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ABSTRACT: We present an hierarchical scheme where the
propagator in quantum dynamics is represented using a
multiwavelet basis. The approach allows for a recursive refine-
ment methodology, where the representation in momentum
space can be adaptively improved through additional, decoupled
layers of basis functions. The method is developed within the
constructs of quantum-wavepacket ab initio molecular dynamics
(QWAIMD), which is a quantum-classical method and involves
the synergy between a time-dependent quantum wavepacket
description and ab initio molecular dynamics. Specifically, the
current development is embedded within an “on-the-fly” multireference electronic structural generalization of QWAIMD. The
multiwavelet treatment is used to study the dynamics and spectroscopy in a small hydrogen bonded cluster. The results are in
agreement with previous calculations and with experiment. The studies also allow an interpretation of the shared proton
dynamics as one that can be modeled through the dynamics of dressed states.

I. INTRODUCTION
Recently,1−13 we introduced a methodology that accurately
computes quantum dynamical effects in a subsystem while
simultaneously treating the motion of the surrounding atoms
and coupled changes in electronic structure. The approach is
quantum-classical14−25 and involves the synergy between a
time-dependent quantum wavepacket description and ab initio
molecular dynamics. As a result, the approach is called
quantum-wavepacket ab initio molecular dynamics
(QWAIMD). Since the quantum dynamics was performed on
a grid, the predominant bottleneck was the computation of the
grid-based, time-dependent electronic structure potential and
gradients generated by the motion of the classical nuclei.1−4,6,7,9

This limitation was partially surmounted through the following
methodological improvements:
(a) A time-dependent deterministic sampling (TDDS)

technique was introduced in refs 3, 4, and 9, which, when
combined with numerical methods such as an efficient wavelet
compression scheme and low-pass filtered Lagrange interpola-
tion,4 provides computational gains of many orders of
magnitude. In the language of finite-element-methods used in
computational mechanics, it may be noted that the TDDS
method is an adaptive (space- and time-dependent) h-type mesh
refining technique.26 In TDDS, the mesh refinement is
performed through a sampling function constructed using
quantum dynamics data such as wavepacket density, potential,
potential gradient and the Shannon entropy associated with the
wavepacket density.4,9

(b) Multiple diabatic reduced single particle electronic
density matrices were propagated simultaneously with the

quantum wavepacket in refs 6 and 7, and the associated diabatic
states were used to construct an adiabatic surface at every
instant in time using a nonorthogonal CI formalism. Each
diabatic state is strongly correlated with a given region within
the quantum vibrational configuration space. This allows for
these states to be selected based on the level of influence that
their electronic correlations contribute to the electronic-
vibrational coupling within the quantum wavepacket. Fur-
thermore, the diabatic approximation allowed reuse of the two-
electron integrals during the on-the-fly potential energy surface
computation stage on account of the limited dependence of the
diabatic electronic state functions on the quantum nuclear
coordinate. This leads to substantial reductions in computa-
tional time. QM/MM and QM/QM generalizations5 and
extensions to periodic condensed phase systems8 have also
been explored. We have utilized QWAIMD to compute
vibrational properties of hydrogen-bonded clusters inclusive
of quantum nuclear effects4,6,7 and have also adopted the
method to study hydrogen tunneling in enzyme active
sites.10,27,28 The quantum dynamics scheme in QWAIMD has
also been used to develop a technique known as multistage ab
initio wavepacket dynamics (MSAIWD) to treat open,
nonequilibrium electronic systems.12,13

However, several challenges remain:

(i) Because of the expense involved in on-the-fly dynamics,
currently, it is only possible to treat a few (three or less)
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quantum nuclear degrees that are coupled to a set of
classical particles.

(ii) Dynamics of the order of several picoseconds is possible,
but longer time-scale dynamics is expensive. In this
regard, initial developments toward a rare-events
sampling scheme have been completed.28

(iii) Currently, it is only possible to study QWAIMD using
moderately accurate electronic structure methods, such
as hybrid density functional theory. Again, in this regard,
initial developments that include the effect of multiple
electronic state functions have been considered in refs 6
and 7.

Of the challenges listed above, the current publication will focus
on improvements to the quantum dynamics scheme used in
QWAIMD. That is, the possibility of compressing the
information content of the vibrational wave packet during its
propagation is explored independent of how the underlying
electronic structure is computed. To this end, a multiwavelet-
based representation of the quantum nuclear wavepacket is
considered as a replacement for the grid basis used in
QWAIMD.29−37 The multiwavelet structure allows for a layered
partitioning (or filtering) of the Fourier space representation of
the time-dependent quantum nuclear wavepacket. By adaptively
considering layers that appear significant in the Fourier
representation, we tailor the dynamics to be stable and efficient.
The multiwavelet primitives are chosen to have analytically
known free-propagated forms as well as derivatives, as is already
the case with “distributed approximating functionals”.38,39 This
reduces the overhead in computing matrix elements for the
Hamiltonian and propagator. Furthermore, the method is fully
integrated with our recently developed MC-QWAIMD to
provide the time-dependent potential surface for quantum
nuclear treatment.
The paper is organized as follows. A brief review of grid

based quantum wavepacket propagation implemented within
the QWAIMD methodology is provided in section II. Sections
III and IV, together, introduce the multiwavelet-based
representation of the quantum nuclear wavepacket. Numerical
benchmarks are provided in sections V and VI. Specifically,
section V involves an exhaustive search of the parameter space
within the multiwavelet protocol, which allows us to examine
and develop the multiwavelet basis toward tailored accuracy
and efficiency. In section VI, an approach is used to study the
dynamics in a hydrogen-bonded bihalide system. It is found
that the results agree well with previous studies. Conclusions
are given in section VII.

