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ABSTRACT: We present a hybrid ab initio molecular dynamics scheme that includes both
DFT and Hartree−Fock-based extended Lagrangian and converged post-Hartree−Fock
Born−Oppenheimer components, combined within the framework of a molecular
fragmentation-based electronic structure. The specific fragmentation algorithm used here is
derived from ONIOM but includes multiple, overlapping “model” systems. The interaction
between the various overlapping model systems is approximated by invoking the principle of
inclusion−exclusion at the chosen higher level of theory and within a “real” calculation
performed at the chosen lower level of theory. Furthermore, here, the lower level electronic
structure of the full system is propagated through an extended Lagrangian formalism, whereas
the fragments, treated using post-Hartree−Fock electronic structure theories, are computed
using the normal converged Born−Oppenheimer treatment. This conservative dynamical
approach largely reduces the computational cost to approximate on-the-fly dynamics using
post-Hartree−Fock electronic structure techniques and can be very beneficial for large systems
where SCF convergence may be challenging and time consuming. Benchmarks are provided
for medium-sized protonated water clusters, H9O4

+ and H13O6
+, and polypeptide fragments, including a proline tripeptide

fragment, and alanine decamer. Structural features are in excellent agreement between the hybrid approach using an MP2:B3LYP
fragment-based electronic structure and BOMD using MP2 for the full system. Vibrational properties derived from dynamical
correlation functions do show a small redshift for the extended Lagrangian treatments, especially at higher frequencies. Strategies
are discussed to improve this redshift. The computational methodology works in parallel using both MPI and OpenMP and
shows good scaling with the processor number. The timing benchmarks are provided for the alanine decamer. A powerful feature
of the computational implementation is the fact that it is completely decoupled from the electronic structure package being
employed and thus allows for an integrated approach that may include several different packages. These computational aspects
will be further probed in future publications.

I. INTRODUCTION
Since the seminal work of Karplus1 and Leforestier2 and the
extended Lagrangian generalization by Car and Parrinello,3 ab
initio molecular dynamics (AIMD) has become a central tool
for studying reactive events and vibrational properties beyond
the harmonic approximation and for biochemical modeling
when combined with hybrid techniques. Here, electronic
structure and gradients are simultaneously computed in-step
with nuclear motion. Due to this, AIMD is in general much
more resource intensive as compared to both classical, force
field-based, molecular dynamics methods as well as commonly
used electronic structure applications such as geometry
optimization and frequency calculations. This limitation has
thus far restricted AIMD mostly to DFT-based application for
medium-sized systems. Improvements in electronic structure
methodology, certainly, have critical impact on AIMD, and
one of the ways to reduce the cost of the on-the-fly electronic
structure calculations is through the utilization of the recently
popularized fragment-based electronic structure schemes,4−25

where a molecular system is divided into multiple regions and

the total energy of the system is assembled from the energy of
individual pieces. Detailed discussion of these methods can be
found in several recently published review articles.26−30

To explore the application of fragment-based electronic
structure in AIMD and potentially ab initio quantum nuclear
dynamics,31 we recently32 (a) considered a generalization to
the ONIOM5,13,33−41 energy extrapolation scheme using the
set-theoretic principle of inclusion and exclusion42 to treat
multiple overlapping model systems32 (abbreviated in this
publication as the PIE-ONIOM energy expression) and (b)
applied this method to obtain accurate potential energy
surfaces and to compute ab initio dynamical trajectories with
correlation functions that agree well with higher levels of
theory such as MP2 and coupled cluster. Specifically, mean
absolute errors in potential energy surfaces are (a) less than
0.05 kcal/mol when the PIE-ONIOM results that combine
B3LYP and MP2 are compared with MP2 calculations on the

Received: January 1, 2016
Published: May 10, 2016

Article

pubs.acs.org/JCTC

© 2016 American Chemical Society 2493 DOI: 10.1021/acs.jctc.6b00001
J. Chem. Theory Comput. 2016, 12, 2493−2508

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00001


full system and (b) less than 0.07 kcal/mol when a similar
hybrid calculation is compared with CCSD(T) on the full
system. This data was obtained in ref 32 by considering 693
different geometries of protonated water clusters sampled
along normal mode coordinates, and the associated computa-
tional effort is a very small fraction of the computational cost
incurred in the full calculations. The AIMD trajectories
computed using this approach reproduce vibrational density of
states from regular MP2 calculations as well, and these results
are summarized in Figures 1 and 2. As seen in Figure 1(b),
and noted in the caption, the potential energy surface errors
are indeed extremely small and vibrational density of states
peaks agree quite well when the hybrid approach is compared
to higher level theory as seen from Figure 2(b).
Despite the preliminary success of our approach in ref 32,

several challenges remain: (1) During dynamical simulations,
the molecular structural variation can lead to changes in the
fragmentation topologies that must be handled carefully to
maintain conservative dynamics. (2) The computational
expense may be dominated by the lower level calculation
on the full system since our approach is based on ONIOM.
This second hurdle is also seen in other hybrid fragmentation
schemes, such as the Generalized Energy Based Fragmenta-
tion (GEBF),11 Molecular Tailoring Approach (MTA),14 the
eXtended ONIOM method,15 and Molecule-in-Molecule
(MIM).16 (3) Analytical gradient for the embedded charges
can be expensive.43,44 In the current publication, we propose a
solution to the second problem listed above by constructing a
hybrid method that combines Extended Lagrangian treatment
of the full system at the lower level of theory with Born-
Oppenheimer dynamics for the fragments computed at high

and low levels. Thus, the paper is organized as follows:
Section II introduces the new formalism with facilitating
technical discussions provided in Appendix A. The con-
servative properties of the approach are then tested in Section
III. The approach is used to compute structural properties of
protonated water clusters in Section IV, dynamical trajectories,
and correlation functions for protonated water clusters and
polypeptide fragments in Section V. In all cases, the
trajectories are compared with MP2-based AIMD trajectories,
and the results are in very good agreement. We also
demonstrate numerical benchmarks in Section VI that show
a large reduction in computational effort. Furthermore, the
algorithm is written in parallel using MPI (also demonstrated
in Section VI) and through a C++ package that invokes
external electronic structure software. Concluding remarks are
made in Section VII.

