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ABSTRACT: We present two sampling measures to gauge critical regions of potential energy surfaces.
These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation
to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that
estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a
directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies,
or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a
tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential
surfaces. The sampled potential surface is then combined with four different interpolation procedures,
namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the
monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a
modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a)
potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer
reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is
found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed
here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-
nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the
optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the
associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of
which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.

I. INTRODUCTION

Potential energy surfaces have critical significance in a wide
range of areas in computational chemistry. Suitable examples
include chemical reaction pathways where effective dynamical
variables evolve along curvilinear paths to obtain (sometimes)
large scale conformational and chemical transformations.
Spectroscopic properties beyond the Harmonic approximation
are obtained from eigenstates computed using potential
surfaces. Hydrogen-transfer reactions1 in atmospheric,1−5

biological,6−8 and materials9−13 systems are often dictated by
how solvent variables and collective reaction coordinates
together influence the time-evolution of potential surfaces
that dictate the hydrogen-transfer process; but computing these
surfaces is a complex problem at the frontier of computational
chemistry and chemical physics where the complexity grows
exponentially with the dimensionality of the problem.
There exist multiple methods to determine the potential

energy surfaces (PES) for complex systems.14−18 Perhaps, one
of the most powerful approaches involves the use of many-body
expansions.14,15,19−25 Many-body expansions involve one-body,
two-body, and higher order interactions between the
constituent parts of the system. These interactions include
individual molecules, atoms, or aggregates of molecules,
interactions between pairs of these, interactions between
three or more such aggregates, and so on. The higher order

interactions are adjusted to exclude overcounting by removing
contributions from lower order interactions. Using permuta-
tionally invariant polynomials with many-body expan-
sions16,19,21−24 allows one to exploit the inherent (permuta-
tion) symmetry26 in the system. The many-body expansions
have also been employed to compute classical dynamics
trajectories.27 Despite this tremendous progress, the approach
is best suited for uniform systems such as water clusters and
becomes intractable to implement for general, chemical reactive
problems such as those in biological and catalytic active sites.
In general there are two main factors that deeply hinder the

problem of efficiently computing potential surfaces: (a) The
number of potential energy evaluations grows exponentially
with the size of the problem. (b) Each calculation can be quite
expensive for a reasonable sized system especially when post-
Hartree−Fock accuracy is desired. Classical21−24,28−32 and
quantum/classical33−35 molecular dynamics have often been
used to circumvent the scaling issues in point (a) above since
dynamical trajectories sample important (classically allowed)
regions of the potential and provide a first order approximation
for a global potential surface. The problem in point (b) above
represents a significant challenge, and there has been substantial
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progress in the electronic structure community20,27,36−66 that
may, in the future, allow the accurate computation of potential
surfaces in large systems. In this regard, several fragment-based
ab initio molecular dynamics methods have recently been
developed,27,41,56,67−69 and these may, in the future, allow
accurate and efficient calculation of potential surfaces.67,68

Computing general potential surfaces with these protocols is an
ongoing effort. Independently, machine learning70−78 has
become important in several communities and has been
considered to have the potential to help circumvent the
exponential scaling problem described above.
In this paper, we develop an alternative scheme, that has

parallels to machine learning but is based on geometric
tessellation of the high-dimensional potential surface through
estimation of the spatially varying, or local, Nyquist
frequencies79 of potentials. Our approach is to construct a
(rectangular and Voronoi diagrams80,81 based) “tiling” of
multidimensional space, where the size of each “hyperspace-
tile” ideally depends on the local Nyquist frequency79 of the
potential, estimated using a set of targeted sampling criteria.
Our sampling criteria depend on (a) the instantaneous
quantum wavepacket density, (b) a crude approximation to
the potential surface, its (c) gradients, and (d) a Shannon
information theory based expression that estimates the local
entropy associated with the quantum wavepacket. Using these
sampling functions, the potential is recursively refined, but only
targeted portions of the potential energy hyperspace are
computed. The tessellation is achieved through a Boxcar82

representation of the sampling function, and preliminary
investigations of multidimensional tessellation are presented
using Voronoi diagrams.80,81,83

The tessellation scheme is applied to compute potential
surfaces in hydrogen-bonded systems and hydrogen-transfer
reactions since the shared hydrogen nucleus in many such
cases1,6,35,84−95 shows unexpected quantum nuclear effects.
These effects include very large experimentally observed
primary kinetic isotope effects6,35,90,96−108 and anomalous,
nonclassical secondary isotope effects.107−110 These problems
require a detailed understanding of the potential surface
experienced by a few degrees of freedom, that clearly display
nonclassical behavior, while simultaneously considering the
correlated effects arising from the change in configuration of
the remaining parts of the system during the reactive process.
For example in ref 35 it is shown that quantum nuclear effects
such as H/D nuclear tunneling play a critical role in the
hydrogen-transfer rate-determining step in soybean lipoxyge-
nase-1 (SLO-1); furthermore, such a reactive process is
nonadiabatic35,106 in terms of coupling between the hydro-
gen-transfer dimensions and the larger-scale active site
dynamics dimensions. The size of these systems requires a
reduced dimensional study, and high level electronic structure
treatment of such systems is cost prohibitive. Furthermore, in
ref 108, it is noted that coupled hydrogen nuclear dynamics has
a critical role in gauging experimentally observed nonclassical
secondary kinetic isotope effects.109 Correlated quantum
nuclear description coupled to reaction coordinate dynamics
is clearly very challenging. In addition to these problems,
several anharmonic hydrogen-bonded systems that have the
propensity to display multiwell characteristics111−113 have also
proven challenging to study accurately, and our approach here
is geared toward these systems as well. Therefore, accurate and
efficient methodologies to compute reduced dimensional
potential surfaces in this regard are particularly critical for a

number of problems. The methods proposed here attempt to
reduce the computational cost in obtaining accurate potential
surfaces by reducing the number of electronic structure
calculations that are needed to obtain the same. Future studies
will combine these effects with molecular-fragmentation
methods20,38−48,51−53,58,59,62−69 to obtain high quality potential
energy surfaces.
Here we demonstrate the methods proposed through the

study of (a) the reduced dimensional potential surface
encountered in the intramolecular hydrogen-transfer step in a
hydrogen-bonded peroxy radical reaction intermediate that
arises114−116 during the OH-initiated oxidation of isoprene (a
biogenic volatile organic compound117−121). Furthermore, to
benchmark the optimal nature of the potential energy surface
sampling procedures discussed here, we also (b) benchmark
our sampling and tessellation schemes through the study of the
highly anharmonic reduced dimensional potential energy
surface associated with the shared proton in the bihalide
ClHCl− system, that has been a great challenge for several
computational methods.34,122−124

This paper is organized as follows: In Section II our potential
energy surface sampling condition and associated tessellation
algorithm are presented. This involves both potential energy
surface sampling and a recursive refinement process. Multi-
dimensional tessellation measures are also introduced in
Section II. Section III.A includes a comparison of errors
between two different tessellation measures along with an
analysis of computational gain. Specifically, these measures are
(i) numerically benchmarked for accuracy and efficiency and
(ii) used to compute effective hydrogen-transfer potential
energy surfaces for transition states that are involved in a
hydrogen-transfer reaction involving isoprene and (iii)
quantum nuclear contributions to the reaction coordinate in
the hydrogen-transfer process. The discussion is complemented
by providing a background of the isoprene problem in Section
III, which is then analyzed in Sections III.B and III.C. Appendix
A provides a detailed discussion of interpolation procedures
used here, whereas Appendix B provides benchmarks on the
recursive refinement procedure. Conclusions are given in
Section IV.

