensive, choice is to obtain t
velocity from converged or approximately converged se
consistent field~SCF! calculations. In this case, the initia
nuclear positions are propagated forward in time for exac
one time step using the exact gradients of the conver
initial density matrix. At the new nuclear conformation eith
a full SCF calculation could be performed or a limited num
ber of conjugate gradient density matrix sear
~CG-DMS!17,18 steps could be used to obtain a converged
approximately converged density matrix. In a similar fas
ion, the initial nuclear positions may be propagated ba
wards in time for again one time step, and a fully converg
or approximately converged, density matrix obtained. Us
the three density matrices at timest52Dt, t50 and t5
1Dt, one may obtain the density matrix velocity att50
using a finite difference approximation35 to the derivative of
a function. Higher order, and hence more accurate, appr
mations could also be used by obtaining more converge
approximate densities at different times such ast522Dt,
t512Dt and so on.

VI. COMPUTATIONAL TESTS

Solvation of ions in aqueous medium is of great practi
interest and has recently attracted considerable atten
both from theoretical36–42 and experimental43–45 groups.
Here, the dynamics of a Cl2~H2O!25 cluster is considered
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Trajectories for the Cl2~H2O!25 cluster with no thermostats,a using the scalar mass formalism.a

M e
b

~amu bohr2!
Time step

~femtosecond!
Trajectory time
~femtosecond!

Conservation of
total energy
~hartree!c

Conservation of
real energy
~hartree!d

0.1 0.01 20 0.0002 0.003
0.1 0.03 30 0.0004 0.002
0.1 0.06 120 0.0024 0.002
0.15 0.06 105 0.0022 0.005
0.2 0.06 100 0.0022 0.005
0.2 0.07 80 0.0017 0.005

aAll calculations used DFT with the PBE exchange-correlation functional~Ref. 51!, while the basis set used wa
3-21G* ~number of basis function5344). Cholesky orthogonalization procedure was used in all calculat
to obtain the orthonormal basis set~see Ref. 11 for details!.

b1 amu bohr251823 a.u.
cMaximum deviation of the total energy of the system~defined as the sum of the total potential energy,E, the
nuclear kinetic energy and the fictitious kinetic energy of the density matrix! during the trajectory.

dMaximum deviation of the real energy of the system~defined as the sum of the total potential energy,E and the
nuclear kinetic energy, i.e., the total energy described above minus the fictitious kinetic energy of the d
matrix! after equilibration. The initial equilibration process, discussed in the text, involved exchange of e
between the nuclear and electronic degrees of freedom where the electrons ‘‘catch-up’’ with the nucle
h
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AIMD trajectories are obtained using three different tec
niques: The scalar mass equations presented in Ref. 11
here in Sec. II, the mass-weighting scheme presented in
III, and by using pseudo-potentials46–48 to replace the core
electrons. The effect of the magnitude of the fictitious m
on energy conservation, adiabaticity, and allowable ti
steps were studied. The all-electron calculations~for both
scalar mass and mass-matrix schemes! were performed using
an all electron double zeta basis set with polarization fu
tions on the chloride ion~the 3-21G* basis set!. The pseudo-
potential calculations are performed using the CEP-31G46–48

basis set, where a valence double zeta basis set with p
ization functions on the chloride ion are used along w
appropriate pseudopotentials to replace the oxygen 1s and
the chlorine 1s, 2s, and 2p core functions.46–48Further, we
chose the Cholesky decomposition scheme26 to obtain the
orthonormal basis set~see Ref. 11 or Sec. II! in all our cal-
culations. The reason for this choice has to do with the m
expensiveN3 computational scaling in obtaining the Lo¨wdin
symmetricS81/2 matrix.49 The Cholesky decomposition, o
ov 2001 to 155.101.19.23. Redistribution subject to A
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nd

ec.
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ar-

re

the other hand, scales only asN2 even for full-matrices and
is strictly O(N) for the sparse matrix case. Furthermore, t
use of Löwdin symmetric orthogonalization does not provid
any noticeably different trajectories from those obtained
Cholesky orthogonalization, as was demonstrated in Ref.
Starting nuclear geometries for all trajectories were obtai
from an MM3 minimization. All calculations were per
formed using a development version of theGaussianseries
of electronic structure codes50 and with density-functional
theory using the PBE exchange-correlation functional.51 The
results are shown in Tables I–III.