II. HYBRID EXTENDED LAGRANGIAN
BORN−OPPENHEIMER DYNAMICS USING
FRAGMENT-BASED ELECTRONIC STRUCTURE
FROM PIE-ONIOM FOR POST-HARTREE−FOCK
TREATMENT

Classical ground state ab initio molecular dynamics primarily
has two flavors: one is the traditional Born−Oppenheimer
molecular dynamics (BOMD), where the electronic energy is
converged, and the other is the extended Lagrangian
molecular dynamics (ELMD)3,45−57 formalism, where the
electronic degrees of freedom, either single particle density
matrix or molecular orbital coefficients, are assigned fictitious
inertia and propagated simultaneously with the classical nuclei
through a simple adjustment of time scales.58 The first ELMD

Figure 1. Figure 1 and Figure 2 briefly summarize the developments from ref 32. Here, the vibrational ground state (ρ(R)) weighted mean
absolute error in the potential surface is provided for H9O4

+. The error is computed between the fragment-based calculations and full CCSD(T)
calculations as ∫ dR{ρ(R)|ECCSD(T) − ECCSD(T):B3LYP|}. The statistics are obtained from 693 different geometries chosen along normal mode
coordinates where the horizontal axis in the figure represents mode frequencies. Thus, the figure depicts the error in the critical regions of the
surface sampled by the ground state wavepacket and is clearly very small. When the full surface is included (that is, without vibrational ground
state weighting), the error rises to the order of 0.1 kcal/mol. All calculations use the 6-31+G(d,p) basis function.

Figure 2. Solvated Zundel cation, H13O6
+: The vibrational density of states (VDOS) are computed from the fragment-based AIMD trajectories

(frag-BOMD MP2:B3LYP), and these agree quite well with full MP2-based AIMD. All calculations use the 6-31+G(d,p) Gaussian basis set.
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method, the Car−Parrinel lo molecular dynamics
(CPMD)3,45,47 approach was influenced by earlier work
from Anderson59 and Parrinello and Rahman45,60 and was
developed in 1985. In CPMD, the wavefunction is expanded
in a plane-wave basis, and pseudopotentials are used to
describe the core electrons. In 2001, Atom-centered Density
Matrix Propagation (ADMP),48−54 an ELMD formalism that
employs the single particle electronic density matrix written in
an all-electron atom-centered Gaussian basis was developed.
The ADMP method has been demonstrated through
applications to vibrational spectroscopy61−66 and biological
ion-channel studies54 and the study of atmospheric reactions,
where pump−probe techniques have been incorporated into
the dynamics.67−69 Critically, the ADMP formalism has had
an important role in the prediction of the amphiphilic nature
of the hydrated proton70,71 that was later confirmed through
several experiments.70−76 The ADMP method has many
attractive features. Systems can be simulated by accurately
treating all electrons or by using pseudopotentials. Through
the use of smaller values for the tensorial fictitious mass,
relatively large time steps can be employed, and lighter atoms
such as hydrogen nuclei are routinely used. Atom-centered
functions can be used with the appropriate physical boundary
conditions for molecules, polymers, surfaces, and solids,
without the need to treat replicated images to impose 3d
periodicity. Consequently, charged systems and QM/MM
models of biological systems54 can be treated as easily as
neutral molecules. Deviations from the Born−Oppenheimer
surface and the mixing of fictitious and real kinetic energies
can also be rigorously controlled on-the-fly in ADMP. ADMP
trajectories of the order of picoseconds show stable dynamics,
and the adiabaticity can be controlled effectively in these
systems without thermostats. The important conceptual and
computational differences between ADMP and other Gaussian
basis set-based implementations77−80 of the Car−Parrinello
formalism have been discussed in detail in ref 50.
The elimination of SCF in extended Lagrangian MD is a

computational advantage, especially for large molecules and
systems where SCF convergence may be challenging.
However, thus far, a critical restriction for ELMD (Car−
Parrinello as well as ADMP) has been that it can only be
applied to single particle formalisms such as DFT and
Hartree−Fock. Here, we combine ELMD and post-Hartree−
Fock-based BOMD through PIE-ONIOM and allow extended
Lagrangian (Car−Parrinello and ADMP) techniques to
become applicable to higher level electronic structure
methods, such as MP2 and potentially CCSD, and also
improve the computational efficiency of fragment-based
AIMD. However, before we embark into a discussion of
this dynamical formalism, we must first summarize the PIE-
ONIOM energy extrapolation equations. The overall PIE-
ONIOM molecular energy expression32 is given by
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where the extrapolation term is defined as