II. RECURSIVE REFINEMENT OF POTENTIAL
SURFACES THROUGH ADAPTIVE,
MULTIDIMENSIONAL, AND NONUNIFORM
GEOMETRIC TESSELLATION WITH DETERMINISTIC
MEASURE

As per the Nyquist-Shannon sampling theorem,79,125,126 any
function that is band limited in the frequency domain can be
represented exactly using a finite number of samples in real
space, provided the sampling rate is commensurate with the
Nyquist frequency (1/2Δ) of the original function. This
essentially implies that critical information from the continuous
function is present in the aforementioned finite sample. Thus,
the good news for potential energy surface fitting is that most
potentials are “well-behaved” and smooth, with a relatively
small number of non-negligible derivatives while remaining
bounded in the frequency domain, and the potential energy
surface ought to be well-represented by a finite sample in real
space; but the associated bad news is that a sampling rate such
as that described above is still extremely expensive to construct
if accurate electronic structure methods are to be employed.
However, it is also true that potential energy surfaces generally
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have multiple length scales. Thus, while the lower energy region
of a potential may be captured by low-frequency functions, the
higher energy regions and classical turning points are best
characterized through higher frequency functions. Hence,
potential energy surfaces are generally nonisotropic and may,
in some sense, possess position dependent Nyquist f requencies, or
position dependent “ruggedness”, that are best sampled
through nonuniform grids where the grid spacing is to be
determined by estimating the local frequency domain proper-
ties, as well as significance of the potential. To obtain such a
nonuniform grid distribution, we first define the local Nyquist
frequency, ω̅x( ; ), of some function, f(x)̅, as the Fourier
transform of a moving window filter acting on the function, that
is

∫ω δ ω̅ = ̅′Θ − | ̅ − ̅′| ̅′ ̅′x dx x x f x i x( ; ) ( ) ( ) exp( )
(1)

where Θ(δ − |x ̅ − x′̅|) is a step function that is nonzero when
|x ̅ − x′̅| < δ. Furthermore, the ratio of ω̅x( ; ) and the
potential, that is

∫ω δ ω̅
̅

=
̅

̅′Θ − | ̅ − ̅′| ̅′ ̅′
x

V x V x
dx x x f x i x

( ; )
( )

1
( )

( ) ( ) exp( )

(2)

reflects the local oscillation frequency of the potential damped
by the value of the potential and is, hence, the desired local
sampling rate in the sense that oscillatory and low energy
regions of the potential are sampled at a higher frequency as
compared to oscillatory and higher energy regions of the
potential.
In this section, we present an algorithm to indirectly gauge

the local, position dependent, Nyquist frequency of potentials
to estimate the “optimal” sampling necessary for a reasonable
and controllably accurate potential surface. The algorithm is
iterative, involving two kinds of sampling functions that provide
a measure of the necessary local sampling rate used to construct
an “on-the-fly” potential fit, which is then iteratively improved
until convergence. The method is benchmarked in Section III
by computing reduced dimensional potential surfaces for (a) an
anharmonic hydrogen-bonded system and (b) a hydrogen-
transfer reaction of significance in atmospheric chemistry. In
both cases the degrees of freedom pertaining to the hydrogen
nuclear dimensions involved in the hydrogen bond and in the
hydrogen-transfer process are treated quantum mechanically
and represented using body-fixed Cartesian coordinates. The
salient features of our algorithm to compute a potential energy
surface for these reduced dimensional coordinates are as
follows.
1. First, a crude estimate of the potential is constructed

through a set of uniformly dispersed electronic structure
calculations performed on a discretized grid that represents the
domain of a multidimensional surface. At this stage one might
use a lower level of theory (if the system is large semiempirical
methods such as PM6 could be used), and, in this case, one
might sample a large portion of the potential surface. This
“lower level” potential surface is to be used as an initial guess
for the next step to improve through recursive refinement.
Future studies will also gauge the use of classical AIMD
simulations at this stage.
2. For the surface computed in the previous step, eigenstates

are obtained. We use the Arnoldi approach to compute
eigenstates127,128 since the matrix sizes are expected to be large.
The Arnoldi approach differs from the well-known Lanczos

iterative scheme,129 in that any function of the Hamiltonian can
be used to construct a Krylov-like basis,130 instead of the
Hamiltonian itself. These procedures converge rapidly to
eigenstates in a specified neighborhood.
3. Next a sampling function34,82,124,131 is constructed using a

propagated wave packet (or an eigenstate), the potential surface
computed in the previous step, and gradient of the potential.
Two versions of the sampling are considered in this publication,
namely

ω
ρ

̅ ∝
̃ ̅ +

̃ ̅ +
x

S x I
V x I

( )
[ ( )] 1/

( ) 1/S
S

V (3)

ω
ρ

̅ ∝
̃ ̅ + ∇ ̃ ̅ +

̃ ̅ +ρ
ρ ̅ ′x

x I V x I

V x I
( )

[ ( ) 1/ ][ ( ) 1/ ]

( ) 1/
x V

V (4)

where {x}̅ represents the coordinate representation pertaining
to the quantum nuclear degrees of freedom. Since in this paper
we aim to compute reduced dimensional surfaces, Cartesian
coordinates are employed to describe {x}̅, but these measures
can be easily generalized to other coordinate systems.
Furthermore, the wave packet density, ρ, the potential, V,
gradient of the potential, ∇x ̅ V(x)̅, and the local Shannon
entropy function computed from the quantum wave packet
density, S[ρ(x)̅] ≡ −ρ(x)̅ log(ρ(x)̅), are all normalized, scaled,
and shifted according to

ρ
ρ ρ
ρ ρ

̃ ̅ = ̅ −
−

x
x

( )
( ) min

max min (5)

where ρmin(ρmax) are the minimum(maximum) values for the
wave packet density and similarly for Ṽ, ∇xṼ̅, and S ̃[ρ(x)̅]. This
results in balanced contributions from each physical quantity.
Furthermore, both sampling functions above remain positive
semidefinite under this choice. Equation 4 is identical in form
to the time-dependent deterministic sampling (TDDS)
function developed in ref 33 for use in quantum nuclear
dynamics. Here we use this measure to compute potential
surfaces within a recursive paradigm. The three integers Iρ, IV′,
and IV are chosen to be 1, 3, and 1, respectively, as outlined
through analytical and numerical considerations in ref 82. We
require the function ωρ to have equal sampling in the classically
allowed and classically forbidden regions of the potential, and
this condition and this alone in ref 82 leads to the mentioned
values of Iρ, IV′, and IV. The parameter, IS, is chosen to be equal
to Iρ as suggested in ref 131.
The general form of Shannon entropy125