For the mass-weighting scheme, a diagonal fictitio
mass-matrix,mI was chosen. The diagonal representation i
plies that the orthonormal basis set vectors~Cholesky or
Löwdin, depending upon the choice! are the eigenstates o
the mass-matrix.52 Since these basis set vectors, in gene
will never be the eigenstates of thePi matrix, this choice
trivially yields @mI ,Pi #Þ0. There are, of course, other po
sible and more general choices formI , and these will be in-
vestigated in future publications. Here, the value of a parti
s
ions

ensity
nergy
i.
TABLE II. Trajectories for the Cl2~H2O!25 cluster with no thermostats,a using the mass-weighting scheme.a

M e
b

~amu bohr2!
Time step

~femtosecond!
Trajectory time
~femtosecond!

Conservation of
total energy
~hartree!c

Conservation of
real energy
~hartree!d

0.05 0.20 320 0.0027 0.005
0.1 0.20 400 0.0027 0.005
0.1 0.25 500 0.0025 0.005
0.15 0.20 400 0.0025 0.005
0.15 0.25 500 0.0025 0.007

aAll calculations used DFT with the PBE exchange-correlation functional~Ref. 51!, while the basis set used i
3-21G* ~number of basis function5344). Cholesky orthogonalization procedure was used in all calculat
to obtain the orthonormal basis set~see Ref. 11 for details!.

b1 amu bohr251823 a.u.
cMaximum deviation of the total energy of the system~defined as the sum of the total potential energy,E, the
nuclear kinetic energy and the fictitious kinetic energy of the density matrix! during the trajectory.

dMaximum deviation of the real energy of the system~defined as the sum of the total potential energy,E and the
nuclear kinetic energy, i.e., the total energy described above minus the fictitious kinetic energy of the d
matrix! after equilibration. The initial equilibration process, discussed in the text, involved exchange of e
between the nuclear and electronic degrees of freedom where the electrons ‘‘catch-up’’ with the nucle
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Trajectories for the Cl2~H2O!25 cluster with no thermostats,a using pseudopotentials.a

M e
b

~amu bohr2!
Time step

~femtosecond!
Trajectory time
~femtosecond!

Conservation of
total energy
~hartree!c

Conservation of
real energy
~hartree!d

0.1 0.05 55 0.0001 0.001
0.1 0.10 45 0.0001 0.001
0.1 0.15 230 0.0002 0.002

aAll calculations uses DFT with the PBE exchange-correlation functional~Ref. 51!, while the basis set used i
CEP-31G~Refs. 46 to 48! ~number of basis function5314). Cholesky orthogonalization procedure was used
all calculations to obtain the orthonormal basis set~see Ref. 11 for details!.

b1 amu bohr251823 a.u.
cMaximum deviation of the total energy of the system~defined as the sum of the total potential energy,E, the
nuclear kinetic energy and the fictitious kinetic energy of the density matrix! during the trajectory.

dMaximum deviation of the real energy of the system~defined as the sum of the total potential energy,E and the
nuclear kinetic energy, i.e., the total energy described above minus the fictitious kinetic energy of the d
matrix! after equilibration. The initial equilibration process, discussed in the text, involved exchange of e
between the nuclear and electronic degrees of freedom where the electrons ‘‘catch-up’’ with the nucle
o
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lar diagonal element ofmI was chosen based on the value
the corresponding element in the Fock matrix at the ini
time step. Particularly, it was assumed that if the diago
Fock matrix elementFi .i,22 a.u., at the initial time step
the corresponding orbital is a core orbital, and ifFi ,i>
22 a.u., at the initial time step, the corresponding orbita
valence. The mass-matrix chosen has the following cons
form:

mI i ,i
1/25AMe, Fi ,i>22 a.u., ~55!

mI i ,i
1/25AMe@2AuFi ,i12u11#, Fi ,i,22 a.u., ~56!

mI i , j
1/250, iÞ j , ~57!

whereMe is a constant and may be considered as the m
of the valence orbitals, as seen from Eq.~55!. The choice of
the functional form in Eq.~56! is based on a harmonic
oscillatorlike assumption for the orbital energies. The res
of including the mass-weighting factor in Eq.~56! is that the
core orbital oscillations get adjusted to roughly the sa
frequency as that for the valence orbitals. Note that, in g
eral, the above choice formI may not be the most effective
since it is hard to fix a universal energy criterion for sepa
tion between core and valence orbitals for all atoms,53 and
also the harmonic oscillator approximation, while reaso
able, may not be the most effective choice in many ca
The current choice ofmI is used here only to demonstrate t
applicability of our mass-weighting scheme, and as will
seen later in this section, it is useful for the application st
ied here. More general approaches to the mass-matrix wi
considered in future publications.

The most striking aspect seen from the tables is the
nificantly larger time steps that are accessible due to the
of the mass-weighted propagation scheme presented in
paper. Needless to say, this results in being able to propa
longer and more stable trajectories. Employing pseudopo
tials permits time steps larger than those allowed in the sc
mass case, but smaller than allowed by the use of the m
matrix scheme.

