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Ab initio molecular dynamics: Propagating the density matrix
with Gaussian orbitals
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We propose and implement an alternative approach to the original Car–Parrinello method where the
density matrix elements~instead of the molecular orbitals! are propagated together with the nuclear
degrees of freedom. Our new approach has the advantage of leading to anO(N) computational
scheme in the large system limit. Our implementation is based on atom-centered Gaussian orbitals,
which are especially suited to deal effectively with general molecular systems. The methodology is
illustrated by applications to the three-body dissociation of triazine and to the dynamics of a cluster
of a chloride ion with 25 water molecules. ©2001 American Institute of Physics.
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I. INTRODUCTION

The Car–Parrinello~CP! ~Ref. 1! method has become
central tool in ab initio molecular dynamics ~MD!
simulations2–4 over the last several years. The CP method
essentially an extended Lagrangian MD scheme in which
electronic degrees of freedom are not iterated to converge
at each step, but are instead treated as fictitious dynam
variables and propagated along with the nuclear degree
freedom by a simple adjustment of time scales. The resul
energy surface remains close to a converged adiabatic
tronic surface. Such an approach offers significant comp
tional advantages for efficient MD calculations. Numero
important examples of applications with density function
theory ~DFT! and the CP method are now well document
in the literature~see, e.g., Ref. 5!. In the original CP ap-
proach, the Kohn–Sham molecular orbitalsc i were chosen
as dynamical variables to represent the electronic degree
freedom.1 However, this is not the only possible choice, a
in this paper we propose an alternative approach in which
individual elements of the reduced one-particle density m
trix, P, are explicitly treated as dynamical variables.

Car–Parrinello calculations are usually carried out in
plane wave basis. These form an orthonormal basis tha
independent of the atom positions. Although most of the
tegrals can be calculated easily using fast Fourier transf
methods, a very large basis set is needed to represen
orbitals to the desired accuracy. The problem is less seve
pseudopotentials are used to replace the core electrons,
the plane wave basis does not easily describe the cusps
high electron density near the nuclei. Recently, Gaussian
9750021-9606/2001/114(22)/9758/6/$18.00
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bitals have also become a useful adjunct to treat
problem.6

Quantum chemistry calculations for molecules typica
use atom centered Gaussian basis functions. Compared
plane wave basis, far fewer Gaussians are needed to ach
a desired accuracy, since they are localized in regions
higher electron density and follow the nuclei as they mo
The necessary integrals are somewhat more difficult to
culate than for a plane wave basis, but very efficient al
rithms are available to calculate these integrals and their
rivatives with respect to the atom positions.7 Atom centered
basis functions have been used extensively in Bor
Oppenheimer dynamics~for a review, see Ref. 8!. Gaussian
basis functions have also been used with Car–Parrinello
namics in generalized valence bond~GVB! ~Refs. 9, 10! and
Hartree–Fock11 calculations where orbital and wave functio
coefficients are propagated in a scheme that has some
culty with energy conservation.9 As shown below, energy
conservation and adiabaticity are well controlled in t
present method.

It is now well established that molecular calculatio
with atom centered functions can be carried out in compu
tional times that scale linearly with system size in the lar
system limit.12–14This has been achieved through the use
Gaussian orbitals in Kohn–Sham DFT calculations, fast m
tipole methods for the Coulomb problem,15,16 and density
matrix search alternatives with sparse matrix multiplicati
techniques to bypass theO(N3) Hamiltonian diagonalization
bottleneck.14,17,18 For similar reasons, our approach usin
density matrices and Gaussians forab initio MD has the
fundamental advantage of leading toO(N) scaling of com-
8 © 2001 American Institute of Physics
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putational time with system size. The literature onO(N)
electronic structure methods using alternative approache
extensive~see Ref. 12, and references therein!.

In the present paper, we outline the first steps toward
efficientab initio method for simulating molecular dynamic
of general molecular systems by propagating the density
resented by a Gaussian basis. This paper is organize
follows: In Sec. II, we present the theoretical framework
our method. Following this, in Sec. III, we consider tw
illustrative examples: the trajectories for photodissociation
1,3,5 triazine and the solvation of a chloride ion by a clus
of 25 water molecules. In Sec. IV we present our conclud
remarks.