∫ ∫ρ ρ ρ− ̅ ≡ ̅ ̅k dx k dx xlog( ) [ ( )]
(6)

educates our choice in eq 3. Here ρ is the probability of finding
a system in realization (or microstate represented by) x,̅ and k
is a proportionality constant (Boltzmann constant in
thermodynamics and simply the identity, i.e, k = 1, in
information theory132). Here, we refer to ρ ̅x[ ( )] as the
“local Shannon entropy” because, while the full sum in eq 6 is
the Shannon entropy,125 ρ ̅x[ ( )] implicitly depends on the
realization or local value of the variable x.̅
The choice in eq 4 is due to the need to appropriately

represent classical turning points, where the gradient of the
potential is generally high and hence quantum effects, such as
tunneling, develop. In addition, the choice of ωρ(x)̅ was, in refs
82 and 34, influenced by its connections to the quantity
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−
∂
∂

⎛
⎝⎜

⎞
⎠⎟E V x

V
x

1
( ) (7)

which appears in WKB theory,133 which holds under the
condition

ƛ
ℏ

≡ ≫
−

∂
∂

− ⎛
⎝⎜

⎞
⎠⎟

p
E V x

V
x

1
( )

1

(8)

One objective of the sampling function, ωρ(x)̅, is to provide a
larger sample in the rapidly varying region of the potential,
which is generally a region where the WKB approximation
breaks down. Furthermore, it has been shown numerically34,82

that ωρ(x)̅ is directly proportional to the Bohmian quantum
potential,133−145 which is again a signature of quantum-
mechanical effects. In Section II.B we also numerically gauge
the connections between eqs 3 and 4 and the local Nyquist
frequency of the potential defined in eq 1.
4. Once the sampling functions are computed on a grid that

represents the quantum nuclear degrees of freedom, the next
step is to divide this multidimensional space into regions of
significance (or multidimensional tiles) based on weights given
by the sampling functions. Toward this, a Dirichlet
tessellation146 of the multidimensional potential energy surface
is constructed using ωS(x)̅ and ωρ(x)̅ as grid weights. Details
regarding this procedure are given in Section II.A. There are
several approaches one can use here, and perhaps the most
common methods for multidimensional tessellation is the
Voronoi diagram.80,81,83 However, for reasons that will be
discussed in Section II.A, here we also use a Boxcar
representation of both sampling functions to reduce the two
sampling functions into multidimensional, rectangular, tiles, or
domains in space with similar local length scales (or inverse
Nyquist frequencies). Numerical illustrations that inspect the
relation between ωS(x)̅, ωρ(x)̅, and the local Nyquist frequency
are provided in Section II.B. Using these methods, we
effectively construct a rectangular tiling of the multidimensional

surface, where the size of each “hyperspace-tile” depends on the
sampling measures ωS(x)̅ and ωρ(x)̅, and the integral of the
sampling functions inside each tile is roughly constant. One may
also think of these tiles as being representative of multidimensional
sampling rates and hence an indirect signature of the local Nyquist
f requency. In our case, these sampling rates are obtained using
eqs 3 and 4.
5. Once the tiling is complete, we have facilitated a quantum-

mechanical grid compression. Depending on the method of
tiling (Boxcar or Voronoi), electronic structure calculations are
either performed at a chosen subset of vertices of the hyper-
rectangular tiles obtained from the Boxcar representation (see
Figure 3 and associated discussion in Section II.A) or the center
of the irregular polyhedra (polytope in higher dimensions)
obtained from Voronoi decomposition (see Figure 2 and
associated discussion in Section II.A). At the end, approx-
imately one electronic structure calculation is performed to
represent each hyper-rectangular tile or polytope. These
calculations are then used to compute estimates for the
potential surface. While in this paper we limit ourselves to DFT
treatment, at this juncture it is possible to hierarchically
increase the level of theory and include MP2 or use
fragmentation techniques67−69 to obtain approximations for
higher levels of theory. As we will see, the grid compression is
several orders of magnitude and results in large computational
gains. Furthermore, the number and size of tiles depends on the
local variations of the potential and not explicitly on the
dimensionality of the quantum nuclear degrees of freedom.
Following the computation of electronic energy and gradients
at the set of points given by the Boxcar representation of ωS

and ωρ, an interpolation is constructed to obtain the full
potential surface at all values of {x}̅. Here multiple methods
have been employed for this purpose. All interpolation schemes
are standard protocols available in the literature. The relevant
parameters and other details about the interpolation procedures
used in this work are provided in Appendix A.

Figure 1. A graphical representation of the recursive refinement procedure.
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6. Once the potential is computed, an initial wavepacket is
propagated on this potential for a few steps and employed as
the wavepacket to compute the sampling functions for the next
iteration. At this stage it is also possible to use the eigenstates of
the potential instead of using quantum propagation.
7. Next, the algorithm cycles back to step 2 and iterates to

convergence. A critical aspect of the steps here is that multiple
electronic structure packages can be used within one single
calculation. These aspects will be gauged and studied in future
publications.The method is illustrated through the flowchart in
Figure 1.
II.A. Geometric Tessellation of the Potential Surface

Using ωS(x)̅ and ωρ(x)̅. Given a conformational space
represented using the coordinates {x ̅ ≡ {xi̅}}, in Step 4 in
the algorithm discussed in the previous section, one needs to
find a discrete sample of points, {xα̅}, that will be used to

suitably represent a potential surface depicted in the domain
{x}̅. We wish to find {xα̅} by using ωS(x)̅ and ωρ(x)̅ as
measures that represent the significance of each x.̅ Furthermore,
the family of {xα̅}, once found, provides a conduit to tessellate
or divide the {x}̅-space.
One possible method to achieve this tessellation process is to

employ a multidimensional Boxcar representation of the
sampling functions, ωS(x)̅ and ωρ(x)̅, where the individual
Boxcar regions, or tiles, are expected to represent local Nyquist
frequencies (see Section II.B). An illustration of the Boxcar
representation is provided in Figure 2 for the hydroxy-peroxy
isoprene system treated in Section III. An additional constraint
imposed on the Boxcar representation of ωS(x)̅ and ωρ(x)̅ is
the fact that as the number of tiles requested, or the number of
{xα̅} sample-points requested, increases, both ωS(x)̅ and ωρ(x)̅
must be gradually modified in the direction of a uniform

Figure 2. Illustration of the sampling function, ωS, in eq 3. Parts (b) and (c) represent a sampling function in two-dimensions for the system shown
in part (a). Also superimposed in parts (b) and (c) are the grids obtained from the Boxcar representation of the sampling function. The sampling
function is tessellated into 78 tiles [(b) and (d)] and 205 tiles [(c) and (e)]. Electronic structure energies and gradients computed at the vertices of
these tiles are used to interpolate on a grid with ≈5000 points, and the resultant potentials are shown in parts (d) and (e). The accuracy is of the
order 1/100-th kcal mol−1 as shown in later sections.
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distribution of {xα̅}. A procedure to carry out this process is
discussed in ref 82, and, as noted, the resultant representation is
shown in Figure 2.
Another approach for multidimensional tessellation is to use

Voronoi diagrams80,81 to divide the region using the sampling
functions. This method is briefly illustrated in Figure 3.
However, as seen by visual inspection of the Figure 3(a) and
Figure 2(b), and also Figure 3(b) and Figure 2(d), the Boxcar
representation appears to capture the sampling function better.
In addition, the rectangular grid obtained from the Boxcar

representation is more commensurate with employing multi-
dimensional Hermite-curve interpolation, which is the method
of choice in this publication.