II. A BRIEF OVERVIEW OF GRID-BASED QUANTUM
WAVEPACKET PROPAGATION IN QUANTUM
WAVEPACKET AB INITIO MOLECULAR DYNAMICS
(QWAIMD)

We provide a brief review of the grid-based quantum dynamics
methods currently implemented for wavepacket propagation
within QWAIMD before we engage in further discussion. More
details can be seen in refs 1−4, 6, and 8. The main features are
as follows: The quantum dynamical evolution is described
through a third-order Trotter factorization of the quantum
propagator,1,40−42 where the free-propagator is approximated in
the coordinate representation using a formally exact expression
known as the “distributed approximation functional”
(DAF):1,2,38,39,43,44
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Here, {σ′(Δt)}2 = σ′(0)2 + iΔtℏ/MQM, {H2n(x)} are even-
ordered Hermite polynomials (note that the arguments for the
Hermite polynomials and the Gaussian function, [(RQM −
RQM′ )/(√2σ′(Δt))], are generally complex) and RQM repre-
sents the quantum mechanical degrees of freedom. The right
side of eq 1 is related to the multiwavelet, frame description of
nuclear wave functions that is used in the current publication.
The free-propagation of a wavepacket is then given in the
discrete coordinate representation as
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The parameters MDAF and σ′ above, together1,39 determine the
accuracy and efficiency of the DAF-propagator. As MDAF

increases, the accuracy as well as the computational expense
increase.
It is worth noting a few characteristics of eq 1. For any fixed

level of approximation, determined by the choice of parameters
MDAF and σ′(0), the kernel in eq 1 only depends on the
quantity (RQM

i − RQM
j ) that is the distance between points in

the coordinate representation and goes to zero as this quantity
becomes numerically large on account of the Gaussian
dependence. This yields a banded, Toeplitz matrix approx-
imation to eq 1, for any finite MDAF and σ′(0). [The (i, j)-th
element of a Toeplitz matrix depends only on |i − j|.] Because
of these properties, eq 1 provides great simplicity in
computation of the quantum propagation. One may contrast
this idea with propagators found in standard real-time Feynman
path integration, where the highly oscillatory nature of the
integrand leads to a difficult numerical problem.45 In fact, as
shown in ref 13, it is possible to computationally implement the
DAF propagation scheme in a form that includes a series of
scalar-vector operations with the total number of operations
given by

∑+ − = − − − ≈
=

−

N N i N W W W N2( ) (2 1) ( 1) ( )
i

W

1

1

(3)

where W is the width of the propagator in the coordinate
representation, i.e., the maximum value of (RQM

i − RQM
j )/Δx in

eq 2 such that all values of the free propagator are less than a
numerical threshold for (RQM

i − RQM
j )/Δx > W. Since W is not

dependent on N [W, in fact, depends onMDAF and σ′(0), which
is the required accuracy of propagation], this scaling goes as

N( ) for large grids. In this publication, we analyze whether
such a scaling can be reduced further without sacrificing too
much accuracy.
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III. A GENERAL VIBRATIONAL WAVEPACKET ANSATZ
We begin by expressing the vibrational wavepacket,
Ψ(QM)(RQM; t) as a fully correlated multiconfigurational
expansion of one-dimensional functions, ϕl,kl(RQM,l − RQM,l

0 ):
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where the relevant degrees of freedom for all quantum nuclei
are given by the d-dimensional vector RQM = (RQM,1, ..., RQM,d).
For example, {RQM,l: l = 1, ..., d} can contain all spatial
dimensions for every quantum nucleus, or a transformation of
some subset therein. Thus, d defines the full dimensionality of
the quantum nuclear problem being considered. The vector
index, k = (k1, ..., kd) with kl denoting indices on the one-
dimensional basis functions ϕl,kl(RQM,l − RQM,l

0 ). The index [j]
represents the electronic state (adiabatic or diabatic); however,
in this publication, we consider only adiabatic effects (that is, j
= 0). Vibronic treatment is deferred to a future publication,
since it involves developmental interplay between the electronic
and vibrational motions. To simplify the notation, we have also
introduced the Hartree product of one-dimensional functions:

∏ ϕΥ ≡ −
=

R RR( ) ( )
l

d

l k l lQMk
1

, QM, QM,
0

l (5)

To effect a Fourier-space filtered multiresolution of Ψi
(QM) that

allows the function to maintain spatial and temporal
amorphous features, the one-dimensional functions, ϕl,kl(RQM,l

− RQM,l
0 ), are chosen as a linear combination of multi-

wavelets,29−37,46,47 as described in the next section. Matrix
elements of the Hamiltonian and the propagator are considered
in sections IV(C1), IV(C2), and IV(D).

IV. INTRODUCTION OF A PRIMITIVE BASIS
CONSTRUCTED FROM MULTIWAVELETS TO
REPRESENT ϕl,kl(RQM,l − RQM,l

0 )

As outlined in Section II, in the previous QWAIMD
publications,1−13 the quantum dynamics was performed on a
grid representation. The potential surface was obtained on a
compressed subset of grid points adaptively determined using a
time-dependent sampling scheme.3,4,9 In this publication, we
represent the spatially amorphous behavior of the quantum
wavepacket, Ψj

(QM), by reducing errors associated with high
levels of spatial localization. Discrete, localized basis set
structures that satisfy this criterion include the wave-
lets,29−31,46,47 Weyl-Heisenberg, or Gabor30,31,47−54 (e.g.,
windowed Fourier functions), and multiwavelet30,32−37

frames29−31,46−58 with their structural properties having been
studied extensively (see, for example, refs 59−61). Of these, we
investigate the suitability of the multiwavelet frame, as it
incorporates useful properties of both wavelet and Weyl-
Heisenberg frames. Furthermore, the basis functions are chosen
to be continuous with analytically known derivatives and free-
propagated forms, as noted earlier. This simplifies propagation
and computation of matrix elements (see section IV(A)).
We first introduce a one-dimensional set of multiwavelet