II. THEORY

Like density matrix search methods for calculating ele
tronic energies,17,18 the equations for propagation of the de
sity matrix are simplest in an orthonormal basis. In an ort
normal basis, an extended Lagrangian for the system ca
written as

L5 1
2 Tr~VTMV !1 1

2m Tr~WW !2E~R,P!

2Tr@L~PP2P!#, ~1!

whereM , R, andV are the nuclear masses, positions, a
velocities, respectively. The density matrix, density mat
velocity, and the fictitious mass for the electronic degrees
freedom areP, W, andm, respectively.~Note thatm does
not have the units of mass sinceP does not have the units o
distance.! Constraints on the total number of electrons,Ne ,
and on the idempotency of the density matrix are impo
using a Lagrangian multiplier matrixL.

Although Gaussian basis functions are not orthogon
the Hamiltonian matrix and the density matrix,P8, can easily
be transformed to an orthonormal basis usingP5UP8UT,
whereUTU5S8, the overlap matrix. There are a number
choices for this transformation~e.g., U can be obtained by
Cholesky decomposition,19 or U5S81/2 for Löwdin symmet-
ric orthonormalization!. This matrix can also include an ad
ditional transformation so that overall rotation of the syst
is factored out of the propagation of the density.

As in the conjugate gradient density matrix sear
method17,18 the energy is calculated using the McWeeny p
rification transformation of the density,20 P̃53P222P3.
This leads to

E5Tr@h8P̃81 1
2 G8„P̃8)P̃8#1VNN

5Tr@hP̃1 1
2 G~P̃!P̃#1VNN , ~2!

whereh8 andG8„P̃8… are the one and two electron matric
in the nonorthogonal basis andVNN is the nuclear repulsion
energy. In the orthonormal basis, these matrices arh
5UÀTh8UÀ1, etc. In light of Eq.~2!, the Lagrangian in Eq
~1! is invariant with respect to unitary transformatio
among orthogonal bases.

Using the principle of stationary action21 for the La-
grangian in Eq.~1!, the Euler–Lagrange equation for th
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propagation of the density~in the orthonormal basis! and the
propagation of the nuclei may be obtained as

m
d2P

dt2
52F ]E~R,P!

]P U
R

1LP1PL2LG , ~3!

M
d2R

dt2
52

]E~R,P!

]R U
P

. ~4!

In Eq. ~3!, m is a scalar and all elements of the density mat
are weighted identically. Generalizingm to a matrix will be
considered in a subsequent paper.22 A solution to Eq. ~3!
represents the dynamics of the one-electron density matr
orthonormal bases. The nonorthogonal~Gaussian! basis is
used only to calculate the energy,E, and its derivatives,
@]E(R,P)/]PuR# and @]E(R,P)/]RuP#. But, since Gaussian
basis sets are atom centered, it is important to note that
transformation matrixU is time dependent, i.e., the relatio
between the nonorthogonal and the orthonormal basis is
ferent for each timet.

The derivative of the energy with respect to the dens
matrix in the orthonormal basis is

]E~R,P!

]P U
R

53FP13PF22FP222PFP22P2F, ~5!

whereF is the Fock matrix@F[h1G(P̃)# in the orthonor-
mal basis built with the McWeeny purified density.

Equations~3! and~4! may be integrated using the veloc
ity Verlet algorithm.23 The contributions for the density an
density velocity are given by

Pi 115Pi1W iDt2
Dt2

2m F ]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li G ,

~6!

W i 11/25W i2
Dt

2m F ]E~Ri ,Pi !

]P U
R

1LiPi1PiLi2Li G
5

Pi 112Pi

Dt
, ~7!

W i 115W i 11/22
Dt

2m F ]E~Ri 11 ,Pi 11!