Increasing the fictitious mass is another way to obt
larger time steps. However, as pointed out in Sec. III this
not in general advisable, since larger fictitious masses lea
ov 2001 to 155.101.19.23. Redistribution subject to A
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deterioration in electronic adiabaticity. This aspect is a
noted in our calculations, where it was found that, for t
mass-weighting case, increasing the value ofMe in Eqs.
~55! and~56! results in a drift in the fictitious kinetic energy
For example, compare the drift in the fictitious kinetic ener
in Fig. 1~b!, obtained from a value ofMe50.2 amu bohr2

'364 a.u., as opposed to its more steady behavior a
equilibration in Fig. 1~a!, obtained forMe50.1 amu bohr2

'182 a.u. Both figures are for a time step of 0.25 fs and to
propagation time of 500 fs (50.5 ps). The deviations ar
even greater for larger values ofMe . A reduction in the size
of the fictitious mass (Me50.05 amu bohr2'91 a.u.) results
in a reduction of allowable time step size~to 0.2 fs!.

Another interesting observation from the tables is th
the real energy is conserved to a lower~but acceptable! de-
gree in the mass-weighted calculation as compared to
scalar mass and pseudopotential calculations. There are
factors that contribute to this. Firstly, the time steps used
the mass-weighted calculations are higher than those use
the scalar mass and pseudopotential calculations. Seco
as seen from Eq.~56!, the core orbitals in the mass
weighting scheme are ‘‘heavier’’ than the valence orbita
This yields a larger value for theL2-norm of themI 1/2 matrix,
and as is seen from Eqs.~49! and~52!, this in turn leads to a
larger value ofu (dHfict /dt) u, and hence poorer conservatio
of the real energy in the mass-weighted propagation sche
In any case, the conservation of the real energy is found to
acceptable since the deviations seen in Table II are of
order of 0.0002% with respect to the total energy of t
system~see Fig. 1 and caption!. It should also be noted her
that, as stated after Eq.~57!, the quantityMe has the ‘‘physi-
cal’’ interpretation of being the fictitious mass of the valen
orbitals in the mass-weighting scheme. This should be co
pared with the notation used in the plane-wave Ca
Parrinello method, where fictitious mass stands for the m
of the valence orbitalsonly, since pseudopotentials are us
to replace the core.

Apart from the discussion in Sec. III and the results se
in our study, another important reason to keep the value
the fictitious mass of the density matrix elements small
that the mass of a single hydrogen atom is 1836 a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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([1.008 amu). Hence, as the value of the fictitious el
tronic mass gets closer to this number, the separation in
scales between electronic motions and motions of hydro
and hydrogenlike systems becomes smaller, and the fictit
system deviates further away from the real system due
energy exchange. The value ofMe used in our calculations
is small as compared to the mass of the hydrogen at
hence a good degree of separation of time scales is m
tained through all of the simulations. It is useful to note th
typically,36–41 in order to utilize time steps of reasonab
size, the magnitude of the fictitious mass chosen in pla
wave Car–Parrinello calculations for water
;0.6 amu bohr2 ('1100 a.u.36–41!, i.e., six times larger in
magnitude as compared to ourMe50.1 amu bohr2

'182 a.u. calculation. The associated effects of the la
electronic mass in the CP calculations are often countere
using Deuterium nuclei instead of Hydrogen nuclei in wa
simulations. This, however, is not necessary here, since
fictitious electronic masses used are much smaller.

The time steps allowed in the mass-weighted schem
this study~0.25 fs for theMe50.1 amu bohr2'182 a.u. cal-

FIG. 1. AIMD trajectories for the Cl2~H2O!25 cluster dynamics calculation
using the mass-weighting scheme:~a! fictitious electronic mass,Me

50.1 amu bohr2'182 a.u., ~b! fictitious electronic mass, Me

50.2 amu bohr2'364 a.u. In both figuresDt50.25 fs and total simulation
time50.5 ps. The average electronic energy and average total energy fo
full duration of both simulations is of the order of22355 a.u. Note the
gradual drift in the fictitious kinetic energy in~b! ~although small compared
to the total electronic energy!, as opposed to the more steady behavior in~a!
after equilibration.
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culation!, are nearly twice the time steps commonly used
plane-wave Car–Parrinello studies of solvation.36–41The dif-
ference between the present AIMD implementation and t
in the plane-wave Car–Parrinello scheme is the use of lo
ized Gaussian orbitals and the single particle density ma
here, as opposed to global plane-waves and the occu
Kohn–Sham wave functions in the CP method. The ot
important difference is the use of pseudopotentials in pla
wave Car–Parrinello scheme, whereas the present me
has the freedom to either treat all electrons rigorously~the
scalar mass formalism discussed in Ref. 11 and in Sec.
this paper!, weigh the core differently from the valence t
reduce core-unoccupied orbital coupling~the mass-weighting
scheme discussed in Sec. III!, or to use pseudopotentials.