II.B. Rationale Behind the Choice in Eqs 3 and 4. In this
section we gauge the connections between ωS(x)̅, ωρ(x)̅, and
the local Nyquist frequency estimates, or “optimal” sampling

rate estimate, ω̅
̅

x
V x
( ; )

( )
in eq 2. In Figure 4 we compare ωS and ωρ

with the ω̅
̅

x
V x
( ; )

( )
. As shown in eq 1, the local Nyquist frequency,

Figure 3. Illustration of the sampling function, ωS, in eq 3. The sampling function shown in Figure 2(b) is tessellated here using Voronoi diagrams.
83

Part (a) here shows the Voronoi tessellation in conjunction with ωS, whereas part (b) shows the associated potential surface.

Figure 4. Parts (a) and (b) show two different double potentials (black) and associated behavior of the quotient of the local Nyquist frequency and
potential in eq 2 (in green). As expected these indicate greater contributions in the classically allowed regions. We also present the sampling
functions shown in eqs 3 and 4, and similarities between these and ̅x( ) in eq 2 are gauged by computing correlations presented in Figure 5.

Figure 5. Parts (a) and (b) represent the correlation between ωS(x)̅ [(a)] and ωρ(x)̅ [(b)] with the local Nyquist frequency descriptor in eq 2. Both
potentials from Figure 4 are used, and the averages are presented here. Based on these figures, it appears that ωS(x)̅ correlates better with the local
Nyquist frequency. This aspect is also consistent with our numerical studies later in the paper, where we show that ωS(x)̅ based sampling does
indeed represent the potential better.
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ω̅x( ; ), is computed from the Fourier transform of a moving
window filter acting on the potential. In Figures 4 and 5, we
have used the eigenstate of the displayed potential in
computing ωS and ωρ. This is done for illustrative purposes.

We find that the desired sample rate, ω̅
̅

x
V x
( ; )

( )
in eq 2, is in

general positively correlated with ωS to a greater extent as
compared to ωρ as noted in Figure 5. The Pearson correlations
are noted in these figures. It is, however, important to note that
while the desired sampling rate generally correlates quite well
with ωS, larger values of the desired sampling rate are presented
with a multiplicity of values of ωS (all of which are high) as is
clear from the asymptotic flattening of the curve in Figure 5(a).
This difference arises in the minimum energy region of the
potential as may be clear upon inspection of Figure 4 but is not
significant since the sampling rate obtained from ωS is generally
higher in this region as compared to other regions, as may also
be clear from Figure 4. In fact, when the correlation in Figure
5(a) is recomputed by ignoring the flat region, the Pearson
correlation is 0.99. The quantity ωρ correlates to a much lesser
extent as compared to ωS. This difference is carefully probed in
the examples considered in the results section. While one needs
to know the potential to compute the local Nyquist frequency
based desired sampling rate, the sampling functions in eqs 3
and 4 can be computed before the potential is known, as
discussed in the algorithm outlined in Section II, and hence the
numerical similarities between these is quite appealing.
The remaining portion of the paper is organized as follows.

In the next section we first illustrate the sampling function for a
simple bihalide hydrogen-bonded system. In lower dimensions
we illustrate the potentials obtained from all four different
fitting procedures (Appendix A) along with the sampling
functions and the true potential. In high dimension, we are in a
position to compare the efficiency and accuracy of the fitting
methods for the irregular grid samples obtained from eqs 3 and
4. Additional benchmarks related to the recursive refinement
procedure are presented in Appendix B. Following this we

consider a hydrogen-transfer reaction in a biogenic volatile
organic compound called isoprene. It has been noted in recent
publications114−118,120,121,147,148 that isoprene, which is a
terpene, reacts with dioxygen, and the resultant compound
can reorganize affecting the branching ratios of the products
obtained. A brief background of this problem is provided in
Section III with results from potential energy surface
calculations.

III. NUMERICAL BENCHMARKS ON ACCURACY OF
POTENTIAL SURFACES OBTAINED FROM THE
DIRECTED MEASURE FUNCTIONS, ωS AND ωρ

We benchmark the sampling functions in conjunction with
performance for the four different fitting procedures described
in Appendix A. The systems under study include (a) the highly
anharmonic potential that is experienced by the shared proton
in the bihalide [ClHCl]− system and (b) a hydrogen-transfer
prereactive configuration involved in the oxidation of isoprene,
a biogenic volatile organic compound. The [ClHCl]− system,
despite its size and availability of the associated highly accurate
experimental velocity-modulation spectroscopy results,149

presents a significant challenge to most state-of-the-art
methods122,123 due to the coupled dynamics of the shared
proton and the heavier, donor/acceptor chlorine atoms.34

Quantum wavepacket ab initio molecular dynamics
(QWAIMD)34,124 has been used to study this problem in
some detail, and here, we consider this system as a suitable
challenge for the preliminary studies in this section.
The hydroxy-peroxy isoprene system shown in Figure 6(b) is

a proposed intermediate of the Leuven Isoprene Mechanism
(LIM1)114−116 used to explain the higher than expected OH-
radical concentration found during recent air-pollutant
monitoring campaigns.121 Here, an internal hydride transfer
(Figure 6(c)) eventually leads to the regeneration of the OH
radical under low NOX conditions114 common in rainforest
areas117,118,120,147,148 and appears to explain the experimental
results in ref 121. The prereactive system for this internal

Figure 6. (a) Isoprene, (b) the hydrogen-bonded hydroxy peroxy radical, and (c) the reaction pathway connecting the two, with donor carbon
shown in red. The last structure in part (c) represents the transition state involved in the hydrogen-transfer process. See Figure 7 for possible forms
of this structure with barrier heights shown in Table I.
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hydride shift is stabilized by an intramolecular hydrogen-
bonded ring formation as shown in Figure 6(b). A few
transition states arising from the prereactive complex in Figure
6(b) (also see Figure 6(c)) that support hydrogen transfer are
shown in Figure 7, and the transferring hydrogen atom is
shown in purple. Relative energies for the structures in Figure
7, with respect to the prereactive complex in Figure 6(b), are
provided in Table I. (Also see ref 116.)
As part of our studies here, we inspect the quantum nuclear

effects arising from the shared proton in Figure 7. As seen from
Table I, the barrier heights for these states are quite close, and
hence one may expect all of these to be (perhaps statistically)
populated during the hydrogen-transfer process. Furthermore,
structures labeled “1” and “3” are similar to those found in ref
116. To support this analysis we compute potential surfaces
experienced by the transferring hydrogen atom using the
algorithm presented. The body-fixed reference frame used to
depict the quantized hydrogen nucleus is shown in Figure 8.