]P U
R

1Li 11Pi 11

1Pi 11Li 112Li 11G , ~8!

where the Lagrangian constraint matrix for theith timestep
i.e., Li , is chosen to satisfy Tr@Pi 11#5Ne and Pi 11

2

5Pi 11 . The constraint terms above contribute only to t
occupied–occupied and virtual–virtual blocks of the dens
matrix, since Pi@LiPi1PiLi2Li #Qi5Qi@LiPi1PiLi

2Li #Pi50, where Q5I2P and I is the identity matrix.
Thus, instead of solving forLi , we can solve directly for
Pi 11 by a simple iterative procedure that minimize
Tr@(Pi 11

2 2Pi 11)2#. Starting with Pi 115Pi1W iDt
2@]E(Ri ,Pi)/]PuR#(Dt2/2m) we iterate

Pi 11←Pi 111PiTPi1QiTQ i , ~9!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereT5P̃i 112Pi 1153Pi 11
2 22Pi 11

3 2Pi 11 . The iteration
converges rapidly~as will be seen in the results section! and
is stopped when$Tr@(Pi 11

2 2Pi 11)2#%1/2/N,10212. The fi-
nal density velocity needs to satisfy the time derivative of
idempotency condition, W i 11Pi 111Pi 11W i 115W i 11 .
This can be solved exactly to yield Li 11

5@2Pi 11W i 11* Pi 112W i 11* #(2m/Dt), where W i 11*
5W i 11/22@]E(Ri 11 ,Pi 11)/]PuR#(Dt/2m). With this, Eq.
~8! simplifies to

W i 115W i 11* 2Pi 11W i 11* Pi 112Qi 11W i 11* Qi 11 . ~10!

In an orthonormal basis, the constraints do not dep
on the nuclear coordinates; hence, there are no constrain
the propagation of the nuclear coordinates. Since the en
is calculated using the purified density, the derivatives w
respect to the nuclear positions@for Eq. ~4!# are also calcu-
lated using the purified density. If atom centered basis fu
tions are used, the derivative of the energy with respect to
nuclei consists of not only the Hellmann–Feynman term
also the Pulay~or wave function derivative! contributions,24

]E

]RU
P

5TrFdh8

dR
P̃81

1

2

]G8„P̃8…

]R
U

P8
P̃81F8

]P̃8

]R
U

P
G1

]VNN

]R

5TrF dh

dR
P̃1

1

2

]G„P̃…

]R
U

P

P̃G1
]VNN

]R
. ~11!

We have used, here, the fact thath andh8 are not functions
of P, and hence@]h/]RuP#[dh/dR and similarly forh8.

The derivatives of the integrals in the orthonormal ba
depend not only on the derivatives of the integrals in
nonorthogonal, atomic orbital basis, but also on the der
tives of the transformation to the orthonormal basis. For
ample, the derivative of the one electron matrix in the orth
normal basis is given by

dh

dR
5

dUÀTh8U21

dR

5UÀT
dh8

dR
U211

dUÀT

dR
h8U211UÀTh8

dU21

dR

5UÀT
dh8

dR
U211

dUÀT

dR
UTh1hU

dU21

dR

5UÀT
dh8

dR
U212UÀT

dUT

dR
h2h

dU

dR
U21. ~12!

This makes use of the relation U@dU21/dR#
52@dU/dR#U21 which can be obtained by differentiatin
UU215I . The same terms arise if we compute the dens
matrix derivative in the non-orthogonal basis,
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]P̃8

]R
U

P

5
]U21P̃UÀT

]R
U

P

5
dU21

dR
P̃UÀT1U21P̃

dUÀT

dR

5
dU21

dR
UP̃81P̃8UT

dUÀT

dR

52U21
dU

dR
P̃82P̃8

dUT

dR
UÀT, ~13!

where we have substituted]U/]RuP5dU/dR, sinceU is ex-
plicitly only a function ofR, and not ofP, and depends on
time only through its dependence onR. Inserting Eq.~12! or
~13! into Eq. ~11!, the derivative of the energy with respe
to the nuclei becomes

]E

]RU
P

5TrFdh8

dR
P̃81

1

2

]G8

]R U
P8

P̃8G
2TrFF8U21

dU

dR
P̃81P̃8

dUT

dR
UÀTF8G1

]VNN

]R

5TrFUÀT
dh8

dR
U21P̃1

1

2
UÀT

]G8

]R U
P8

U21P̃G
2TrFF

dU

dR
U21P̃1P̃UÀT

dUT

dR
FG1

]VNN

]R
. ~14!