= −i E i E i( ) ( ) ( )high low (2)

when two levels of theory are used. (This approach is easily
generalized to more levels,32 but this generalization is not
considered here.) In eq 1, ∩i j( ) represents the
extrapolation term for the derivative fragment (i ∩ j), formed
from the intersection of the ith and jth primitive fragments.
Every fragment is treated at two levels of theory as written in
eq 2, and the entire system (0th fragment) is only considered
at the lowest level of theory (with energy Elow(0)). This
energy extrapolation scheme is pictorially demonstrated in
Figure 3. A powerful feature of the algorithm is the fact that

the identity of the overlapping model systems or fragments
are efficiently evaluated either (i) through an automated bit-
manipulation algorithm presented in ref 32 that recomputes
fragments at each instant in time during dynamics or (ii)
through user specification. In the bit-manipulation algorithm,
fragments are represented as bits in an integer, and
overlapping regions are computed using binary AND
operations. The use of bitwise arithmetic improves efficiency,
but a large integer library may be required, depending on the
number of fragments involved and the platform being used for
the calculation. One such library is available at http://www.
boost.org/.
Clearly, for a large enough system the computational

expenses may be dominated by the lower level calculation,
Elow(0). Thus, in the scheme introduced here, it is electronic
degrees of freedom of the entire system, Elow(0) that we will
propagate using an extended Lagrangian technique. The rest
of the fragments, where more accurate calculations maybe
needed, will be treated using converged Born−Oppenheimer
treatments with post-HF electronic structure. While we
choose to demonstrate this approach using the ADMP
Lagrangian48,49 as the choice for ELMD, extensions to employ
CPMD (that is, using molecular orbital coefficients instead of
the single particle density matrices with plane wave basis sets
instead of the atom-centered Gaussian basis functions
employed here) can be done in a similar fashion. The
Lagrangian of the entire system is
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In this equation, R, V, and M are the nuclear geometry,
velocity, and mass, respectively, and the single particle density

Figure 3. Illustration for the energy expression in eq 1. The
intersections between primitive fragments are subtracted out to
remove overcounting according to the principle of inclusion and
exclusion.
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matrix Plow,0 that determines Elow(0) has fictitious inertia
tensor μlow,0, and velocity Wlow,0. The quantity Λlow,0 is a
Lagrangian multiplier that maintains the N-representability of
Plow,0. The energy functional EPIE‑ONIOM(R,Plow,0) is identical
to that in eq 1 but differs with the additional dependence of
Elow(0) → Elow(0)(R,Plow,0) since the lower level full system
electronic structure is now to be propagated rather than
converged. This leads to the equations of motion for nuclei
and density matrix
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In eq 6, the constraint, “|Plow,0”, is only included on the first
term on the right side since that is the only term that is a

function of Plow,0. The terms ∂
∂

i
R
( ) , ∂ ∩

∂
i j
R

( ) , etc., involve

standard electronic structure gradients that are already present
in most electronic structure packages. This is because, as
noted in eq 2, these terms involve gradients from higher level
electronic structure methods (MP2 for the calculations
presented in here), and when DFT is used for the lower
level in eq 2, the SCF is converged to a high degree of
accuracy. In this publication, all SCF calculations involved in
∂
∂

i
R
( ) , ∂ ∩

∂
i j
R

( ) , are well converged requiring the RMS change in

density matrix to be less than 10−8 and the maximum change
in the density matrix to be less that 10−6. These are the
default threshold conditions used in the version of the
Gaussian quantum chemistry package81 used here to compute
the electronic energy and nuclear gradients for the fragments.
The energy change during SCF is not used to test
convergence, but a 10−N RMS change in density matrix
typically corresponds to a 10−2N change in energy in atomic
units. While in principle this translates to an energy
convergence threshold of 10−16 Hartree, in practice we find
that SCF convergence is always better than 10−12 Hartree in
most calculations presented here, with very few at 10−10. (A
more detailed analysis on this aspect is presented in Section
III.) As a result of this, there is practically no drift in these

calculations, which appears to be a problem for Born−
Oppenheimer-type dynamics calculations in ref 82.
Proceeding further with the discussion of the equations of

motion, since Plow,0 is propagated according to eq 5, the

gradient term
∂

∂
E

R P

(0)

0

low

low,

in eq 6 contains forces from the

unconverged density matrix, Plow,0, in addition to the standard
Born−Oppenheimer gradients, and these aspects have been
well described in refs 48, 49, and 51. We summarize these
gradients in Appendix A since the major portion of these
forces have already been discussed in other publications noted
above. It is only the interpretation of these gradients with
respect to the fragment-based technology that is new here.
The equations of motion are integrated using the velocity
Verlet algorithm,83 while the Lagrangian multiplier matrices
are determined through an iterative procedure.48,49 In the
sections below, we probe the accuracy and efficiency of this
hybrid scheme by studying protonated water clusters and
polypeptides fragments. In all cases, consistency of the
dynamics is checked by computing the conserved quantities,
and these conserved quantities (the conjugate Hamiltonian for
the Lagrangian in eq 3) are outlined in Appendix B.
However, before we proceed further, we must note and

distinguish our approach from two other recent developments
in Born−Oppenheimer and extended Lagrangian dynamics. In
ref 84, the author has carefully analyzed the time scale of
oscillations of the different constituents of energy in a post-
Hartree−Fock (MP2) gradient expression. The author infers
through many computational studies that the post-Hartree−
Fock portion of the gradient is in fact a slowly varying
quantity as a function of nuclear motion, which allows the
authors to construct a multiple time step approach that
appears to be quite powerful. This extension is certainly an
option available to us here and will be considered in future
publications. In ref 82, the authors address the critical drift
problem in standard Born−Oppenheimer dynamics by
propagating a surrogate electronic density through an
extended Lagrangian formalism, where such a density is
harmonically bound to a converged density. This latter
approach has extended Lagrangian and Born−Oppenheimer
components, much like the current formalism, but differs in
that the ideas in ref 82 are thus far implemented for DFT and
DFTB, whereas the approach here is specifically geared
toward computing post-Hartree−Fock dynamics. Thus, to
differentiate between the two approaches, from hereon, the
method developed in this paper has both extended Lagrangian
and post-Hartree−Fock Born−Oppenheimer dynamics com-
ponents funneling from the ADMP Lagrangian in Eq. (3), and
is hence referred to as ADMP-pHF, and the PIE-ONIOM
energy functional, eq 1, is implied. When the extended
Lagrangian treatment is not invoked and Born−Oppenheimer
treatment is used for all components of the energy expression
in eq 1, the associated method is referred to here as frag-
BOMD.