Here the purple box is used to represent a multidimensional
grid, and each grid point represents a unique molecular
geometry where the potential energy and gradients are to be
evaluated. We will employ the techniques proposed in Section
II to compute these potential energy surfaces at much reduced
computational effort.

III.A. Benchmarking the Fitting Functions Used in
Conjunction with the Sampling Functions, ωS and ωρ:
Numerical Studies on ClHCl−. As noted earlier, in this
section we benchmark the accuracy and efficiency of all four
fitting procedures listed in Appendix A and used in conjunction
with the local Nyquist frequency estimates, ωS(x)̅ and ωρ(x)̅.
The system for the studies in this section is ClHCl−, where the
potential surface is to be computed for the reduced dimensions
pertaining to the shared proton. Two-dimensional and three-
dimensional real-space representations of the quantized degree
of freedom (the shared proton in ClHCl−) are considered here.
The grid occupies a 0.80 Å domain in each direction, namely
the donor−acceptor direction and the two orthogonal
dimensions. To accurately capture the real space wave functions
and potentials, the region is discretized to obtain an equally
spaced grid containing 49 grid points along the donor/acceptor
axis and 49 along all orthogonal directions. This amounts to a
grid spacing of approximately 0.017 Å in each direction, and the
region depicting the grid is quite similar to that shown in Figure
8 for hydroxy-peroxy isoprene. We, thus, have 117649 grid
points in three-dimensions and 2401 grid points in two
dimensions, where estimates for the electronic structure
potential are needed. Toward this, we utilize ωS(x)̅ and
ωρ(x)̅ along with the aforementioned tessellation scheme to
divide the surface into critical regions and determine a small set
of sample points where electronic structure calculations are

Figure 7. Transition states corresponding to the structure marked “Transition State 1,6 H-Shift” in Figure 6(c). Structures labeled “1” and “3” are
similar to those proposed in ref 114 that lead to mechanisms that deviate from the traditional reactions and affect the production of tropospheric
ozone, a critical constituent of photochemical smog. The transferring hydrogen atom is marked in purple. The number in bold is the assigned
number for the transition state that is used throughout the rest of the paper.

Table I. ZPE Corrected (within Harmonic Approximation) Barrier Heights (in kcal/mol) Associated with the Transition States
Shown in Figure 7

B3LYP/6-311++g(d,p) M062x/6-311++g(d,p) MP2/6-311++g(d,p)

TS Ea (kcal
mol

) D/Ab (Å) CHOc COOd Ea (kcal
mol

) D/Ab (Å) CHOc COOd Ea (kcal
mol

) D/Ab (Å) CHOc COOd

1 16.67 2.48 150.49 85.74 19.82 2.46 147.67 84.86 23.38 2.45 162.02 93.96
2 17.78 2.52 157.09 99.60 21.42 2.50 154.97 99.33 27.01 2.45 162.27 94.24
3 17.25 2.48 151.81 86.00 19.50 2.45 149.42 85.56 21.31 2.44 154.47 88.70
4 18.04 2.49 152.57 87.28 21.00 2.46 149.03 85.89 23.10 2.45 161.28 97.54
5 18.75 2.52 159.76 99.25 22.17 2.50 158.00 98.71 21.32 2.44 154.47 88.70

aThe energy noted here is the difference between the ZPE corrected prereactive complex energy for the structure shown in Figure 6(b) and the ZPE
corrected transition state energies of the structures in Figure 7. bThe columns labeled D/A show the donor−acceptor distance in Å. cThe columns
marked CHO show the angle between the angle in degrees between the donor, transferring hydrogen, and acceptor. dThe columns labeled COO
show the angle in degrees between the donor carbon, acceptor oxygen, and the additional oxygen from the added O2 group.

Figure 8. Body-fixed reference frame that represents the quantized
nucleus is shown in purple. The associated three-dimensional grid
encompasses the region inside this purple box. Note that this grid is a
three-dimensional generalization of the one presented in Figure 2(a).
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performed and used to obtain the potentials on the remaining
number of grid points discussed above through interpolation.
Typically, in this section we gauge the accuracy of the
procedure by performing only 369 electronic structure
calculations spread over the grid with locations determined
from the tessellation conditions. These are then interpolated to
117649 three-dimensional grid points. In two dimensions we
gauge the accuracy from 67 electronic structure calculations
interpolated to the grid comprising 2401 points. In both cases a
larger number of sample points is considered to check
convergence of surface. However, to check the accuracy, we
also need a reference electronic structure surface on the full grid
which is clearly a formidable task even for this small system,
given that 117649 calculations are required for the three-
dimensional case. Hence the electronic structure method used
in this section is PM6. The convergence of the recursive
refinement technique used here is demonstrated in Appendix B.
The accuracy of the recursive refinement calculations is

computed as follows. The potential computed on a set of
sampled points is extrapolated to obtain Vapprox(x)̅. This is then
compared with the reference PM6 calculations on the full grid.
While the mean absolute deviation between the approximate
and full reference surfaces

∑ϵ = | ̅ − ̅ |
N

V x V x
1

( ) ( )U
i

i iapprox ref
(9)

provides a global error, a ground eigenstate weighted form of
the same

∑ ψϵ = | ̅ | | ̅ − ̅ |ψ x V x V x( ) ( ) ( )
i

i i i0
2

approx ref0
(10)

provides the cumulative error in localized regions that are
populated by the ground state wave function.
Figures 9(a) and 9(b) show the accuracy and the CPU time

required to carry out the recursive refinement procedure for
two-dimensional and three-dimensional versions of the shared
proton potential surface in ClHCl−. Due to the large size of the
associated matrices, we have employed the Arnoldi iterative
diagonalization procedure127,128 to compute eigenvalues and
eigenfunctions. As noted in each case, the left-vertical axis
represents either ϵU (eq 9) or ϵψ0

(eq 10), in kcal/mol, and the
right-vertical axis shows the CPU time. The number of
potential energy sampling points, that is the number of
electronic structure calculations performed to obtain the
reduced dimensional potential surface, is also mentioned in
the figure legend. For example, when the number of electronic
structure calculations is increased from 67 to 167 in the two-
dimensional case, the ϵψ0

-error reduces from roughly 0.35 kcal/
mol to 0.1 kcal/mol when the local version of Hermite curve
interpolation is used. Note that these electronic structure
calculations are then used to interpolate the value of the
potential on 2401 points as explained in the caption of Figure 9.
Similarly, for the three-dimensional case, the ϵψ0

-error reduces
from approximately 0.2 kcal/mol to 0.1 kcal/mol when the
number of sample points is increased from 369 to 2197 and
when Shepard interpolation is used to interpolate onto the full
117649 grid points.