For a converged SCF calculation, the Fock matrix a
the density commute in an orthonormal basis, leading to

dE

dR
5

]E

]RU
P8

5TrFdh8

dR
P̃81

1

2

]G8~P̃8!

]R
U

P8
P̃8G

2TrF P̃FS dU

dR
U211UÀT

dUT

dR D G1
]VNN

]R

5TrFdh8

dR
P81

]G8~P8!

]R U
P8

P8G2TrFF8P8
dS8

dR
P8G , ~15!

where we have used the fact thatP̃[P for converged densi-
ties and UÀT@dUT/dR#1@dU/dR#U21

5UÀT@dS8/dR#U21. The latter is obtained by differentiat
ing UÀTS8U215I ~e.g., @dUÀT/dR#S8U21

1UÀT@dS8/dR#U211UÀTS8@dU21/dR#50). It may be
noted that the second expression in Eq.~15! is the usual
expression for the energy derivative for a converged S

FIG. 1. Photodissociation of 1,3,5 triazine.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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calculation24 and corresponds to @]P8/]RuP#
52P8@dS8/dR#P8 @from Eqs.~11! and ~15!#.

When the SCF is not converged, the derivatives ofU
must be computed explicitly. In the case of Lo¨wdin or-
thonormalization, this can be expressed as25

dU

dR
5(

i , j
si

1

s i
1/21s j

1/2S si
T

dS8

dR
sj D sj

T, ~16!

where si and s i are, respectively, theith eigenvector and
eigenvalue of the overlap matrixS8. For Cholesky orthonor-
malization, the derivative of the transformation is an upp
triangular matrix that satisfies@dUT/dR#U1UT@dU/dR#
5@dS8/dR# and can be obtained by a simple modification
the Cholesky decomposition procedure. Alternatively, o
can use the fact thatU, U21, @dU/dR# and@dU21/dR# are
the upper triangular, andUT, UÀT, @dUT/dR# and
@dUÀT/dR# are the lower triangular. Thus,UÀT@dUT/dR#
1@dU/dR#U215UÀT@dS8/dR#U21 can be partitioned
uniquely into upper and lower triangular parts such that

FIG. 2. Starting geometry for the Cl2~H2O!25 cluster.
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U21G

m,n

5S UÀT
dS8

dR
U21D

m,n

, m,n

5
1

2 S UÀT
dS8

dR
U21D

m,n

, m5n

50, m.n, ~17!

since UÀT@dUT/dR#5$@dU/dR#U21%T. These expression
can then be used in Eq.~14! to compute of the derivatives o
the energy with respect to the nuclear coordinates in the g
eral case of unconverged densities.

III. APPLICATIONS

To illustrate the implementation of the approach d
cussed above, we have considered the dynamics of two
tems: the photodissociation of 1,3,5 triazine, C3N3H3 ~Fig.
1!, and the solvation of a Cl2 ion by a cluster of 25 water
molecules~Fig. 2!.

Triazine can be excited into either the1E(p* ←n) or the
1A2(p* ←p) states; both rapidly convert to the ground sta
which fragments into three molecules of HCN in a concer
fashion.26 Table I summarizes calculations with orthogon
semiempirical~PM3! and nonorthogonalab initio Hartree–
Fock ~HF! and DFT methods with polarized basis sets, us
a development version of theGAUSSIAN series of electronic
structure codes.27 Trajectories were started at the transitio
state with converged densities and 10 kcal/mol translatio
energy in the transition vector, zero point energy in the
maining vibrational modes and a rotational energy of 298
A total integration time of 100 fs ensured that the produ
were well separated. A step size of 0.1 fs was chosen so
total energy~kinetic and potential energy for the atoms pl
the fictitious kinetic energy of the density matrix elemen!
was conserved to;1025 hartree. When a fictitious mass o
0.050 amu bohr2 ~;91 a.u.! is used for all of the density
matrix elements in HF or DFT calculations, the periods
oscillation range from 0.2 fs for core functions to 1.5 fs f
r

TABLE I. Comparison of trajectories for triazine three-body photodissociation.