functions, {ϕμ,σ,δ}, the elements of which are used to construct

the basis {ϕl,kl} in eqs 4 and 5. As illustrated in Figure 1, a
multiwavelet frame basis set is generated by sequentially
applying translations and dilations to a set of windowed
modulated basis functions ϕμ:
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where ζl is a unitless position variable and b is the unitless
interval of compact support. The non-negative integers δ, σ,
and μ characterize the translate, scale, and modulation,
respectively, of the given multiwavelet function. The
dimensionless distance between two adjacent translates in
generation σ is b/aσ. The predetermined wavelet structural
parameter, a, defines the scale or “dilation” factor. In addition,
the ratio between the number of wavelet primitives in
generation σ + 1 and the number of wavelet primitives in
generation σ, is also a, as readily seen from the second equality
in eq 6. Thus, the number of translates, δmax, allowed within a
spatial domain b for generation σ is the floor of aσ, i.e. ⌊aσ⌋,
which, for cases where a is an integer, reduces to aσ. It is
sometimes useful to introduce a fourth integer Λ to distinguish
functions of even (Λ = 1) and odd (Λ = −1) reflection
symmetry. The even functions are often referenced as scales
while the odd functions are referenced as wavelets. However,
this distinction is irrelevant to the current work and, hence, the
Λ index is omitted from eq 6. In its place, we have the more
exhaustive modulation index (μ). Generally the odd values of μ
correspond to Λ = −1 and 1 otherwise. [The modulation
parameter, μ, is discussed further below.] Finally, although the
number of wavelet primitives (eq 6) may be extended
arbitrarily in theory, the basis set is, in practice, truncated to
a finite number of elements. Since the number of translates

Figure 1. Multiwavelet primitives versus dimensionless position, ζl for
the case where a = 2 and b = 6/√2, with highest generation, σmax = 2,
and number of basis functions per generation and translate, μmax = 4.
The multiwavelet functions of differing order (modulation), μ, for the
leftmost translate in each generation are distinguished by color. The
functions ϕμ, from which the wavelet structure is generated via
translation and dilation, correspond to the multiwavelets at σ = 0. The
quantum nuclear position, RQM, is scaled to ζl by the parameter sl. The
standard width of ϕ0 is 1/√2 in the ζl representation (sl/√2 in the
RQM representation). The domain interval length is b in the ζl
representation (L in the RQM representation). The area under ϕ0,
corresponding to its standard width, is highlighted in gray.
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varies with generation (Figure 1), we need only limit the
highest generation to σmax and the number of basis functions
per generation and translate to μmax. Figure 1 illustrates a
truncated basis set corresponding to σmax = 2 and μmax = 4. We
will often refer to a given truncated basis set, using the ordered
pair notation, (σmax,μmax).
As with wavelets, the spatial domains of ϕμ,σ,δ scale with their

wavelengths, which decrease by factors of aσ with scale σ.
Hence, the multiwavelet set can be used in constructing a
multiresolution analysis of the function space and may reduce
the spectral delocalization error commonly associated with
delocalized modulated basis sets such as Fourier transforms.
See, for example, refs57, 62−67, where wavelet-type basis
functions (such as those used here) have been bench-
marked62,63 and found to compare favorably with other
propagation methods (see Table 1 in refs 62 and 63 for
benchmarks and the appendix in ref 13 for computational
scaling). Also see ref 68 for a discussion on the correspondence
between the Gaussian basis functions used in electronic
structure theory69 and noninteger scale multiwavelets.
Furthermore, multidimensional basis functions, which are
constructed from single dimensional (multi)wavelets, are
well-suited for treating spatially anisotropic wavepackets due
to the flexibility introduced by both local scaling and
translation. However, scaling and translation alone do not
guarantee that the basis set will adequately span the momentum
space of the wave packet, given the exponential dependence of
the wavelength on the scaling parameter σ. Hence, in contrast
to wavelets where the modulation parameter μ ≤ 2, the
underlying Weyl-Heisenberg frame can contain as many
functions ϕμ as is necessary to properly span the momentum
space of the wave packet.
To shed light on the complementarity between scaling and

modulation, it is useful to explore the properties of the
multiwavelet functions in the Fourier domain. Figure 2 provides
the squared absolute value of the k-space representation of a
selection of multiwavelet functions (i.e., ϕ| |μ σ δ k[ ]( ), ,

2), where
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As can be seen here, the multiwavelets act as band-pass filters
with bandwidth, scaling as

μΔ ≈ +σk a
1
2 (8)

and band peaks given by

μ
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for multiwavelet ϕμ,σ,δ. Loosely, the modulation index μ governs
band filter position while σ governs bandwidth. Moreover, in a
given generation, σ, the lowest order wavelet, corresponding to
μ = 0, centered around k = 0 (and represented by a dotted
curve in Figure 2), may be replaced by the wavelets of
generation σ − 1, producing a band-pass refinement at lower k
values in both band peak position and bandwidth. This
refinement may be repeated iteratively at every generation σ′ <
σ, as needed, for finer momentum band filtering as k → 0. This
refinement is lost for intervals of high wavenumber, k, as the
bandwidth scales like the band peak positions (see eqs 8 and 9).
We note that the subset of multiwavelets presented in Figure 2
is representative of k-space population distributions for all free
propagated and unpropagated basis functions within the set
(σmax,μmax) = (2,4). This consequence arises from the fact that
translation and free propagation only introduce linear and
quadratic phase shifts, respectively, in this representation.

A. Propagated Forms of {ϕμ,σ,δ} That Are Used To
Construct Matrix Elements. In addition to spatial local-
ization, we require the functions ϕμ,σ,δ to be continuous with
analytically known derivatives and free propagated forms.
These requirements are satisfied by choosing Hermite
functions,

Table 1. Comparisons of Total Energies, Flux and Donor−Acceptor Distance (for a Given Measurable Quantity, O(t) (i.e.,
Total Energy, O(t) = E(t); Shared Proton Flux, O(t) = J(t); Cl−Cl Stretch, O(t) = RCl−Cl(t)), σ[O] is the Standard Deviation of
O(t) over the Simulation Duration and Δ[O] is the 2-norm of the Difference between the Wavelet and Grid Propagated
Measurable Quantities (Owav and ODAF Respectively), as Defined by eq 33a

NDM
b Δ[E] σ[Ewav] σ[EDAF] σ[J]wav (Δ[J]/σ[J]wav) σ[RCl−Cl]wav Δ[RCl−Cl]/[RCl−Cl]wav)

1D 5c 4.28 × 10−5 0.0556 0.0572 2.04 × 10−9 0.127 0.03 0.0198
5d 4.34 × 10−5 0.0563 0.0578 1.48 × 10−4 0.011 0.03 0.0198
9c 2.13 × 10−5 0.0568 0.0605 1.88 × 10−9 0.252 0.04 0.0647
9d 2.05 × 10−5 0.0578 0.0615 1.62 × 10−4 0.182 0.04 0.0661

3D 9c 3.62 × 10−5 0.0811 0.0836 1.18 × 10−8 1.092 0.04 0.0226
aEnergies are given in kcal/mol; flux in atomic units; distances in Angstroms. bDefined in eq 21. cGround-state initial wave function (see eqs 28 and
29). dThermal initial wave function (see eqs 28 and 30 with T0 = 300 K).