Figure 9. Error analysis (eqs 9 and 10) and computational gain in obtaining the shared proton potential surface for ClHCl− using ωS and ωρ. The
legend above parts (a) and (b) shows the sampling function and the number of sampling points used to fit the surfaces. Two different cases are
presented for each fitting function and each sampling function. The numbers in blue recorded above the Shepard interpolation data are the size of
the local subset discussed after eq A2. Part (a) shows ϵU (eq 9) for a two-dimensional surface with a total of 2401 interpolated grid points resulting in
a 36-fold and 13-fold reduction in electronic structure calculation time when using ωS (36-fold and 14-fold reduction using ωρ). Part (b) shows ϵU
(eq 9) for a three-dimensional surface with a total of 117649 interpolated grid points resulting in a 319-fold and 54-fold reduction in the number of
electronic structure calculations when using ωS (343-fold and 115-fold reduction using ωρ). Parts (c) and (d) show the associated ϵψ from eq 10 for
the 2D and 3D surfaces analyzed in (a) and (b) respectively. The eigenstate used here is the hydrogen ground state.
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In all cases, the CPU time shown in Figure 9 is the total time
needed to generate the sampling functions and compute
approximations to the full surface but does not include the time
spent for the electronic structure calculations. Upon further
inspection of Figure 9, it follows that Lag-LPF (eq A1) has the
largest error, and this error increases with a larger number of
sampling points. This is presumably due to the fact that the
low-pass filtering in eq A1 does not completely eliminate the
Runge oscillations,150 and these accumulate causing large
deviations throughout the potential. In eq A1, as the number of
sampled points, indexed “i”, increases, the polynomial order in
x increases which raises the oscillation frequencies built in f(x).
The local Hermite curve interpolation and the Shepard
interpolation methods have largely reduced error as compared
to Lag-LPF, but the best results are obtained from MSA.21

However, there are developments that remain in being able to
use MSA for general reduced dimensional surface calculations
such as those undertaken in the next subsection.151 Hence we
use Hermite curve interpolation with Boxcar tessellation for the
remaining portion of this paper.
III.B. Analysis of the Hydroxy-Peroxy Isoprene Hydro-

gen-Bonded Intermediates Shown in Figure 7. Section
III.A, Figures 9 and 10, and Appendix B demonstrate the robust

and efficient nature of the recursive refinement procedure when
used in conjunction with eqs 3 and 4 and the accompanying
tiling mechanism. In this section, we utilize the approach to
gauge the contributions from quantum nuclear effects toward
all five transition states shown in Figure 7. Each transition state
used the grid configuration shown in Table II and also used in
Appendix B. The potential energy surfaces are computed on the
set of sampling points noted in Table II, obtained using ωS, and
interpolated to the full-grid using local Hermite curve
interpolation. The level of theory includes both B3LYP/6-
311++g(d,p) and M062x/6-311++g(d,p). For each case the
potential surfaces are used to construct eigenstates as discussed
in Section III.A. These ground eigenstates are then used to
compute product state probabilities which we represent as
transmission amplitudes in Table III. For all five of the
transition states the transmission (or product-side) probability
is greater than 60% for both levels of electronic structure theory
considered here. This significant population transfer noted in
Table III is analyzed in greater detail here and in the next
section.

The hydrogen nuclear ground eigenstates, for the B3LYP
surfaces, are shown in Figure 11. For transition states 1, 2, and
4 the ground eigenstate populates the product well to a large
extent. This is seen from the transition probabilities noted in
Table III where the corresponding values for transition states 1
and 4 are 97% and 95%, respectively. To further gauge this
effect of enhanced product-side populations at the transition
state geometries, in Figure 11, we present two-dimensional
slices of the potential that include the global minimum for each
potential surface. While the double-well nature of each
potential is evident, there are subtle differences that directly
address the product side delocalization and associated trans-
mission probabilities reported in Table III. For example, for
transitions states 1 and 4, the acceptor side well is deeper than
the donor side well, which explains the transmission
probabilities in these cases. For transition states 3 and 5, the
reactant and product side wells are closer to each other, and
this aspect results in a greater delocalization of the ground state
wavepacket on either sides of the barrier as is clearly visible
from Figure 11(c) and 11(h). The smaller difference in energy
between the two minima in transition state 2 is also countered
by the larger barrier and larger separation between the two
minima. However, the fact that the two minima are closer in

Figure 10. Reduction in computational complexity as a result of
recursive refinement is measured in terms of reduction in the number
of electronic structure calculations.

Table II. Computational Details Regarding the Isoprene
Transition State Grid Structure

grid characteristic value

total number of grid points 232897
spatial spread of the grid along donor/acceptor
direction

1.2 Å

spatial spread of the grid in orthogonal directions 0.5 Å
grid spacing along donor/acceptor direction 0.012 Å
grid spacing along directions orthogonal to the
donor/acceptor direction

0.010 Å

number of grid points along donor/acceptor 97
number of grid points along orthogonal
directions

49

levels of theory used in computing the surface B3LYP/6-311++g(d,p)
M062x/6-311++g(d,p)

average number of sample pointsa obtained from
tessellation of ωS

373 (B3LYP)

367(M062x)
data compression rate, that is reduction 0.16% (B3LYP)
in number of electronic structure calculations 0.15%
aPer iteration and for each point along the reaction coordinate.

Table III. Transmission Amplitudes Computed at Each
Transition State Using the Potential Surfaces Computedb

transition
state theory

amplitude
(%)

ZPEa

(kcal/mol)

1 B3LYP/6-311++g(d,p) 97 7.93
M062x/6-311++g(d,p) 99 8.35

2 B3LYP/6-311++g(d,p) 84 8.29
M062x/6-311++g(d,p) 97 9.45

3 B3LYP/6-311++g(d,p) 72 7.93
M062x/6-311++g(d,p) 86 8.80

4 B3LYP/6-311++g(d,p) 95 7.91
M062x/6-311++g(d,p) 98 8.60

5 B3LYP/6-311++g(d,p) 61 7.55
M062x/6-311++g(d,p) 77 9.29

aFor the 3D potential. bThe zero-point energy corresponding to each
surface is also noted.
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energy (as compared to transition states 1 and 4) is responsible
for the bimodal form of the ground eigenstate in Figure 11(b).
Given the anomalous product side transmission at this

transition state geometry, in the next subsection we inspect the
evolution of ground eigenstates along a hydrogen-transfer
reaction coordinate for transition state 1. However, the power
of the recursive refinement algorithm when used in conjunction
with ωS and ωρ, and the accompanying tiling mechanism, is
already clear, with reference to the solution to such complex
kinetics problems that involve hydrogen-transfer processes.
III.C. Evolution of the Hydrogen Nuclear Transmission

along an Effective Reaction Coordinate. Due to the fact

that there is significant transmission noted in Section III.B prior
to the classical transition state, we expect that the quantum
nuclear eigenstate energy corrected transition state for the
hydrogen-transfer step would appear closer to the reactant.
Similar results have been noted for the enzyme soybean
lipoxygenase-1 in ref 35. To further gauge the problem here, we
consider the evolution of hydrogen and deuterium nuclear
ground state wave functions as a function of a hydrogen-
transfer coordinate. The geometries along such a hydrogen-
transfer reaction coordinate were obtained through a sequence
of relaxed scan calculations where the donor-transferring-
hydrogen distance was sequentially incremented. Figure 12

Figure 11. Hydrogen ground eigenstates for all five of the transition states are shown using blue mesh diagrams superimposed on top of the TS
structures (enclosed probability listed in the subfigure caption). The green solid spheres are the classical hydrogen nuclear positions. The contour
diagrams shown below each structure represent a cross section of the potential surface [B3LYP/6-311++g(d,p)] at the slice that contains the global
minimum.

