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We propose and implement an alternative approach to the original Car—Parrinello method where the
density matrix element@nstead of the molecular orbitalare propagated together with the nuclear
degrees of freedom. Our new approach has the advantage of leading@@Nancomputational
scheme in the large system limit. Our implementation is based on atom-centered Gaussian orbitals,
which are especially suited to deal effectively with general molecular systems. The methodology is
illustrated by applications to the three-body dissociation of triazine and to the dynamics of a cluster
of a chloride ion with 25 water molecules. ®001 American Institute of Physics.
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I. INTRODUCTION bitals have also become a useful adjunct to treat this
problem®
The Car—Parrinell¢CP) (Ref. ) method has become a Quantum chemistry calculations for molecules typically

central tool in ab initio molecular dynamics(MD)  use atom centered Gaussian basis functions. Compared to a
simulationd™* over the last several years. The CP method isplane wave basis, far fewer Gaussians are needed to achieve
essentially an extended Lagrangian MD scheme in which tha desired accuracy, since they are localized in regions of
electronic degrees of freedom are not iterated to convergendseigher electron density and follow the nuclei as they move.
at each step, but are instead treated as fictitious dynamic@he necessary integrals are somewhat more difficult to cal-
variables and propagated along with the nuclear degrees @elilate than for a plane wave basis, but very efficient algo-
freedom by a simple adjustment of time scales. The resultanithms are available to calculate these integrals and their de-
energy surface remains close to a converged adiabatic elefivatives with respect to the atom positiohAtom centered
tronic surface. Such an approach offers significant computebasis functions have been used extensively in Born—
tional advantages for efficient MD calculations. NumerousOppenheimer dynamidagor a review, see Ref.)8 Gaussian
important examples of applications with density functionalbasis functions have also been used with Car—Parrinello dy-
theory (DFT) and the CP method are now well documentednamics in generalized valence bo(@VB) (Refs. 9, 10 and
in the literature(see, e.g., Ref.)5In the original CP ap- Hartree—Fock! calculations where orbital and wave function
proach, the Kohn—Sham molecular orbitgiswere chosen coefficients are propagated in a scheme that has some diffi-
as dynamical variables to represent the electronic degrees ofilty with energy conservatiohAs shown below, energy
freedom® However, this is not the only possible choice, andconservation and adiabaticity are well controlled in the
in this paper we propose an alternative approach in which thpresent method.
individual elements of the reduced one-particle density ma- It is now well established that molecular calculations
trix, P, are explicitly treated as dynamical variables. with atom centered functions can be carried out in computa-
Car—Parrinello calculations are usually carried out in ational times that scale linearly with system size in the large
plane wave basis. These form an orthonormal basis that system limit:?~*4This has been achieved through the use of
independent of the atom positions. Although most of the in-Gaussian orbitals in Kohn—Sham DFT calculations, fast mul-
tegrals can be calculated easily using fast Fourier transforrtipole methods for the Coulomb problefh® and density
methods, a very large basis set is needed to represent theatrix search alternatives with sparse matrix multiplication
orbitals to the desired accuracy. The problem is less severe iéchniques to bypass ti@(N®) Hamiltonian diagonalization
pseudopotentials are used to replace the core electrons, sirlsettleneck!*1"18 For similar reasons, our approach using
the plane wave basis does not easily describe the cusps addnsity matrices and Gaussians fl initio MD has the
high electron density near the nuclei. Recently, Gaussian ofundamental advantage of leading @N) scaling of com-
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putational time with system size. The literature 6fN)  Propagation of the densityn the orthonormal basisand the
electronic structure methods using alternative approaches Bopagation of the nuclei may be obtained as
extensive(see Ref. 12, and references theyein

. I'n the pre_;ent paper, we .outlin(.e the first steps towa(d an ﬁ’: _ JE(R,P) FAP+PA—A|, @)
efficientab initio method for simulating molecular dynamics dt? P |,
of general molecular systems by propagating the density rep-
resented by a Gaussian basis. This paper is organized as  d?R JE(R,P)
follows: In Sec. Il, we present the theoretical framework for MW T TR )
our method. Following this, in Sec. lll, we consider two P

illustrative examples: the trajectories for photodissociation ofin Eq. (3), u is a scalar and all elements of the density matrix

1,3,5 triazine and the solvation of a chloride ion by a clusterare weighted identically. Generalizing to a matrix will be

of 25 water molecules. In Sec. IV we present our concludingconsidered in a subsequent paffeA solution to Eq.(3)

remarks. represents the dynamics of the one-electron density matrix in
orthonormal bases. The nonorthogori@aussiah basis is
used only to calculate the energl, and its derivatives,