Figure 2. Squared absolute value of selected multiwavelets represented
in k-space (i.e., ϕ| |μ σ δ k[ ]( ), ,

2 where ϕμ σ δ k[ ]( ), , is given by eq 7).

Dashed curve in a given generation σ corresponds to a wavelet with a
band-pass window that can be refined by substituting the wavelets
from lower generations in its place.
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where Aμ is an appropriate normalization constant and ζl =
(RQM,l − RQM,l

0 )/sl. The parameter sl defines the standard
deviation of the lth one-dimensional Gaussian function, ϕ0(ζl),
to be sl/√2 (Figure 1) and, in turn, defines the Gaussian
envelope width for a given multiwavelet primitive, ϕμ,σ,δ(ζl), to
be sl/(√2aσ). Thus, sl determines the degree of overlap
between multiwavelet primitives and is expected to affect basis
set completeness and singularity of an overlap matrix
constructed from these primitives. The corresponding free
propagated form is exactly given by2,39,45
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where sl(t) ≡ [1/2 + ita2σ/(msl
2)]1/2 and K̂ = −[1/(2m)](∂2/

∂RQM,l
2 ) = −{1/[(2msl2)]}(∂2/∂ζl2) is the one-dimensional

kinetic energy operator for a particle of mass m. Unpropagated
and propagated multiwavelets are shown in Figure 3. One
should note that as t → 0, the width of the wavelet primitive,
φμ,σ,δ, along RQM,l, approaches sl/(√2aσ) > 0. Thus, the sign
problem that is associated with Fourier propagation ap-
proaches, including the Feynman path integral approach, may
be circumvented.
B. Construction of {ϕl,kl} from {ϕμ,σ,δ}. We note that the

structure described above can produce a set of multiwavelets
that is numerically overcomplete in the space that it spans. This
poses a problem in the multiconfigurational limit discussed in
the previous section. In this situation, one can calculate the
orthonormal one-dimensional single particle basis functions,
ϕl,kl
[j], of eqs 4 and 5. Toward this, we first compute the principal

components of the multiwavelet overlap matrix:

∫ ζϕ ζ ϕ ζδ σ μ δ′ σ′ μ′ ≡ *
μ σ δ μ′ σ′ δ′S ( , , ; , , ) d ( ) ( )l l l l, , , , (12)

through singular value decomposition (SVD),70,71

Σ=U SVT (13)

where U and VT are orthogonal matrices and Σ is a diagonal
singular value matrix. The matrices U and VT, in general, form a
biorthogonal basis, but since S is a symmetric square matrix, V
= U. The columns of the matrix V provide a rotation from the
basis of multiwavelets to the orthonormal one-dimensional
single particle basis functions of eqs 4 and 5. One could
represent ϕl,kl

[j], in this new basis, as
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where the singular values, Σkl, serve to normalize the ϕl,kl to
unity. The singular value for a given singular vector determines
the significance of that principal component in constructing the
multiwavelet overlap matrix. Hence, a truncated basis with
invertible overlap can be constructed by retaining only the
vectors with non-negligible singular values.
It is useful to consider the symmetry introduced by

translation and scaling together with the localization of
translates (Figure 1) in constructing the overlap matrix in eq
12. This leads to significant data compression and reduction in
computational scaling. Figure 4 illustrates the high degree of
symmetry in the multiwavelet overlap matrix (eq 12), as well as
the use of these symmetries, together with sparsity, when
carrying out a matrix vector multiplication. Thus, these
properties reduce computational cost in general wherever the
multiwavelet basis is implemented. This includes the
construction of the total Hamiltonian, to be discussed in later
sections. A detailed examination of scaling associated with the
multiwavelet overlap is provided in the Supporting Information.
In practice, the number of principal components retained

(Nbasis) is determined by a singularity threshold δSVD as follows.
Let all of the singular values, {Σkl}, be ordered from smallest (kl
= 1) to largest (kl = Np), where Np is the total number of
wavelet primitives,

∑μ μ= = −
−σ

σ
σ

σ

=

+
N a

a
a

1
1p max

0
max

1max max

(15)

Figure 3. (a) Unpropagated multiwavelet basis (as in Figure 1) (b) Real and (c) imaginary components of free propagated multiwavelets for t = 0.1
fs.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5003016 | J. Chem. Theory Comput. 2014, 10, 2950−29632954



Then, all singular vectors up to the largest corresponding value
of f for which

∑ δΣ ≤
=k

f

k
1

2
SVD

l

l

(16)

are excluded. The number of nonzero singular values, Nbasis =
Np − f, i.e., the dimension of Σ, determines the number of
principal components that compose the multiwavelet basis.
C. Representation of the Hamiltonian in the Multi-

wavelet/Diabatic State Basis. 1. Nuclear Kinetic Energy
Operator. The nuclear kinetic energy portion may be written as
a tensor product of one-dimensional kinetic energy representa-
tions:
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that is,
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where the quantity K(l) is the matrix composed of terms given
in eq 17. In addition, we have extended to multiple dimensions
using a Kronecker tensor product72 over all degrees of freedom.
The Kronecker tensor product between anMA × NA matrix (A)
and an MB × NB matrix (B) is an MAMB × NANB matrix with
elements, [A ⊗ B](MB

i+k
,NB

j+l
) = AijBkl. The quantity 1(N)

represents the N × N identity matrix and N<l (N>l) is the
scalar product of basis set sizes, Nbasis,l′ for all degrees of
freedom, l′, less (greater) than l. For example,