III. ACCURACY AND EFFICIENCY OF THE HYBRID
EXTENDED LAGRANGIAN, POST-HARTREE−FOCK
BORN−OPPENHEIMER DYNAMICS (ADMP-PHF)
TREATMENT

We benchmark the dynamics formalism by studying (small-
and medium-sized) protonated water clusters and two
different polypeptide fragments. We choose two challenging
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protonated water clusters, the Eigen cation (H9O4
+) and the

solvated Zundel cation (H13O6
+), as our benchmark systems

with their structures shown in Figure 4(a) and (b). These
type of systems have significance in biological,85−92 atmos-
pheric,69,93−95 and condensed phase chemistry and have been
studied extensively by both experiments96−104 and by
theories.61,62,64,70,71,97,105−120 Here, accurate treatment of
hydrogen bonding is crucial to model structural and
dynamical behavior. In addition, polypeptide fragments have
recently been studied in some detail using mass spectrometry
with a goal to elucidate conformational transformations and
kinetics.121,122 For example, in refs 121 and 123, the authors
observe a step-by-step conformational transition from an all-
cis polyproline helix chain to an all-trans polyproline helix
chain. While our primary benchmarks here that test the
accuracy of ADMP-pHF and frag-BOMD through comparison
with full system MP2 calculations are performed for the
protonated water clusters stated above, we also present
preliminary benchmarks on an all-trans proline tripeptide
fragment (Figure 4(c)) to show the consistency of our
approach and its potential for future applications to the study
of biomolecules. In addition, we also present an analysis of
the computational gain from the fragment-based ADMP-pHF
and frag-BOMD formalisms by computing trajectories for an
all-trans polyalanine fragment.
At this point, it is critical to note that for the peptide

systems, chemical bonds intersect the boundary between two
fragments, and hence, link atoms are added to saturate the
dangling valencies as in standard ONIOM.31,54,124 The
positions of link atoms are uniquely determined based on
the connectivity of the system. Specifically, the placement of
link atoms is constrained by the positions of the two atoms
on either ends of the bond intersecting the fragment
boundary according to rlink = rbond + g(rsub−rbond), where
rbond is the position of the bonded atom (B) inside the
fragment in question to which the link is bound to substitute

the atom (S) belonging to the surrounding region and located
at rsub. The quantity g is a scale factor normally set to R(B−
L)/R(B−S), where R(B−L) is a typical bond length between
the bonded atom within the fragment and the link atom
(hydrogen in all cases in this work), and R(B−S) is a typical
bond length for the pair of atoms describing the bond being
dissected to create the fragment. Careful tests have shown
that the ONIOM results are quite insensitive to the value of
g.37 It must be stressed that since the link atom positions are
fully defined by the coordinates of the full system, as in
standard ONIOM, the gradients with respect to link atom
coordinates can be transferred to coordinates of the full
system for this fragment-based methodology.54

All calculations are performed using a C++ package, that is,
MPI parallelized across nodes and OpenMP parallelized
within each node. For the current publication, the package
invokes a development version of the Gaussian quantum
chemistry program81 to compute the electronic energy and
nuclear gradients for the fragments and the full system.
However, our software package can be easily generalized to
include other electronic structure software or combinations of
these. These computational aspects and associated general-
izations will be discussed in future publications.
The dynamical simulations are performed five different

ways for each system with all calculations using the 6-
31+g(d,p) atom-centered Gaussian basis set. The five different
sets of trajectories are (1) BOMD using pure B3LYP
(abbreviated as BOMD B3LYP), (2) ADMP using pure
B3LYP (abbreviated as ADMP B3LYP), (3) BOMD using
pure MP2 (abbreviated as BOMD MP2), and (4) BOMD
using two-layer PIE-ONIOM fragment-based electronic
structure. MP2 is used for the high level electronic structure,
while the low level is calculated at B3LYP. This calculation is
abbreviated as frag-BOMD MP2:B3LYP and was fully
benchmarked in ref 32. Also see Figures 1 and 2 where we
present the accuracy of this calculation. Finally, (5) the two-

Figure 4. Protonated water clusters shown in Figures 1(a) and 2(b) are fragmented as depicted here, and the electronic energy is assembled
using eq 1. The proline tripeptide (c) is similarly fragmented using overlapping dipeptides (d). Dangling bonds are saturated with link atoms
(hydrogen) as in standard ONIOM.
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layer PIE-ONIOM fragment-based ADMP-pHF scheme
proposed in this publication. The methods MP2 and B3LYP
are used for high and low level of theory, respectively, and the
calculation is abbreviated as ADMP-pHF MP2:B3LYP.
The stability and consistency of the dynamics trajectories

can be gauged from the total energy conservation data for
these classical trajectories. The total energy corresponds to
the conjugate Hamiltonian in eq B4 and contains the nuclear
kinetic energy, the fictitious density matrix kinetic energy,
EPIE‑ONIOM, and any energy penalty that is added as a result of
residual loss of N-representability. As shown in Table 1, all
trajectories have the total energy well conserved to within 2−
3 orders of magnitude less than 1 kcal/mol. The ADMP-pHF
scheme produces energy conservation comparable to the
BOMD simulations. We also inspect the drift in the conjugate
Hamiltonian in eq B4, and as noted in Table 1, this quantity
is also extremely small and well within the acceptable range.82