Il. THEORY [JE(R,P)/dP|g] and[JE(R,P)/dR|p]. But, since Gaussian
basis sets are atom centered, it is important to note that the

Like density matrix search methods for calculating elec-transformation matriJ is time dependent, i.e., the relation

tronic energied/'8the equations for propagation of the den- between the nonorthogonal and the orthonormal basis is dif-

sity matrix are simplest in an orthonormal basis. In an orthoferent for each time.

normal basis, an extended Lagrangian for the system can be The derivative of the energy with respect to the density

written as matrix in the orthonormal basis is
L= Tr(VIMV)+ u Tr(WW)—E(R,P JE(R,P
2 TH )+ 2 THOWW) —E(RP) ;—P) =3FP+3PF—2FP?—2PFP-2P?F,  (5)
—TrA(PP-P)], ) R

whereM, R, andV are the nuclear masses, positions, andvhereF is the Fock matriy F=h+G(P)] in the orthonor-
velocities, respectively. The density matrix, density matrixmal basis built with the McWeeny purified density.
velocity, and the fictitious mass for the electronic degrees of  Equationg3) and(4) may be integrated using the veloc-
freedom areP, W, and u, respectively(Note thatu does ity Verlet algorithm?® The contributions for the density and
not have the units of mass sinPedoes not have the units of density velocity are given by

distance). Constraints on the total number of electroNsg,,

2

an_d on the idempotency_ o_f the de_nsity matrix are impose%i+lzpi+wim_ A_t JE(R;,Pi) +APAPA - A,
using a Lagrangian multiplier matrix. 2u JP R

Although Gaussian basis functions are not orthogonal, (6)
the Hamiltonian matrix and the density matiX, can easily AtTOER P)

. 12 T iy .

be transTforme,d to an orthonormal basis uskgUP'U’, =W i Fi FAPAHPA — A
whereU'U=9', the overlap matrix. There are a number of 2u P R
choices for this transformatiote.g., U can be obtained by
Cholesky decompositiot?,or U= S'Y2 for Lowdin symmet- _ PP @)
ric orthonormalization This matrix can also include an ad- At
ditional transformation so that overall rotation of the system AtTOE(R +1.Pras)
is factor_ed out of th_e propagatlt_)n of the o_len5|ty. _ Wi =W, 1 — i+1 7+l A 4Py

As in the conjugate gradient density matrix search 2u JpP R
method’*8the energy is calculated using the McWeeny pu-
rification transformation of the densif§, P=3P2—2P3. P A — A |, @)
This leads to

E:Tr[ h'P' + %G'(Ew)fw] +Vn where the Lagrangian constraint matrix for title timestep

5 s i.e., Aj, is chosen to satisfy TP;,;]=N. and Pi2+1
=Tr[ hP+ %G(P)P] + VN 2 =P, .. The constraint terms above contribute only to the

, ey . occupied—occupied and virtual—virtual blocks of the density
whereh’ andG'(P') are the one and two electron matrices magiy  since  P.[AP,+P.A— A ]Q;= Q[ AP, + P A,

in the nonorthogonal basis any is the nuclear repulsion —A,JP.=0, whereQ=I—P and | is the identity matrix
. . | | ’ .
energy. In the orthonormal basis, these matrices fare Thus, instead of solving fon;, we can solve directly for

—11-Th’1]-1 ; P
_U_ h_U . etc. Ir_‘ light of Eq.(2), th? Lagrangian in E_q' .+1 by a simple iterative procedure that minimizes
(1) is invariant with respect to unitary transformations TH (P4 ,—P,,)?]. Starting with P =P+W,At

among orthogonal bases. = _ —[JE(R; ,P)/dP|r](At?/2u) we iterate
Using the principle of stationary acti®nfor the La-
grangian in Eq.(1), the Euler—Lagrange equation for the P 1P 1R TP+ QTQ;, 9)
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whereT=P,,;—P;,,=3P? ,— 2P, ,—P,.,. The iteration | ¥
converges rapidlyas will be seen in the results sectjiand )\ \\

is stopped wheq Tr{ (P2, ;— P, 1)?]}*3¥N<10"'2 The fi- S

nal density velocity needs to satisfy the time derivative of the )| ' —= 3HCN
idempotency condition, W; 1P, 1+P; Wi 1=W,,1.