Figure 12. Evolution of geometries of transition state 1 along the hydrogen nuclear-transfer coordinate. The more opaque geometries are closer to
the transition state. Here (a) shows geometries along the hydrogen-transfer coordinate, (b) shows the body-fixed reference frame for quantum
nuclear degrees of freedom, and (c) shows the basis to compute the transmission amplitudes. Here the light blue points represent the domain of
product state basis functions used to compute the transmission amplitudes.
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shows the geometries encountered along this (intrinsic reaction
coordinate or) transfer coordinate for transition state 1. All
geometries were obtained at the B3LYP/6-311++g(d,p) level of
theory, and we used 48 geometries, incrementally placed, along
the reaction pathway. Recursive refinement was used to
compute potential surfaces and eigenstates for hydrogen and
deuterium nuclear-transfer processes along the aforementioned
reaction coordinate. For each geometry, along the reaction
coordinate, a body-fixed reference frame was used to provide
the coordinate representation for the quantum nuclear
dimensions. The associated quantum nuclear grid basis was
defined using (a) the donor−acceptor axis, (b) an orthogonal
axis directed along the plane defined by the donor−acceptor
axis and the CO bond, and (c) a direction axis orthogonal to
the two degrees of freedom mentioned above. The evolution of
such a body-fixed reference frame along the reaction coordinate
is shown in Figure 12(b) for transition state 1. To compute the
transmission amplitude along this reaction coordinate, we
generated a series of product-state basis functions that are
shown in Figure 12(c). To generate these functions, we first
compute the ratio between the donor/transferring-hydrogen
distance and the donor/acceptor distance for each grid point.
When this ratio is greater that the corresponding value for the
classical transition state, the grid point is deemed to reside on
the product side. The set of all points on the product side then
forms the product side basis function, and the dependence of
these basis functions, along the reaction coordinate, is shown in
Figure 12(c).
The transmission of the hydrogen and deuterium ground

states was then computed as the inner product of the ground
state with the product side basis functions discussed above. The
evolution of these quantities is shown in Figure 13, and the

corresponding reaction coordinate dependent eigenstates are
shown in Figure 14. The transmission of ground state
probability, prior to the classical transition state, depicted in
Figure 13 is also seen from the product side delocalization of
the eigenstates in Figure 14. Future publications will gauge the
effect of this early product-side delocalization on the rate
constant for the reaction. It is, however, abundantly clear that
the recursive refinement procedure introduced here is capable
of addressing these complex multidimensional hydrogen-
transfer problems at reduced computational costs.

IV. CONCLUSIONS
In this publication we have discussed the use of two different
sampling functions (eqs 3 and 4 ) to gauge significant areas of a
potential energy surface. These sampling functions depend on
the wave function, potential, its gradients, and the local
Shannon entropy associated with the potential. These sampling
functions are shown to provide good estimates of the local-
Nyquist frequency of the potential, and this aspect is
numerically tested. Thus, the goal here is to appropriately
and adaptively adjust the sampling rate of the potential based
on local “ruggedness” as defined by the local variations in the
Nyquist frequency. The sampling rates afforded by the
introduction of these sampling functions (eqs 3 and 4) are
then constructed through a multidimensional tessellation or
meshing algorithm, and here we have presented both
rectangular meshing and a brief description of irregular meshing
through the use of Voronoi diagrams. The procedure is then
used within a recursive refinement procedure to self-
consistently improve the accuracy of a potential surface.
Different fitting procedures are tested in conjunction with the
sampling procedure and lead to an overall reduction in the
number of electronic structure calculations required, by several
orders of magnitude, to obtain the potential surface.
Numerical tests are conducted for (a) the highly anharmonic

potential surface associated with the shared proton in a bihalide
XHX−1 system and (b) for a more complex hydrogen-transfer
reaction that appears during the oxidation of a biogenic volatile
organic compound, isoprene. In the case of XHX−, the
recursive refinement procedure coupled with the sampling
functions discussed above provides an efficient and accurate
method for potential surfaces calculations. For the isoprene
problem, we have probed the quantum nuclear effects
emanating from the transferring H/D-dimensions and find
that there is substantial probability accumulating on the
product side prior to arrival at the classical transition state.
While this picture is currently adiabatic, future publications will
gauge the use of the sampling procedure to accurately compute
rates in such hydrogen-transfer reactions by engaging the fully

Figure 13. Transmission of the ground eigenstate for hydrogen and
deuterium into the product well for the transition state labeled 1 in
Figure 7.

Figure 14. Hydrogen nuclear ground eigenstates along the transfer coordinate for transition state 1. The enclosed probability in each case is shown
in the figure caption, and numbers in parentheses indicate the values of the reaction coordinate (horizontal axis in Figure 13). The classical position
for the transferring hydrogen nucleus is shown in green. The arrow is directed from the reactant configuration toward the classical transition state
with part (d) being the closest to the transition state.
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nonadiabatic nature of interactions between the reaction
coordinates and the transferring H/D-dimensions, including
associated quantum nuclear effects, such as tunneling.
In conclusion recursive refinement coupled with the

sampling functions, ωS and ωρ, provide accurate potential
energy surfaces with a large increase in computational
efficiency. This is done by adaptively sampling critical regions
of the potential.

■ APPENDIX A: INTERPOLATION METHODS USED IN
THIS WORK

As stated before, multiple methods have been employed here to
obtain the potential energy fits. All interpolation schemes are
standard protocols available in the literature. The relevant
parameters and other details about the interpolation procedures
used in this work are discussed below.
1. In one approach a locally independent Hermite curve

interpolation (referenced as local-Hermite in further dis-
cussion) is constructed inside each tile or Nyquist domain,
and this provides a potential surface at all grid points. In
essence this reduces the full potential into a piece-wise smooth,
continuous, and differential local spline fit, where locality is
defined by the tile-size (or sample rate) obtained from the
sampling functions.
2. A second approach we benchmark here is the well-known

permutationally invariant polynomials introduced by Bowman
and co-workers.19,21−24 Here monomial symmetrization (MSA)
is used to construct monomials that are invariant under
permutation of all like-atoms. These have been well-
benchmarked19,21−24 and have been used to compute full
global potentials in many complex systems with multiple (up to
27) degrees of freedom. Here we employ MSA to compute the
reduced dimensional potentials for hydrogen-bonded systems
and hydrogen-transfer reaction as detailed in the main body of
the paper. All instances of MSA used order-4 polynomials to fit
the surfaces. This choice was based on independent numerical
tests on double-well potentials that gauged the accuracy and
efficiency of MSA over the polynomial range 1 through 12.
3. A third set of fitting functions that we benchmark here is a

low-pass (Gaussian) filtered version of the Lagrange
interpolation function34,152
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where σ̅ − ̅x x( ; )j is a multidimensional Gaussian function,
and, for example, xi