∏= ′<
′=

−

N Nl
l

l

l
1

1

SVD,
(19)

The quantity N̅ (= Πl′=1
d NSVD,l′), represents the total number of

rows or columns in K. The stride permutation, N M( , ),72 is
an operator that acts on a vector of length N, producing a new
vector of identical length with rearranged elements with a stride
of length M. The stride permutation that acts on a vector of N
elements with stride M is to be interpreted as a transpose
operation acting on a matrix of size (M × N/M). For example,
the permutation that acts on a vector of length N = 6 with
stride M = 2 is

=
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We note that the term (1(N<lN>l) ⊗ K(l)) in the second line in eq
18 represents a block diagonal matrix. Thus, its multiplication
to a vector can be easily parallelized by sending each individual
block multiplication to a separate node. The stride
permutations may readily be affected by transpose operations.72

2. Potential Energy Operator. We remind the reader that
the electronic potential surface is constructed “on-the-fly” in
QWAIMD. Specifically, in MC-QWAIMD, which is the
method used here, the potential surface is constructed in the
diabatic state representation. Details of the methodology can be
found in refs 4 and 7. Here, only a summary is provided, as is
pertinent to the current discussion.
The adiabatic electronic structure, Ψel

(n), is written as a
multiconfigurational expansion6,7,73−81 of local, single particle
state functions, {χI

(diab)}, as

∑ χΨ =t c t tr R R R R R r( , , ; ) ( , ; ) ( , ; )el
n

I
I

n
I

diab( )
el QM C

( )
QM C

( )
C el

(21)

The quantities RQM, RC, and rel are the quantized nuclear
coordinates, the classically treated nuclear degrees of freedom,
and electronic coordinates, respectively. As noted, the
coefficients cI

(n) depend on both RQM and RC. The state
functions, {χI

(diab)}, depend parametrically on RC and are chosen
to have no explicit dependence on the quantum nuclear degrees
of freedom. In this sense, {χI

(diab)}, may be interpreted as
diabatic functions:82−89 and ⟨ΦI

(diab)|∇RQM
|ΦJ

(diab)⟩ = 0. The state
functions {χI

(diab)} are propagated in time through an extended
Lagrangian formalism7 and the associated time-dependent
states are used within a nonorthogonal CI formalism to
compute, “on-the-fly” the quantum nuclear potential surface.
(The electronic structure is time-dependent because of the fact

Figure 4. (a) Sketch representing the structure of the overlap matrix.
The numbers along the axes represent the values for the translate, δ,
where the scales (or wavelet generations) are represented using the
corresponding σ values noted. The gray boxes indicate the regions that
need to be calculated. Boxes that are connected by thin arrows are
related by scaling relations which reduce the computational overhead.
Boxes connected by thick arrows are identical. As noted by the number
of zeroes, the matrix is sparse. Since the matrix is symmetric, only the
structure for the upper triangle is presented. (b) Sketch representing
the reduction in computational overhead when the multiwavelet
overlap matrix acts on a vector. For simplicity, the action of the first
row block from panel (a) is shown to act on a corresponding vector
and the associated operations are depicted in panel (b). Essentially,
bceause of the relations between blocks 2 and 3 in the first row of
panel (b), the corresponding matrix-vector operations can be
simplified by replacing multiplications with additions as noted in
panel (b). This is similar to the case for blocks 4−7 in the first row of
panel (a), where the connections between blocks 4−7 and 5−6 are
exploited in panel (b) again by replacing multiplications with
additions. Clearly, further gains in computational effort are possible
beyond the first row as a result of sparsity and symmetry.
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that QWAIMD is a quantum-classical formalism, where the
dynamics of the classical nuclei, influences the electronic
structure and hence the potential on the quantum nuclei.) This
computational methodology shows improved scaling through
the following steps:
(a) The diabatic approximation for these states is further

strengthened by eliminating the quantum nuclear position
dependence of the electronic basis. Instead adaptive-mesh
based Gaussian electronic basis functions are introduced and
these encompass the quantum nuclear grid region. This allows
great simplification in computing the “on-the-fly”, quantum-
grid dependent nonorthogonal configurational interaction
formalism (with negligible loss in accuracy), where the CI-
matrix elements are easily calculated through reuse of two-
electron integrals as a result of the diabatic approximation.
(b) At the initial time step, the diabatic states are located

using a Shannon entropy-based sampling function that
facilitates the creation of localized electronic structure groups.
(c) The diabatic states are computed on an adaptive mesh

that is determined using a technique that is similar to the h-type
mesh refinement procedure known in computational fluid
dynamics.26

Details of this computational methodology can be obtained
from refs 4, 6, and 7.
One of the biproducts of this methodology is that electronic

energies are available within the diabatic and adiabatic
representations. In this publication, only the adiabatic
representation is used. Given adiabatic or diabatic energies:
{εi(RQM)}, representation within the multiwavelet basis is given
by the matrix elements,

∫ε ε⟨Υ | |Υ ⟩ ≡ Υ* Υ′ ′R R R Rd ( ) ( ) ( )k k k k0 QM QM 0 QM QM (22)

where the basis functions are as defined above.
D. Propagation of the Quantum Nuclear Wavepacket

in the Multiwavelet Basis. The propagator, exp[−iĤt/ℏ],
can be expressed in terms of the Bessel−Chebychev expansion
derived from the Jacobi−Anger formula,90

∑ı δ− = − −
=

∞

zx i J z T xexp( ) (2 )( ) ( ) ( )
n

n
n

n n
0

,0
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which has commonly been used in quantum dynamics.91−94

Hence,
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where Ĥnorm is the normalized electronic Hamiltonian matrix:

Ĥnorm = ̂ − ̂ Δ ̂H H H( )/ , with Ĥ = 1/2(Ĥmax + Ĥmin), and ΔĤ =
1/2(Ĥmax − Ĥmin). The quantities Ĥmax (Ĥmin) are the maximum
(minimum) eigenvalues of the truncated, finite matrix
approximation to the vibrational Hamiltonian matrix, and for
real matrices, are obtained from Gerschgorin’s disk theo-
rem.95,96105 The quantities (Tn(x) ≡ cos(n cos−1 x)) are the
Chebychev polynomials of the first type and Jn(z) are the
cylindrical Bessel functions. Specifically, the Chebychev
expansions for the normalized form of the matrix, Ĥ, are
generated by the recursion relation,97

̂ = ̂ ̂ − ̂− −T H H T H T H( ) 2 ( ) ( )n n nnorm norm 1 norm 2 norm (25)

where T0(Ĥnorm) = 1 and T1(Ĥnorm) = Ĥnorm. For all expressions
above, Ĥ is represented using eqs 17, 18, and 22.

V. SELECTION OF SUITABLY ACCURATE, STABLE,
AND COMPACT MULTIWAVELET STRUCTURES TO
DEPICT THE VIBRATIONAL WAVEPACKET

We now investigate two fundamental aspects of basis set
construction, namely, information compression and accuracy.
These two conflicting facets of a basis are reflected in the
following parameters: basis set size, as defined by both the
number of wavelet primitives, Np, and singular components,
Nbasis (≤Np); the zeroeth generation (σ = 0) Gaussian scaling
factor sl, as defined in Figure 1 and in the discussion following
eq 10; and the singular threshold, δSVD, as defined by eq 16.
Here, we characterize the role of these parameters in
determining a suitable multiwavelet basis set and justify our
choices of sl/√2 = L/6, where L is the length of the integration
domain interval (Figure 1) and δSVD = 1.0 × 10−6. We
furthermore demonstrate that required accuracies for treatment
of vibrational dynamics may be achieved for basis set sizes Np,
Nbasis ≈ 20−30, 3−5 times lower than the size of a typical grid
basis used in QWAIMD. While the discussion here is one-
dimensional, the parameters chosen extend to high dimensions
and are used later in the publication to construct the full
wavepacket for a shared proton in a hydrogen-bonded system.
The interplay between these parameters may be considered in
the following ways:
(a) Basis set compression: The ability of a basis set to

compress the physical information content of a quantum
vibrational wavepacket is manifest in its ability to span the
Hilbert space of the wavepacket with as small a number of
components as possible. Thus, a small (low Np) wavelet
primitive set with high redundancy (Nbasis ≪ Np) may be
desired for this purpose. This suggests a preference toward
higher values of δSVD and sl. In addition, for multiwavelets,
however, compression enters into the basis in its ability to
introduce sparseness in computed matrices at the wavelet
primitive level. This is achieved by limiting the degree of
overlap between neighboring translates, indicating a preference
toward lower values of sl, thus potentially placing a limit on
attainable redundancy. Furthermore, a lower value of sl may be
preferable in that it increases the span of the basis in
momentum space by compression of the wavelet’s spatial
extent. Alternately, a larger value for sl, combined with a larger
σmax, allows for a larger spread and filtering in the momentum
representation.
(b) Accuracy: The requirement that a basis set faithfully

reproduce the physics of a quantum vibrational problem will, of
course, place lower limits on Np and Nbasis. Furthermore, it
places bounds on sl. Excessively large values of sl can lead to
greater delocalization of the basis functions and reduced span in
momentum space, requiring compensation with higher Np (and
associated σmax). However, a choice of sl that is excessively small
can under-represent the tails and spatial regions between
translates (Figure 1). Similar bounds exist for δSVD. On the one
hand, lower values of δSVD can increase basis set span by
including more principal components. The penalty here is that
such lower singularity cutoffs bring the wavelet primitive
overlap closer to divergence in its inverse and, thus, reduce
attainable numerical stability. Conversely, higher cutoffs will
sacrifice span for stability.
Given these restrictions, a numerical analysis of the interplay

between these parameters is now presented.
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To characterize compression, we will investigate the
dependence of Nbasis/Np on sl and δSVD. Furthermore, the
potential to introduce sparsity is characterized by the height of
the Gaussian envelope at the domain edge relative to its height
at the center,

η
ϕ

ϕ
σ= ∀μ

μ

=

=

L( /2)

(0)
0

0 (26)

a measure that also characterizes the overlap between
neighboring translates. The dependence of basis set accuracy
on Np will also be characterized for different values of sl and
δSVD to benchmark the effect of multiwavelet compression on
accuracy.
To characterize the performance of a given basis set, we

define measures of error in reproducing a given subset of
eigenenergies. Given that error in an eigenenergy can increase
in proportion to the magnitude of an eigenvalue itself, an order
of magnitude measure for the relative eigenenergy error is
defined,

σ μ
ε ε

ε
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(QM) (anal)
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0 min( , )basis

(27)

where εn
(QM) is the computed eigenenergy, εn

(anal) is the analytical
eigenenergy (or eigenenergy obtained from the grid calcu-
lation), and N is the total number of eigenstates considered in
the analysis. Thus, eq 27 amounts to a geometric mean of the
relative errors in the N eigenenergies included. The angle
brackets represent an average over all computed eigenstates
with quantum numbers n up to min(Nbasis, N), given that the
number of computed eigenstates is limited by the number of
principal components and can vary with basis set.
Accuracy is benchmarked for the first few eigenfunctions of

(a) the free particle system obeying Neumann98 boundary

conditions, (b) the quantum Harmonic oscillator, and (c) a set
of 80 configurations of the ClHCl− bihalide cluster, which were
independently obtained from an MC-QWAIMD simulation.7