In addition, in Table 1, we also present the change in SCF
energy in the last iteration before convergence is achieved.
This quantity in some sense represents a convergence
threshold of the electronic energy. As noted previously,
convergence is enforced on the density matrix and not on the
SCF energy. In this case, it is required that the RMS change

in density matrix be less than 10−8 and the maximum change
in the density matrix be less that 10−6. The corresponding
SCF energy convergence is very tight and is noted in Table 1.
In addition to gauging conserved quantities, we also

compare forces in Figure 5. Specifically, in Figure 5(a) we
compute the forces for 693 different geometries chosen along
normal mode coordinates where the horizontal axis in the
figure represents mode frequencies. The forces are computed
at the level of MP2 and also using the MP2:B3LYP fragment

method. The difference ∥ − ∥F F
N3

MP2:B3LYP MP2 2

Atoms
is presented as a

function of harmonic frequency. In addition, for the analysis
in Figure 5(b), we have retrieved geometries at fixed intervals
from the extended Lagrangian Born−Oppenheimer trajectory
for H9O4

+ and computed forces using MP2. The vertical axis
in Figure 5(b) is the mean absolute deviation between these
forces. As shown, the forces in both figures are well within
that expected for chemical accuracy.

IV. STRUCTURAL FEATURES FROM DYNAMICS
SIMULATIONS

Next, we examine the structural properties of these
trajectories by calculating radial distribution functions for

Table 1. Energy Conservation Properties for Dynamical Simulations (NVE Simulations)

system level of theorya timeb ave temp (K) Δ c (in kcal/mol) driftd (in kcal/mol) ΔESCFe (in Hartree)

H9O4
+ BOMD B3LYP 20.0 ps 150.90 ± 27.0 0.022 0.062 1.74 × 10−11

ADMP B3LYP 20.0 ps 140.34 ± 23.7 0.021 0.018
BOMD MP2 20.0 ps 152.10 ± 26.5 0.002 0.004 6.38 × 10−12

frag-BOMD MP2:B3LYP 5.2 ps 149.64 ± 32.3 0.014 0.016 4.08 × 10−12

ADMP-pHF MP2:B3LYP 8.6 ps 142.80 ± 24.7 0.027 0.055 3.34 × 10−12

H13O6
+ BOMD B3LYP 20.0 ps 151.92 ± 20.8 0.010 0.011 2.75 × 10−11

ADMP B3LYP 13.4 ps 154.00 ± 21.0 0.040 0.021
BOMD MP2 5.2 ps 150.52 ± 22.6 0.004 0.001 1.32 × 10−11

frag-BOMD MP2:B3LYP 6.0 ps 151.22 ± 23.4 0.042 0.122 6.05 × 10−12

ADMP-pHF MP2:B3LYP 5.0 ps 156.44 ± 20.0 0.026 0.033 2.93 × 10−12

proline trimerf ADMP B3LYP 4.33 ps 237.96 ± 24.8 0.069 0.148
BOMD B3LYP 2.18 ps 238.09 ± 23.7 0.016 0.011 8.41 × 10−12

frag-BOMD MP2:B3LYP 2.97 ps 246.30 ± 23.5 0.012 0.002 2.96 × 10−12

ADMP-pHF MP2:B3LYP 2.90 ps 246.07 ± 22.5 0.047 0.088 1.64 × 10−11

aWater clusters: 6-31+g(d,p) basis is used for B3LYP and MP2. Proline trimer: 6-31+g(d) basis is used for B3LYP and MP2. bTime step 0.2 fs for all
simulations. cRoot mean square deviation of the total energy in kcal/mol. The total energy corresponds to the Hamiltonian in eq B4. dDrift in total
energy is computed as a difference between the average total energies for the first and last 100 fs of dynamics (in kcal/mol). In addition, in Figure SI-
1 of the Supporting Information, we provide the evolution of total energy. This is provided in eV to facilitate comparison with results from other
work such as ref 82. eWhile SCF convergence thresholds are placed on the density matrix (see text for details) rather than energy, in this column we
note the average absolute change in energy (in Hartrees) during the last interation before convergence is achieved for all steps in the trajectory. fC-
terminus is capped with a carboxylic acid group (see Figure 4(c)).

Figure 5. Comparison of forces around an optimized geometry (a) and during dynamics (b) for H9O4
+. See text for details.
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the O−O and O−H distances for the protonated water
clusters. From Figures 6 and 7, it is clear that the structural
features for the water clusters are captured very well by both
ADMP-pHF and frag-BOMD fragment-based dynamics in
comparison with the higher level MP2 calculations. In
addition, for the protonated water clusters, these calculations
are also in agreement with the plain DFT calculations.
Specifically, Figures 6(a) and 7(a) clearly show the multiple
solvation shells, where the width of the distributions indicate
fluctuations that arise from temperature. The inner shells have
better ordering in all cases, based on width of the
distributions, and this is to expected. The most critical aspect
from Figures 6(a) and 7(a) is the fact that the inner shell is
tighter in Figure 7(a) with a shorter OO distance. This is due
to the strong Zundel-like hydrogen bond present in H13O6