This can be solved exactly to vyield Aj;;

=[2P;  yW{ 1P 1 — Wi 1 1(2u/ At), where Wiy FIG. 1. Photodissociation of 1,3,5 triazine.
=W, 10— [IE(Ri;1,P;41)/dP|g](At/2u). With this, Eq.
(8) simplifies to

JP'|  ouTPUTT
Wit =W =P Wi P~ Qi Wi 1 Qivg . (10) Rl R
Ui, ~du~T
_ _ = PUTT+U TP

In an orthonormal basis, the constraints do not depend dR dR
on the nuclear coordinates; hence, there are no constraints for du-1 du-T
the propagation of the nuclear coordinates. Since the energy ~ 4R UP' +P'UT iR
is calculated using the purified density, the derivatives with
respect to the nuclear positioffer Eq. (4)] are also calcu- dus du”
lated using the purified density. If atom centered basis func- =-U" ﬁp' P’ﬁ uT, 13

tions are used, the derivative of the energy with respect to the
nuclei consists of not only the Hellmann—Feynman term butvhere we have substituted)/ JR|p=dU/dR, sinceU is ex-

also the Pulayor wave function derivativecontributions’*  plicitly only a function ofR, and not ofP, and depends on
time only through its dependence Bn Inserting Eq(12) or

(13) into Eq.(11), the derivative of the energy with respect

JE dh'_  14G'(®)]| . 9P’ Ny to the nuclei becomes
RITR 2R | PR TR GE| __fdno, 1067
B aR|, drR 2 JR |,
__|dh 1 9G(P) IVNN
_Tr ﬁ +§ &R p aR ' (11) —Tr F U 1d_UP/+P/d_UTU TF/ &VNN
dR dR JR
, dh’ ~ 1 G’ ~
We have used, here, the fact thaandh’ are not functions =TriU T—U P+-UT—| U P
of P, and hencé dh/dR|p]=dh/dR and similarly forh’. dR 2° Ry
The derivatives of the integrals in the orthonormal basis du duT oV
depend not only on the derivatives of the integrals in the —Tr Fﬁu P+ PU‘TﬁF &ISN' (14)

nonorthogonal, atomic orbital basis, but also on the deriva-
tives of the transformation to the orthonormal basis. For ex-  For a converged SCF calculation, the Fock matrix and
ample, the derivative of the one electron matrix in the orthothe density commute in an orthonormal basis, leading to

normal basis is given by

dE JE
dR R,
dh du~Th'u~? dh_ 14G'(E)
R ’ 9 ’ !
dR dR — ’ D
=Tr iR —P + R F’,P ]
_ dh’U 1 dU_Th,U71 U—ThrdU_l
©@RC TR : dR e Wy g B [ M
, . . drR dR IR
oy Y ™
Y WR dR dR _ant oGP 4as’
’ e Tr[dR P+ R P’P —Tr F'P iR P (15
—U—Tﬂu -u- TOI—h hd—UU L (12 ~
B dR dR dR ' where we have used the fact the= P for converged densi-
ties and U™ T[dUT/dR]+[dU/dR]U !
=U"T[dS'/dR]JU . The latter is obtained by differentiat-
This makes use of the relatonU[dU Y/dR] ing U Tsu t=1 (e.g., [dUT/dR]S'U?

=—[dU/dR]JU ! which can be obtained by differentiating +U~[dS'/dR]JU '+ U~ TS [dU"Y/dR]=0). It may be
UU~!=I1. The same terms arise if we compute the densitynoted that the second expression in E5) is the usual
matrix derivative in the non-orthogonal basis, expression for the energy derivative for a converged SCF
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1
=— -T___)? =
2 ( U arY ) BTV
o, v
} can then be used in E¢l4) to compute of the derivatives of
3 the energy with respect to the nuclear coordinates in the gen-

dUU_1 [y dS’U
;3 drR - drR MY
MV MV
<i =0, wu>v, (17
r eral case of unconverged densities.

0-8 Ill. APPLICATIONS

FIG. 2. Starting geometry for the OH,0),5 cluster. To illustrate the implementation of the approach dis-
cussed above, we have considered the dynamics of two sys-
tems: the photodissociation of 1,3,5 triazinggNgH5 (Fig.