While the results in all cases are similar, here, we highlight the
results from the free particle case because (i) we find this to be
numerically the most challenging, and (ii) the analytical result
from Feynman path integration45 is one that involves rapidly
oscillatory functions, where the oscillation frequency essentially
increases as the Feynman paths connect points in configuration
space that are farther and farther apart. (On this particular
aspect, see ref 38 for a filtered representation for paths with
well-separated end points, that does not suffer from the well-
known quantum dynamical sign problem. The “distributed
approximating functional” propagator used in ref 38 is also
formed from Hermite functions, which is a feature in common
with the multiwavelets presented here.) The motivation for
gauging accuracy by comparing against the free particle
eigenfunctions under Neumann boundary conditions arises
from this system’s ability to characterize the variational
minimization of the Hamiltonian with respect to uniform
spatial and spectral completeness of the multiwavelet basis. The
ground-state Neumann eigenfunction is a constant and
characterizes completeness at all grid points uniformly.
Furthermore, inclusion of excited states with the ground state
provides a similar benchmark of basis set fidelity over kinetic
energy ranges within which a quantum wavepacket can reside.
Benchmarks for the harmonic oscillator analytical test case and
set of 80 configurations of the ClHCl− bihalide cluster are
presented in the Supporting Information.
The quantity N in eq 27 is chosen to include all eigenstates

inside a 30 mHa (∼18.83 kcal/mol) cutoff. This upper limit
corresponds to probing energies that are an order of magnitude
greater than kBT (∼0.6 kcal/mol) at room temperature and
provides an adequate margin for describing many realistic
systems. Under this constraint, N will be small enough so that

Figure 5. (top) Fraction of principal components retained, Nbasis/Np, versus number of wavelet primitives, Np for several values of sl/L at δSVD = 10−6.
(bottom) Basis set accuracy vs Np as characterized by eq 27 for analytical free particle under Neumann boundary conditions (En = αn2, where α =
1.852 mHa ≈ 1.162 kcal/mol; L = 1.200 bohr; N = 5). Horizontal line at E5

(ε) = −2.5, corresponds to a relative error in eigenenergies of ∼2 × 10−3.
For multiple basis sets with identical Np, the basis with the lowest value of E5

(ε) is plotted. In the abscissa, the truncated wavelet primitive sets are also
labeled according to maximum scale and Hermite order, (σmax,μmax). The legend also includes values of η, as defined by eq 26.
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only multiwavelet structures for which σmax ≤ 3 need to be
considered.
The upper plot in Figure 5 presents a characterization of

basis set redundancy (Nbasis/Np) as a function of Np for several
values of sl/L at δSVD = 10−6. Removal of redundant principal
components consistently begins with Np = 15 for all values of
sl/L probed with as many as half of the redundant vectors being
removed. This redundancy does not depend monotonically on
Np, but rather, exhibits monotonic increases with increasing
σmax and μmax independently. Because both of these parameters
are related to the span of momentum components (see Figure
2), this suggests that redundancy in the wavelet primitive space
is largely caused by overcompleteness in momentum space
introduced through a high μmax at a given σmax. This root of
overcompleteness comes in addition to the expected trend of
increased redundancy with increased sl, which is a result of high
spatial overlap between translates.
The lower plot in Figure 5 presents a characterization of basis

set accuracy as a function of Np for several values of sl/L at δSVD
= 10−6. To gauge accuracy, a horizontal line is drawn at E5

(ε) =
−2.5, which corresponds to a relative error in eigenenergies of
∼2 × 10−3. Eigenenergies, for which the value is on the order of
mHa, exhibit errors on the order of μHa, well within the range
of accuracy for electronic structure methods. Thus, μHa
accuracy is already attainable for multiwavelet sets with the
number of elements (Np) being ∼20−30 for sl = L/6, L/5, L/4,
as compared with typical grid basis sets of ∼100 elements used
in grid-based QWAIMD propagation. Furthermore, this level of
accuracy is not limited to one value of σmax. This allows for
some flexibility in choosing the level of “wavelet” character in a
basis set. Accuracy is reduced substantially for values of sl < L/6
but not for higher values, suggesting that the upper bound on
frequency span for the multiwavelet basis is not exceeded by
the highest eigenstate considered.
Figure 6 presents a characterization of basis set redundancy

(Nbasis/Np) and accuracy as a function of Np for several values of

δSVD at sl = L/6. For the values of singularity threshold (δSVD)
examined, basis set undercompleteness tends to be a larger
source of error than numerical singularity, because higher
thresholds give large relative errors while level of accuracy tends
to plateau, if not decrease, for δSVD ≤ 10−6, providing a
significant level of flexibility with regard to the level of
redundancy. This suggests that the eigenstates considered have
negligibly small projections along the less numerically stable
principal components added by reducing δSVD to the lowest
values examined here. We emphasize that, as in the case of
varying sl, the same levels of accuracy may be found across
different values of σmax, thus, retaining a flexibility in choosing
the degree of “wavelet” character in the basis.
Considering the criteria given above, the remainder of this

work will focus on dynamical benchmarks with the (σmax,μmax)
= (1,7) set of wavelet primitives at sl = L/6 and δSVD = 10−6.
This basis set has 21 wavelet primitives, or approximately one-
fifth of the typical 100 grid points used in previous QWAIMD
calculations. For sl = L/6 and δSVD = 10−6, this set may be
further compressed to 18 basis functions while retaining μHa
accuracy at mHa eigenenergies. Of the choices probed here, sl =
L/6 gives the smallest overlap between translates (i.e., value of
η) that retains this desired level of accuracy. If greater flexibility
in spatial localization is desired, one may choose the (σmax,μmax)
= (2,4) basis set instead, where Np = 28 is still a reasonable
compression, when compared to typical grid basis values
(although all principal components are retained for this basis).
Both basis sets give similar performance, in terms of accuracy.