+.
Thus, Figure 7(a) shows both Zundel-like and Eigen-like (OO
distance ≈2.8 Å) peaks, and this is critically reinforced in all
simulations. The peaks beyond 3.7 Å in Figures 6(a) and 7(a)
represent the second solvation shell that is generally not

expected to be well resolved for these smaller water clusters.
Nevertheless, the agreement is reasonable here too but not as
good as in the first solvation shell. The OH distributions in
Figure 6(b) similarly show an Eigen-like OH distance of
approximately 1.5 Å, which informs an asymmetric hydrogen
bond; the two shortest OH distributions in Figure 6(b) are
consistent with the OO distribution for the first peak in
Figure 6(a). Figure 7(b) shows four regions of OH
distribution. The covalent OH bond is strongly noted and
is followed immediately by a shallow hump at a distance
slightly greater than 1 Å. This distance is again the short-
strong Zundel-like hydrogen bond feature. Followed by this,
we see a peak at a little greater than 1.5 Å, which is consistent
with an Eigen geometry. Thus, the H13O6

+ system is critical in
that it shows both Zundel and Eigen configurations that are
now universally acknowledged as the two central excess
proton configurations in water that participate in proton
transport.125 Importantly, all simulations, including ADMP-

Figure 6. Radial distribution function for O−O and O−H distances from various H9O4
+ trajectories The statistics are obtained by constructing

averages from incremental 2 ps snapshots constructed from the full trajectory. That is, we compute the RDFs using data from 0 to 2 ps, 0.5 to
2.5 ps, and so on, for all trajectories. The resultant distributions are then averaged; standard deviations are presented as error bars in Figure SI-2
of the Supporting Information.

Figure 7. Radial distribution function for O−O and O−H distances from various H13O6
+ trajectories are obtained using the same procedure

described in the caption for Figure 6. Error bars can be found in Figure SI-3 of the Supporting Information.
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pHF, reproduce the structural features present in the MP2
BO dynamics.
This brings in the critical question of computational

efficiency of fragment-based AIMD methods. We discuss
these aspects in Section VI.

V. DYNAMICAL PROPERTIES FROM CORRELATION
FUNCTIONS

Vibrational density of states (VDOS) are calculated for each
trajectory from the Fourier transform of the velocity
autocorrelation function. As we know from previous
studies,61−63,126 the temperature can play a significant role
in VDOS spectra since this controls the extent to which
anharmonicity is sampled during these classical nuclear
trajectory calculations. Hence, we tune the initial conditions
such that all trajectories have an average temperature of about
150 K. This is also roughly the temperature of argon-tagged
action spectroscopy127 as seen in previous calculations.62,65

The VDOS spectra are presented in Figures 8 and 9. To

obtain these figures, we compute multiple spectra using 3 ps
segments from dynamics that are each shifted by 500 fs. That
is, we compute the vibrational density of states using data
from 0 to 3 ps, 0.5 to 3.5 ps, and so on, for all trajectories.
These spectra are then used to compute averages and
standard deviations. The averages are presented in Figures 8
and 9, and the standard deviations are shown using error bars
in Figures SI-4 through SI-8 of the Supporting Information.
Specifically, in Figure 8 of the main text and Figures SI-4
through SI-6, we compute the vibrational density of states
obtained from full MP2 and frag-BOMD MP2:B3LYP, and
the fact that the f requencies are in excellent agreement all
through the spectral range is shown using arrows to guide the eye.
In Figure 9 of the main text and Figures SI-7 and SI-8, we
provide the same for the full breadth of simulations. (Also
note that to check convergence, we also computed the same
using 2 ps snapshots. That is, we also computed the
vibrational density of states using data from 0 to 2 ps, 0.5
to 2.5 ps, and so on, for all trajectories. No perceivable

Figure 8. Vibrational density of states calculated from dynamical trajectories at 150 K for (a) H9O4
+ and (b) H13O6

+. The excellent agreement in
frequencies is highlighted using the light colored arrows. In the Supporting Information, we provide details on the statistics and compute error
bars.

Figure 9. Vibrational density of states calculated from dynamical trajectories at 150 K for (a) H9O4
+ and (b) H13O6

+. The extended Lagrangian
formalism yields a slight redshift in the higher frequency peaks greater than 2500 cm−1 but is in reasonably good agreement in the lower
frequency region. The redshift is reduced as compared to ADMP B3LYP, which does not include the MP2 treatment. In the Supporting
Information, we provide details on the statistics and compute error bars.
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difference was noted from the spectra presented here.) It is
clear from these figures that the DFT results are redshifted
with respect to those from MP2. This behavior is drastically
improved upon in Figure 8 when the MP2 results are
compared with those from MP2:B3LYP fragment-based
BOMD. This is perhaps the most significant message here:
that the fragment-based approaches are able to provide results

in quantitative agreement with higher level electronic
structural results. The ADMP-pHF result is redshifted with
respect to the MP2 BOMD and MP2:B3LYP fragment-based
BOMD, but this redshift is substantially reduced as compared
to the respective ADMP B3LYP redshifts seen in Figure 9.
Furthermore, it appears that these redshifts are more localized
to the higher frequencies as note in Figures SI-7 and SI-8.

Figure 10. All-trans alanine decamer. (a) Helical view with hydrogen bonds shown. (b) and (c) Portion of the polypeptide with fragments
labeled. For example the primary fragment shown in licorice in (b) includes the CO−HN hydrogen bond, and it has an overlap with the purple,
red, cyan, and tan fragments. This is also shown in (c). (The secondary overlapping fragments are automatically generated using a bit-
manipulation algorithm presented in ref 32.) In this manner, critical hydrogen bonds responsible for the helix formation are captured as part of
the fragmentation mechanism.