1), and the solvation of a Clion by a cluster of 25 water
molecules(Fig. 2).
calculatiof*  and  corresponds  to [dP'/dR|p] Triazine can be excited into either the(7* —n) or the
=—P'[dS'/dR]P’ [from Egs.(11) and (19)]. IA,(7* — ) states; both rapidly convert to the ground state
When the SCF is not converged, the derivativesof which fragments into three molecules of HCN in a concerted
must be computed explicitly. In the case ofvidin or-  fashion?® Table | summarizes calculations with orthogonal

thonormalization, this can be expressetfas semiempirical(PM3) and nonorthogonab initio Hartree—
Fock (HF) and DFT methods with polarized basis sets, using

_2 b (51 dS'Sj)Sj (16) a development version of theaussiAN series of electronic
i 1/2+ 1/2 dR structure code$’ Trajectories were started at the transition

state with converged densities and 10 kcal/mol translational
where s and o; are, respectively, thé&h eigenvector and energy in the transition vector, zero point energy in the re-
eigenvalue of the overlap matr&. For Cholesky orthonor- maining vibrational modes and a rotational energy of 298 K.
malization, the derivative of the transformation is an upperA total integration time of 100 fs ensured that the products
triangular matrix that satisfiefdU™/dR]U+ UT[dU/dR] were well separated. A step size of 0.1 fs was chosen so that
=[dS'/dR] and can be obtained by a simple modification oftotal energy(kinetic and potential energy for the atoms plus
the Cholesky decomposition procedure. Alternatively, onehe fictitious kinetic energy of the density matrix elements
can use the fact thal, U™ !, [dU/dR] and[dU '/dR] are  was conserved te- 10 ° hartree. When a fictitious mass of
the upper triangular, andu™, U™'T, [dUT/dR] and 0.050 amu bolr (~91 a.u) is used for all of the density
[dU~T/dR] are the lower triangular. Thug)~[dUT/dR] matrix elements in HF or DFT calculations, the periods of
+[dU/dR]JU '=U"T[dS/dR]JU™! can be partitioned oscillation range from 0.2 fs for core functions to 1.5 fs for
uniquely into upper and lower triangular parts such that  valence functions. Hence, the oscillation of the slowest elec-

TABLE |. Comparison of trajectories for triazine three-body photodissociation.

Theoretical Integration Conservation of the Path &rror
method technique total energin hartree® (in bohn
PM3 Converged density 0.000020 0.0030

Propagated density 0.000150 0.095
Propagatedno projection 0.000019 0.095
HF/ Converged density 0.000014 0.0029
6-31Qd) Propagated density, hadin orthogonalization 0.000079 0.14
Propagated density, Cholesky orthogonalization 0.000130 0.22
B3LYP®/ Converged density 0.000030 0.0030
6-313d) Propagated density, adin orthogonalization 0.000056 0.11
Propagated density, Cholesky orthogonalization 0.000057 0.21

#Maximum deviation of the total energy of the systédefined as the sum of the total potential enefgythe
nuclear kinetic energy and the fictitious kinetic energy of the density mattikng the trajectory. 1 hartree
(a.u. of energy = 627.51 kcal/mol.

PRelative to a reference trajectory calculated using the Hessian method with a step size of 0.82bamu
‘Reference 28.
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tronic modes is about an order of magnitude faster than th€ABLE II. Trajectories for the CI(H,0),s cluster with no thermostafs.
fastest nuclear modg40-15 fg, ensuring very good sepa-

ration between the degrees of freedom, even without thermo- Conservation ﬁﬂiﬂﬁﬂf
stats. Basis Time Trajectory  of total of purification
To gauge the accuracy of these methods, reference tra-Functional set step  time energy steps[using
jectories were calculated with a Hessian based algofthm  basisset  size (fs)  (fs) (hartreg Eq. (9]
with a small step of fixed distanc®.025 am&? bohr in  pBEY3-21G* 344 0.06 120 0.0024 2
mass-weighted coordinajesvhich corresponds to a maxi- PBE/CEP-31G 314 0.05 50 0.0001 2
mum error of 2.4 10" 8 hartree in the conservation of the PBE/CEP-31G 314  0.10 45 0.0001 8

tOt?-I energy. When Converged densities are used, the _ConseValue of the scalar fictitious masg, is chosen to be 0.1 amu béHr=182
vation of the total energy and the agreement of the trajectorya.u).
with the more accurate Hessian-based path are very gooaixchange correlation functional used for the DFT calculation.

. . : f ‘Maximum deviation of the total energy of the systétefined as the sum of
The error in the conservation of total energy 1 Only S“ghtly the total potential energyE, the nuclear kinetic energy, and the fictitious

larger when the density is propagated, and the maximuminetic energy of the density matiixiuring the trajectory.

deviation of the trajectory from the more accurate path is'Reference 37.