Theoretical Integration Conservation of the Path errob

method technique total energy~in hartree!a ~in bohr!

PM3 Converged density 0.000020 0.0030
Propagated density 0.000150 0.095
Propagated~no projection! 0.000019 0.095

HF/ Converged density 0.000014 0.0029
6-31G~d! Propagated density, Lo¨wdin orthogonalization 0.000079 0.14

Propagated density, Cholesky orthogonalization 0.000130 0.22
B3LYPc / Converged density 0.000030 0.0030
6-31G~d! Propagated density, Lo¨wdin orthogonalization 0.000056 0.11

Propagated density, Cholesky orthogonalization 0.000057 0.21

aMaximum deviation of the total energy of the system~defined as the sum of the total potential energy,E, the
nuclear kinetic energy and the fictitious kinetic energy of the density matrix! during the trajectory. 1 hartree
~a.u. of energy! 5 627.51 kcal/mol.

bRelative to a reference trajectory calculated using the Hessian method with a step size of 0.025 amu1/2 bohr.
cReference 28.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tronic modes is about an order of magnitude faster than
fastest nuclear modes~10–15 fs!, ensuring very good sepa
ration between the degrees of freedom, even without ther
stats.

To gauge the accuracy of these methods, reference
jectories were calculated with a Hessian based algorith29

with a small step of fixed distance~0.025 amu1/2 bohr in
mass-weighted coordinates!, which corresponds to a max
mum error of 2.431028 hartree in the conservation of th
total energy. When converged densities are used, the co
vation of the total energy and the agreement of the trajec
with the more accurate Hessian-based path are very g
The error in the conservation of total energy is only sligh
larger when the density is propagated, and the maxim
deviation of the trajectory from the more accurate path
;0.2 bohr, for both Lo¨wdin and Cholesky orthonormaliza
tion. For all calculations idempotency of the density mat
is maintained to 10212 or better through the use of Eqs.~9!
and ~10!, and angular momentum was conserved to be
than 10210\ since projection methods were used to remo
residual angular forces.30 Subsequent to initial heating of th
electronic degrees of freedom, the adiabaticity~i.e., the drift
in the fictitious kinetic energy of the density matrix! is con-
served to better than 1024 hartrees.~The initial heating was a
result of the choice of the density matrix velocities at t
initial time-step. This may be considered akin to an equ
bration process where the density matrix elements ‘‘cat
up’’ with the nuclei.!

Solvation of ions in aqueous medium is of great practi
interest and has recently attracted considerable atten
from the first principles molecular dynamic
community.31–36 We have computed trajectories for th
chloride–water cluster using the current method. Starting
ometries were calculated by MM3 minimization and initi
density matrices were obtained from fully converged S
calculations~see Fig. 2!. The initial nuclear velocities were
chosen randomly and scaled so that the total nuclear kin
energy was equal to 0.100 hartree~'63 kcal/mol!. The den-
sity matrix velocity was chosen to be zero at the initial tim
step. Trajectories were computed by density functio
theory with the PBE~Ref. 37! exchange correlation func
tional and using Cholesky orthonormalization.~Use of the
Löwdin orthogonalization procedure did not provide any d
tinguishably different trajectories.! Two different sets of tra-
jectory calculations were performed: one using an all el
tron double zeta basis set with polarization functions on
chlorine, the other using a valence double zeta basis set
polarization functions on the chlorine an
pseudopotentials38–40 to replace the oxygen 1s and the chlo-
rine 1s, 2s, and 2p core functions. Various combinations o
step sizes and fictitious masses were tested; selected re
for m50.10 amu bohr2 ('182 a.u.! are shown in Table II.
Angular momentum is conserved to better than 10210\
through the use of projection methods.