Figure 11. All calculations are performed on Intel Xeon E5-2650 v2 processors. The vertical axis is in units of CPU minutes. See text for details.
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This is to be expected since one of the central ideas behind
ADMP and similar extended Lagrangian formalisms is that the
electronic dynamics is mapped onto a set of fictitious variables
that obey classical-like dynamics. The mapping is enforced by
including an inertia tenor as outlined above, and the choice of
this inertia tensor does have a role on the higher frequency
correlation functions. This aspect has also been noted in
previous publications.50,55 At the end, it appears the structural
properties from ADMP-pHF are quantitatively accurate, and
correlation functions are also accurate in the lower end of the
spectrum. Future work will deal with improvement of these
methods in the higher frequency regimes. Fragment-based
BOMD, on the contrary, has accuracy that is very much
comparable to standard full post-Hartree−Fock BOMD (with
lesser computational overhead) and hence appears to be well
suited for production level calculations.

VI. COMPUTATIONAL EFFICIENCY OF THE
ADMP-pHF SCHEME

The system studied to demonstrate computational efficiency is
the all-trans alanine decamer shown in Figure 10. The full
system MP2 timings are prohibitive for this case.
As noted in the histogram plots presented in Figure 11, the

frag-BOMD and ADMP-pHF simulations contain three
separate parts: (i) the DFT energy and gradient calculation
for the full system, (ii) the DFT energy and gradient
calculations for the fragments, and (iii) MP2 energy and
gradient calculations for fragments. The parallelism for the
fragment-based frag-BOMD simulations is organized such that
the full system low level calculation is performed on a
separate node, comprising 16 shared memory processors, in
parallel with the fragment high and low level pairs of jobs that
are spawned to other similar nodes. The parallelism for the
fragment-based ADMP-pHF is organized in a slightly different
manner. Here, the full system low level job is performed on a
separate node (the parent node), and the fragment high and
low level pairs of jobs are spawned to other similar nodes
af ter completion of the low level calculation. This leads to a
slight inefficiency in the current ADMP-pHF implementation,
which will be corrected in future versions of the code, but as
is already clear from the discussion below, the ADMP-pHF
calculation is quite fast.
In Figure 11(a) and (b), we present the total time per

dynamics step (black curve), the CPU time required for the
full system (low level) DFT calculation (blue histograms),
and the average CPU time required for both low and high
level calculations for each fragment (red histograms). In both
figures, the CPU time required for the full system low level
(blue) is flat because this calculation is performed on a single
node with 16 processors for both ADMP-pHF and frag-
BOMD. Further reduction in the total time step can be
obtained for both ADMP-pHF and frag-BOMD by increasing
the number of processors for full system low level, but since
this is independent of the fragmentation algorithm (and is
dependent on the restrictions on implementation of the
underlying electronic structure software), we only use a fixed
number of processors here. Thus, all electronic structure
energy and gradient calculations are performed on 16
processors in this benchmark. In general, one would expect
a similar scaling behavior for any number of processors
(assuming the electronic structure method and program used
parallelizes appropriately).

The next critical observation in Figure 11(a) is that the full
system calculation essentially forces the total CPU time to
flatten out at 80 processors and beyond, and the resources
required for the full system calculation are nearly a factor of 4
greater than that for the fragment calculations. This is a major
bottleneck for fragment-based frag-BOMD when applied to
large systems. The ADMP-pHF method, as shown from the
blue histogram in Figure 11(b), reduces the time required for
the low level calculation by nearly a factor of 4, and now the
full system and fragment calculations require comparable
resources. This allows for better load balance and higher code
efficiency for a larger number of processors and directly
translates toward the greater efficiency for the ADMP-pHF
scheme. In addition, one notices that the total CPU time
(black curve) never approaches the blue histogram in Figure
11(b) unlike the case in Figure 11(a). This is partially due to
the code inefficiency mentioned above, where the low level
calculation is performed before the fragment calculations are
spawned. Despite this inefficency, the scaling is better for
ADMP-pHF, and this scaling is expected to further improve
in future versions of the computer program. Furthermore, at
larger numbers of processors (greater than 200), the low level
calculation again uses resources that are nearly a factor of 4
greater than the fragment calculation. This will require that
the lower level calculations be performed over a larger
number of processors (that is, repartitioning the node
allocation), which should further improve the scaling for
number of processors greater than 200.
Given that structural features are well preserved for strongly

hydrogen bonded systems and for peptides, the ADMP-pHF
implementation is expected to have an advantage in large
scale simulations.

VII. CONCLUDING REMARKS
In this publication, we introduce a hybrid extended
Lagrangian, post-Hartree−Fock Born−Oppenheimer dynamics
approach, where the two schemes are combined through a
recently developed32 fragment-based electronic structure
formalism32 that employs the set-theoretic principle of
inclusion−exclusion42 to generalize the well-known
ONIOM5 approach. Here, a large system is first treated
using DFT and then recursively partitioned into overlapping
subsections where the electronic description is improved
through higher levels of electronic structure treatment; the
intersection regions between the overlapping subsections are
appropriately corrected as allowed by the principle of
inclusion−exclusion in conjunction with ONIOM. The hybrid
dynamical method described here propagates the electronic
structure for the full system by an extended Lagrangian
scheme, whereas the fragments are treated using converged
post-HF methods. This significantly reduces the cost for
electronic structure calculations on the full system and will be
beneficial for ab initio dynamics treatment of large systems
where repeated evaluation of energy and gradients of the
entire system may be computationally prohibitive.
This approach is benchmarked on a set of well-studied