α represents the α-th component of grid
point i. That is, x ̅ ≡ {x1, x2, ···, xα, ···, xNDim}. The quantity Θ(σ′
− |x ̅ − xi̅|) represents a step function that is equal to 1 when
grid point xi̅ is less than a distance σ′ from x.̅ Based on several
numerical tests, here σ is chosen to be 0.22, and σ′ is chosen to
be 0.106 Å. This modification to Lagrange interpolation is
constructed to reduce the well-known Runge oscillation
problem150 (or the Gibbs phenomenon) in standard Lagrange
interpolation, and the choice of values above is obtained by
studying the behavior of the fit for a range of values for these
variables for a double potential. Here, this fitting function is
denoted as Lagrange-Low-pass filter (Lag-LPF). These are
closely related to the Lagrange-Distributed approximating
functionals152,153 introduced by Kouri and co-workers.
4. Finally, we have also used both Shepard interpolation154

(inverse distance weighted with power of dimensionality plus
one) and a modified version of Shepard interpolation that
employs a local first-order Taylor expansion about each
sampled grid point155
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where N defines a local subset of sampling points determined
by the distance between x ̅ and xi̅. The quantity ∥···∥−p is the
Euclidean distance with power p = NDim+1, and f(̃xi̅) is the
potential, in the case of Shepard interpolation, and first order
Taylor expansion of the potential in the case of the modified
Shepard algorithm.
It is useful to discuss the connections between local-Hermite,

MSA, and low-pass filtered version of the Lagrange
interpolation. The MSA methodology represents the potential
as a linear combination of monomial functions written in terms
of interatomic distance variables. Furthermore, when the
permutation symmetry of the potential associated with like-
nuclear position exchange is used, the number of monomial
coefficients can be significantly reduced in most cases. Here, we
have used the idea of monomial expansions in Cartesian
coordinates pertaining to the reduced dimensional degrees of
freedom explained in the paper, but without symmetry, and
have used the infrastructure already present in the MSA
computer program21 to carry out these calculations.
Furthermore, we note that eq A1 may also be interpreted as a

linear combination of monomials; however, these monomials
are (i) centered on the sample points, {xi}, and (ii) their spacial
extents are damped by the low-pass filter and the step functions

Figure 15. Change in potential between consecutive recursive refinement steps. Based on eqs B1 and eq B2.
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in eq A1. The local-Hermite approximation, on the contrary, is
a local monomial expansion of order 3. Here, the word “local”
is to be interpreted as being inside a certain tessellation region
or a tile. The local-Hermite approximation uses potentials and
gradients available from electronic structure calculations
performed on the sampled set of grid points.
In this publication we use all four methods and compare their

accuracies in computing surfaces obtained from the local
sampling estimates provided by eqs 3 and 4. It is, however,
critical to note that these procedures are independent of our
sampling scheme that generates points on the surface in an
adaptive fashion.

■ APPENDIX B: CONVERGENCE OF THE RECURSIVE
REFINEMENT FORMALISM AND ASSOCIATED
COMPUTATIONAL GAIN FROM USING ωS AND ωρ
TO TARGET THE POTENTIAL ENERGY
CALCULATIONS

To evaluate the convergence of the recursive refinement
method described in Section II, interpolated surfaces for

transition states marked as “1” in Figure 7 were compared with
the full surface obtained from the PM6 level of theory. The
associated grid over which the shared hydrogen is quantized is
shown in Figure 8 and uses the same specifications in Table II.

The recursive refinement process on the Boxcar tessellated
grids was performed for 51 cycles for the sampling functions in
eqs 3 and 4. To gauge the convergence of the recursive
technique, we compute errors similar to eqs 9 and 10 but across
recursive refinement steps as

∑ϵ = | ̅ − ̅ |−N
V x V x

1
( ) ( )U

i
F i F i1

(B1)

∑ ψϵ = | ̅ | × | ̅ − ̅ |ψ −x V x V x( ) ( ) ( )
i

i F i F i0
2

1
(B2)

where F is the index that represent the refinement step, N is the
total number of grid points, and ψ0(xi̅) is the ground eigenstate.
The resulting analysis is presented in Figure 15. Overall as seen
in Figure 15(a), ωS converges much faster than ωρ. Both
sampling functions converge to extremely high precision.
To further gauge the accuracy of the potential obtained after

convergence, we compute the first few eigenvalues and
eigenfunctions for each converged potential and compare it
with those obtained from the full PM6 grid calculation. Figure
16(a) shows the error in the first 10 eigenvalues thus obtained.
While both sampling functions appear to be quite adequate, ωS
clearly is slightly better as seen in the eigenvalues in Figure

Figure 16. Accuracy of eigenvalues [part (a)] and eigenstates, Δρi in eq B3 [part (b)], obtained through the recursively refined directed measure
algorithm presented here.

Figure 17. Overall efficiency of the geometric tessellation based
recursive refinement methodology with the drastic (nearly 3 orders of
magnitude) reduction in number of electronic structure calculations.
These translate to an equivalent computational gain.

Table IV. Average Order of Reduction over 51 Recursive
Refinement Steps

transition
state level of theory

ωS,
a

convergenceb
ωρ,

a

convergenceb

1 B3LYP/6-311++g(d,p) 2.8 (0.004) 2.6 (0.007)
M062x/6-311++g(d,p) 2.8 (0.004) 1.6 (0.012)

2 B3LYP/6-311++g(d,p) 2.7 (0.006) 2.7 (0.004)
M062x/6-311++g(d,p) 2.7 (0.005) 2.7 (0.005)

3 B3LYP/6-311++g(d,p) 2.7 (0.034) 2.8 (0.007)
M062x/6-311++g(d,p) 2.7 (0.036) 2.7 (0.011)

4 B3LYP/6-311++g(d,p) 2.8 (0.003) 2.6 (0.006)
M062x/6-311++g(d,p) 2.8 (0.003) 2.6 (0.004)

5 B3LYP/6-311++g(d,p) 2.7 (0.029) 2.8 (0.281)c

M062x/6-311++g(d,p) 2.7 (0.038) 2.7 (0.984)c

a ( )log N
P

where N is the total number of grid points, and P is the

prescribed number of sampling points. Thus, ( )log N
P

represents the

order of magnitude of grid compression facilitated through the use of
ωS and ωρ.

bRMS deviation in eq B1, over the last 21 recursive
refinement cycles. cThese energies large changes are due to
fluctuations in the high energy regions.
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16(a). In Figure 16(b) the accuracy of the ith eigenstate
probabilities is shown using

∫ρΔ = ̅| Ψ ̅ − Ψ ̅ | ×⎡
⎣⎢

⎤
⎦⎥dx x x( ( ) ) ( ( ) ) 100i i iint

2
full

2
(B3)

It can be seen from Figure 16(b) that the error in the lowest 4
eigenstates is less than 1.6% for both ωS and ωρ. Furthermore,
the number of grid points used in these calculations is nearly 2.8
orders of magnitude smaller than the full grid as indicated in
Figure 17, ωS being more efficient as compared to ωρ. More
details regarding scaling and convergence of the recursive
refinement process are provided in Table IV.
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