Conservation of the total energy, shown in Fig. 3,
flects the accuracy of the integration procedure. Note that
are able to obtain good energy conservation while using
drogens in the water cluster, and we did not have to sub
tute heavier isotopes of hydrogen, as is often done in pla
Downloaded 04 Jun 2001 to 155.101.19.150. Redistribution subject to A
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wave Car–Parrinello calculations. The range of values u
for the fictitious mass, in this study, are about five tim
smaller than those used in the standard plane-wave C
Parrinello calculations.31–36 The time steps used for the ca
culations using pseudopotentials are comparable to th
commonly used for plane-wave Car–Parrinello runs.31–36As
it may be anticipated, our results indicate that pseudopo
tial calculations permit larger time steps to be used while s
maintaining energy conservation to a satisfactory degree.
also find that the adiabaticity for the pseudopotential cal
lations was maintained to 1023 hartree after the initial heat
ing of the density matrix. This adiabatic behavior is indicat
in Fig. 3, where the change in total energy, the fictitio
kinetic energy, and the difference between the two
shown, all for the pseudopotential calculation. The zero
time in the trajectory was chosen after the initial increase
the fictitious kinetic energy.~Again, the initial heating of the
density matrix is due to the initial density matrix velocitie
being chosen as equal to zero in this study.! The effect of

TABLE II. Trajectories for the Cl2~H2O)25 cluster with no thermostats.a

Functionalb

basis set

Basis
set
size

Time
step
~fs!

Trajectory
time
~fs!

Conservation
of total
energyc

~hartree!

Average
number

of purification
steps@using

Eq. ~9!#

PBEd/3-21G* 344 0.06 120 0.0024 2
PBEd/CEP-31Ge 314 0.05 50 0.0001 2
PBEd/CEP-31Ge 314 0.10 45 0.0001 3

aValue of the scalar fictitious mass,m, is chosen to be 0.1 amu bohr2 ('182
a.u.!.

bExchange correlation functional used for the DFT calculation.
cMaximum deviation of the total energy of the system~defined as the sum of
the total potential energy,E, the nuclear kinetic energy, and the fictitiou
kinetic energy of the density matrix! during the trajectory.

dReference 37.
ePseudopotential plus polarization basis functions added for Cl2 ~Refs. 38–
40.

FIG. 3. Trajectory for the CEP-31G pseudopotential calculation
Cl2~H2O)25 cluster;Dt50.05 fs;m50.1 amu bohr2. Plot shows the change
in total energy, the fictitious kinetic energy of the density matrix and
difference between the two as a function of the number of simulation st
subsequent to equilibration of the density matrix velocities~see text for
details!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



er

le
as

ll
by
ffi
la
so
tr
m
p

in
e
l-

as

t o

un

o
pr

po

, J

.

em.

J.

ular
e-

d,
ergy

em.

.

9763J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Propagating the density matrix
various choices of initial velocities will be studied in lat
publications. The results presented here demonstrate the
plicability and accuracy of the current method. More detai
studies of adiabaticity versus time-step and fictitious m
will follow. 22

IV. CONCLUDING REMARKS

In this paper, we have demonstrated that Car–Parrine
type ab initio molecular dynamics can be carried out
propagating the density matrix rather than the orbital coe
cients, and by using atom centered functions instead of p
waves. For the examples studied it was shown that rea
able energy conservation may be maintained during the
jectories, in spite of having hydrogen atoms in the syste
This could potentially be useful in areas such as isoto
substitution.

Gaussian orbitals have the distinct advantage of lead
to sparse matrix representations for the Hamiltonian and d
sity matrix in the large system limit. With sparse matrix mu
tiplication techniques, Cholesky orthonormalization, and f
multipole methods, our approach will thus lead toO(N)
scaling with system size. This aspect will be the subjec
further study.
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