protonated water clusters, H9O4
+ and H13O6

+ and polypeptide
fragments: proline tripeptide and alanine polypeptide. All
dynamics trajectories show good energy conservation in the
subkcal/mol range. The structural features of the protonated
water clusters show that the fragment-based ADMP-PHF
approach provides results in good agreement with BO
dynamics at MP2 level of theory. The analysis of vibrational
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density of states also indicates large improvements in ADMP-
pHF over pure extended Lagrangian results at the lower level
of theory; furthermore, ADMP-pHF provides better agree-
ment with the spectra calculated from higher level Born−
Oppenheimer dynamics. In all cases the computational gain in
frag-BOMD is orders of magnitude greater than the full MP2
calculations, and ADMP-pHF improves further on this
performance. The algorithm is written in parallel and
potentially allows AIMD treatment of large systems. Two
challenges remain in fragment-based ab initio molecular
dynamics: (a) The topology of fragmentation could change
during dynamical simulations; thus, an adaptive fragmentation
and energy extrapolation scheme needs to be developed in
order to study processes involving structural rearrangements,
such as proton transfer reactions and conformational changes
in polypeptides. (b) The calculation of forces introduced by
electronic embedding could be expensive,43,44 and computa-
tional feasibility studies are required. These aspects will be
probed in future publications.

■ APPENDIX A: NUCLEAR AND DENSITY MATRIX
GRADIENTS ASSOCIATED WITH EQS 4 AND 5

Since Plow,0 is propagated according to eq 5, the gradient term
∂

∂
E

R P

(0)

0
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low,

in eq 6 contains forces from the unconverged

density matrix in addition to the standard Born−Oppen-
heimer gradients, and these aspects have been well described
in refs 48 and 51. We provide the resulting gradient
expressions here, starting from eq 35 in ref 51. Note that
this expression is identical to eq 14 in ref 48. (Also see the
discussion following eqs 14 and 15 in ref 48.)
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where in the first equation Q̃low,0 = I − P̃low,0 and P̃low,0 =
3Plow,0

2 −2Plow,0
3 is the McWeeny purified density matrix.128

The quantity, Ulow,0 transforms the density matrix from the
nonorthogonal basis to an orthogonal basis. That is, the
nonorthogonal Gaussian basis overlap matrix, Slow,0′ is
factorized as Slow,0′ ≡Ulow,0

T Ulow,0. For Löwdin symmetric
orthonormalization, Ulow,0 ≡ (Slow,0′ )1/2, and for Cholesky
decomposition Ulow,0 is upper triangular. The quantity Ulow,0
may also represent a singular value decomposition of Slow,0′ ,
and in this case, the square root of the singular values (Slow,0′
is positive semidefinite) is to be absorbed in to the left and
right singular vectors of Slow,0′ to define Ulow,0. The quantity,
Flow,0, is the Fock matrix for the whole system at the low level
of theory in an ortho-normal basis and includes the exchange
correlation function for density functional implementation. In
the nonorthogonal basis, it has the form
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where the matrix elements ν,σ, are listed as subscripts and
superscripts to allow clarity. Here, the one-electron terms are

h′ν,σ, two-electron terms are G′(P̃′low,0)ν,σ, and Exc is the
exchange correlation function. In addition, P′low,0 is the
density matrix in the nonorthogonal basis. That is, Plow,0 ≡
Ulow,0 Plow,0′ Ulow,0

T , h = Ulow,0
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in eq A1 represents the standard Born−

Oppenheimer forces from ref 129
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Equation A1 has been carefully derived and discussed in refs
48 and 51, but it is clear that additional terms exist in the
forces when the density matrix is not fully converged. We may
further simplify eq A1 as follows
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It is seen from eq A1 that the difference between forces used
as a result of the extended Lagrangian propagation and the
standard BOMD forces (that were used in ref 32) is
proportional to the commutator [P̃low,0, Flow,0], which is a
measure of the convergence of the electronic wavefunction.
This is a critical term that arises here due to the
nonorthogonality of the basis and is absent in standard
implementations of the Car−Parrinello scheme. This
commutator has been shown to be related to the norm of
the fictitious inertia tensor of the propagated density matrix,51

represented as μlow,0 in eq 3. For the cases when the density
matrix is converged, the commutator tends to zero and could
be neglected, and in that case, the ADMP gradient reduces to
the standard BOMD gradient.
The density gradient expression in eqs 5 and 7 has also

been extensively discussed in refs 48 and 49, and the
corresponding expression for idempotent density matrices is
concisely written as
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and again, this term tends to zero for the converged (BO)
cases.
For all simulations in this study, the fictitious inertia tensor

for valence electrons are fixed at the scalar value μvalence = 180
au, and core orbitals are weighted based on μvalence and
corresponding diagonal elements of the Fock matrix that
determines Elow(0).

48,49 This setup of fictitious mass has been
widely used for many applications32,67−69,130,131 and shown to
be accurate in reproducing structural and vibrational features.

■ APPENDIX B: CONJUGATE HAMILTONIAN FOR
THE LAGRANGIAN IN EQ 3 AND ASSOCIATED
CONSERVATION PROPERTIES

The conjugate Hamiltonian for the Lagrangian presented in
eq 3 is given by the Legendre transform132
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where 0low, and are the conjugate momenta for Plow,0

and R, respectively, and are given by

μ μ= ∂
∂

=
W

W0
0

0low,
low,

low,0
1/2

low, low,0
1/2

(B2)

and

= ∂
∂

=
V

MV
(B3)

Using eqs B2 and B3 in eq B1, one obtains the conjugate
Hamiltonian as
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It is the conservation properties of this Hamiltonian that are
described in Table 1. The fact that such a quantity must be
conserved is seen from the total derivative of with respect
to t, i.e.,
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where the definitions in eqs B2 and B3 have been used, and it
is also assumed that μlow,0 is time independent. Now, using
the Lagrange equations of motion, i.e., eqs 5 and 4, it follows
that

=d
dt

0
(B6)
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