~0.2 bohr, for both Lavdin and Cholesky orthonormaliza- *Pseudopotential plus polarization basis functions added forRefs. 38—
tion. For all calculations idempotency of the density matrix

is maintained to 102 or better through the use of Eq€)

and (10), and angular momentum was conserved to bette{}vave Car—Parrinello calculations. The range of values used

10 - . .
tha_” 10" since projection methods were used_to TeMOV&r the fictitious mass, in this study, are about five times
residual angular force®.Subsequent to initial heating of the smaller than those used in the standard plane-wave Car—

electronic degrees of freedom, the adiabatidily., the drift b, 0o calculationd %6 The time steps used for the cal-

in the dflctlgous klﬂetchgr;]ergy of t_?ﬁ d_e nslﬁyhma?rm CON-  cylations using pseudopotentials are comparable to those
served to better than 10 hartrees(The initial heating was a = ., oniy used for plane-wave Car—Parrinello r#hs? As

.re_s.ullt 9f the cho_lrchg of thebdensny_(;natr(;x \|/(¢I0C|t|es at tq?it may be anticipated, our results indicate that pseudopoten-
|n|t|§1 time-step. This may be considered axin to an ‘t‘aqw "tial calculations permit larger time steps to be used while still
bration process where the density matrix elements “catch-

o . maintaining energy conservation to a satisfactory degree. We
up” with the nuc_lel) . o __also find that the adiabaticity for the pseudopotential calcu-
. Solvation of ions in aqueous medium is of great practicalytiong was maintained to 16 hartree after the initial heat-
interest and has recently attracted considerable attentiqfy of the density matrix. This adiabatic behavior is indicated
from t'he31_36f|rst principles molecglar ) dynamics Fig. 3, where the change in total energy, the fictitious
community. We have computed trajectories for the yinetic energy, and the difference between the two are
chloride—water cluster using the current method. Starting 9eshown, all for the pseudopotential calculation. The zero of
ometries were calculated by MM3 minimization and initial {jne in the trajectory was chosen after the initial increase in
density matrices were obtained from fully converged SCRyg fictitious kinetic energy(Again, the initial heating of the

calculations(see Fig. 2 The initial nuclear velocities were  gensity matrix is due to the initial density matrix velocities
chosen randomly and scaled so that the total nuclear k'”et'ﬁeing chosen as equal to zero in this studihe effect of

energy was equal to 0.100 hartree63 kcal/mo). The den-
sity matrix velocity was chosen to be zero at the initial time
step. Trajectories were computed by density functional o001 | ‘ E————
theory with the PBE(Ref. 37 exchange correlation func- 77 Total Energy - Fieiious KE
tional and using Cholesky orthonormalizatidtuse of the
Lowdin orthogonalization procedure did not provide any dis- oooos | /b ) N SN |
tinguishably different trajectoriesTwo different sets of tra- =z P I 7 AR /]
jectory calculations were performed: one using an all elec-3 O N 2RV VYAV A '
tron double zeta basis set with polarization functions on theg I oY
chlorine, the other using a valence double zeta basis set witls ! M
polarization ~ functons ~on  the chlorine and 2 ‘ |
pseudopotentiaf&“to replace the oxygensiand the chlo- AW L AN
Rk . 8 . . -0.0006 - Y ! V' R
rine 1s, 2s, and 2 core functions. Various combinations of “ i (VAN
step sizes and fictitious masses were tested; selected resul ¢
for £ =0.10 amu bohr (~182 a.u) are shown in Table II.

. _ -0.001 L L L
Angular momentum is conserved to better than 8 0 100 200 300 400 500

. . Number of Simulation steps after density velocity equilibration
through the use of projection methods.

Conservation of the total energy, shown in Fig. 3, re-FIG. 3. Trajectory for the CEP-31G pseudopotential calculation of
flects the accuracy of the integration procedure. Note that w€!™ (H,0)zs cluster;At=0.05 fs;u=0.1 amu bolft. Plot shows the change
are able to obtain good energy conservation while using hyl_n_ total energy, the fictitious kinetic energy of the density r_natrlx_and the

. . difference between the two as a function of the number of simulation steps,
drogens n the water cluster, and we QId not have tp Substisypsequent to equilibration of the density matrix velocitise text for
tute heavier isotopes of hydrogen, as is often done in planetetails.

Chal
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