For the scalar mass case, again, it is found that lar
values of the fictitious mass resulted in larger fictitious
netic energies, and hence greater deviations from adiab
ity. A fictitious mass of'0.1 amu bohr2'182 a.u. allowed a
time step of 0.06 fs within this scheme~cf. Table I!. Further
increase in the fictitious mass~0.15 and 0.2 amu bohr2) does
not, in this case, provide any reasonable gain in the size
the time step to be chosen.~As may be noted from Table I, a
larger fictitious mass of 0.2 amu bohr2 ('364 a.u.) allows
only a slightly larger time step. Increasing the time step a
further results in complete loss of idempotency of the den
matrix, and hence nonphysical trajectories.!

For all calculations the total angular momentum of t
system was conserved to a very high degree (10211\) for the
duration of the simulation, since projection methods we
used to remove residual angular forces.54 Idempotency was
always conserved to better than 10212 using the iterative
scheme presented in Eqs.~36! and ~38! ~with fewer than 10
iterations necessary in all cases!. It was found that the gues
in Eq. ~39! provided an initialPi 11 for Eq. ~36! that was in
most cases an order of magnitude or better in idempotenc
compared to the guess in Eq.~35!.

It was found that a fictitious mass of'0.1 amu bohr2

'182 a.u. is an appropriate choice for the water–cluster s
tem for both mass-weighting~where Me is chosen to be
0.1 amu bohr2) and scalar mass schemes. The ma
weighting case is definitely advantageous since it allows
larger time steps, while providing stable dynamics trajec
ries.

VII. CONCLUSIONS

In this paper, the approach toab initio molecular dynam-
ics introduced in Ref. 11, has been generalized by consi
ing nonscalar fictitious masses. The conservation prope
of this AIMD scheme have been rigorously studied by e
ploying the Hamiltonian formalism. This allows us to esta
lish, on-the-fly, if a given fictitious dynamics trajectory ob
tained from the present scheme is close enough to thetrue
Born–Oppenheimer trajectory~to within user-specified lim-
its!. Approximations to the exact expressions have also b
derived that may be useful to evaluate the accuracy of
trajectories for dense matrix systems. The exact express
in addition to being useful in general, are computationa
O(N) when systems become sparse.
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The matrix fictitious mass generalization allows larg
time steps to be used in the AIMD propagation algorith
This is accomplished with moderate values of the fictitio
mass, hence keeping the loss of adiabaticity to within c
trollable limits and thus maintaining reasonable separa
between the time scales of motion of the electronic~density
matrix! parts and the nuclear parts. For the Cl2~H2O!25 clus-
ter case studied here, a choice ofMe50.1 amu bohr2

'182 a.u., within the mass-weighting formalism, andDt
50.25 fs~or 0.2 fs! was found to be appropriate. This choic
leads to a stable AIMD trajectory within a reasonable co
putational expense.

It was also shown in the discussion that the magnitude
the fictitious mass determines the separations in time sc
and hence it is important to keep its value as small as p
sible. As a result of the combination of smaller fictitiou
mass and a good separation between the time-scales of
tronic and nuclear motions, in the present AIMD meth
hydrogen atom systems may be routinely studied. It is
necessary to substitute heavier isotopes to maintain e
tronic adiabaticity, as is frequently done in plane-wave
calculations.36–41

The combination of a Gaussian-basis along with
single particle density matrix representation of the electro
degrees of freedom, when used in conjunction with an
tended Lagrangian scheme to enable parallel dynam
propagation of nuclei and the electronic density matr
yields a novel and robust computational tool to performab
initio molecular-dynamics simulations. The advantages
this method include:~i! the freedom to rigorously treat a
electrons in the system or to use pseudopotentials;~ii ! the
ability to use reasonably large time steps with small val
for the fictitious mass, which allows one to retain hydrog
atoms in the system and not substitute heavier isotopes;~iii !
the freedom to employ a wide variety of accurate and eff
tive exchange-correlation functionals, including hybrid de
sity functionals;~iv! the ability to treat charged molecula
systems which is non-trivial in most implementations of t
plane-wave Car–Parrinello method due to the need to t
molecular systems as periodic;55 ~v! rigorous on-the-fly con-
trol of the deviation from the Born–Oppenheimer surfa
and the mixing of fictitious and real kinetic energies; and~vi!
good computational efficiency due to the use of fewer ba
functions per atom, larger time steps, and asymptoticO(N)
scaling using established techniques.13,17,18Applications and
extensions of the new AIMD methodology will be the su
ject of future research.
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