VI. QUANTUM DYNAMICAL BENCHMARKS FOR THE
ClHCl− BIHALIDE SYSTEM

Having benchmarked several multiwavelet structures above, we
found that the (σmax,μmax) = (1,7) basis accurately represents
the quantum energy levels relevant to room-temperature
simulations, compared to the grid basis sets typically used in
QWAIMD. We now benchmark the performance of this basis

Figure 6. (Top) Fraction of principal components retained, Nbasis/Np, versus the number of wavelet primitives, Np for several values of δSVD at sl/L =
L/6. (Bottom) Basis set accuracy vs Np as characterized by eq 27 for analytical free particle under Neumann boundary conditions (En = αn2, where α
= 1.852 mHa ≈ 1.162 kcal/mol; L = 1.200 bohr; N = 5). Horizontal line at E5

(ε) = −2.5 corresponds to a relative error in eigenenergies of ∼2 × 10−3.
For multiple basis sets with identical Np, the basis with the lowest value of E5

(ε) is plotted. In the abscissa, the truncated wavelet primitive sets are also
labeled according to maximum scale and Hermite order, (σmax,μmax).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5003016 | J. Chem. Theory Comput. 2014, 10, 2950−29632958



set in simulation of the quantum dynamics for a one-
dimensional (1D) and three-dimensional (3D) representation
of the shared proton wavepacket in the ClHCl− bihalide
system. As is the case with the other QWAIMD simulations, the
shared proton is treated as a quantum wavepacket and all other
nuclear degrees of freedom are treated classically, with forces
computed using the time-dependent electronic structure. (See
section IV(C2).) The electronic structure is calculated “on the
fly” using the multireference diabatic state formalism with
electronic state represented by eq 21. The simulations are
carried out for a duration of 2 ps for all 1D cases and a duration
of 1.5 ps for the 3D case.
The significance and challenge involved in simulating the

ClHCl− system is important to note. This system contains a
shared proton undergoing excursions along the Cl−Cl axis. The
motion of the proton is (a) coupled to the two peripheral
atoms, and (b) dictated by the highly anhamrmonic nature of
the potential surface.4,7 This makes the problem challenging,
not only for the commonly utilized harmonic analysis
constructed at optimized geometries but also many state-of-
art methods such as the nuclear electronic orbital approach
constructed at the MP2 level,99 as well as the CC-VSCF-
MP299−103 method. Previously, we showed that the vibrational
density of states calculated from the TDDS implementation of
adiabatic QWAIMD4 is able to provide quantitative agreement
with experimental results. Furthermore, the multiconfigura-
tional generalization to QWAIMD7 was benchmarked against
results obtained from both adiabatic QWAIMD as well as from
gas-phase spectroscopy experiments for several bihalide
systems. In all of the previous work described here, the
wavepacket for the shared quantum proton was represented
with a discrete regular grid basis. Here, we build on the work in
ref 7 by replacing this grid representation with an orthogonal
basis derived from the multiwavelet structure, as described in
section IV.
For the 1D case, diabatic state bases of five and nine diabatic

states (i.e., NDM = 5,9, respectively in eq 21) are employed,6,7

whereas for the 3D case, the shared proton potential is
computed within a 9-diabatic-state level of theory. The
electronic structure is computed using a hybrid atom-centered
Gaussian basis localized on the classical nuclei, and a basis of
Gaussians localized on specially chosen grid points that span
the quantum nuclear subspace.7 In this case, the basis functions
localized on the Cl atoms is the 6-31G+(d,p) atom-centered
basis set, with sto-3G basis functions floating on a grid
encompassing the quantum nuclear degrees of freedom.7 This
choice has been shown to have accuracy comparable to atom-
centered aug-cc-pvtz basis functions (see Table 2 in ref 9). All
of these functions adapt to the position of the classical nuclei, as
the dynamics evolves. All the calculations are performed using
locally built modifications to a development version of the
Gaussian series of electronic structure programs.
The initial structures for dynamics are obtained from a

geometry optimization at B3LYP/6-31+G(d,p) level of theory.
The initial shared proton wavepacket is a superposition of
eigenstates ψn(RQM;RC(0)) of the Hamiltonian as defined in
sections IV(C1) and IV(C2),

∑ ψΨ = =t bR R( ; 0) ( )
n

n n0
(QM)

QM QM
(28)

For the 1D case, the wavepacket is initially set to the ground
state,
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or to a Boltzmann-weighted thermal superposition,
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where {εn} are the eigenenergies associated with the
eigenfunctions, {ψn} and the canonical partition function, ZC
normalizes the coefficients bn. For the thermal initial states, T0
= 300 K. Dynamical simulation within the 3D representation of
the shared proton, starts from a ground-state initial wavepacket,
defined by eqs 28 and 29.
As noted earlier, the simulations are carried out for a

duration of 2 ps for all 1D cases and a duration of 1.5 ps for the
3D case. In all cases, the total energy was well-conserved with a
standard deviation in total energy on the order of 0.05 kcal/
mol. Furthermore, deviations between the multiwavelet
representation and grid representation are minimal as noted
in Table 1. Table 1 summarizes the comparisons of total
energies, the expectation value of the wavepacket flux:
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and the donor−acceptor distance. (The quantity Ψj
(QM)(t) is as

defined in eq 4. The dependence on RQM has been dropped on
account of the bracket.) The degree of fluctuation in any such
observable, O(t), is measured by its standard deviation, σ[O],
over the time interval of simulation. Thus, for consistency, the
deviation between an observable in a multiwavelet based
simulation, Owav(t), and its counterpart in a grid-based
simulation, ODAF(t) is given by the root-mean-square of the
difference between these observables per time step,

Δ ≡
∑ −

O
O t O t

N
[ ]

( ( ) ( ))i i iwav DAF
2

(33)

where N is the total number of quantum propagation time
steps. The total energies as a function of time exhibit agreement
of order 10−5 kcal/mol between the multiwavelet and grid-
based propagation schemes over a simulation duration of 2 ps.
Both schemes exhibit similar energy conservation properties
(0.05 kcal/mol) and the Cl−Cl stretch shows relative errors
between the two propagation schemes of <10%, while the
shared proton flux tends to deviate by as much as 25% between
the two propagation schemes.

A. Analysis of the Quantum Nuclear Eigenstates as a
Function of Time. In this section, we probe the behavior of
eigenstates and potential. We specifically perform this analysis
for two different simulations. One of these simulations uses
nine diabatic states, whereas the other uses five. For a detailed
discussion of the performance of the five- and nine-diabatic
state potentials in faithfully representing the electronic structure
of the ClHCl− bihalide structure, the reader is referred to ref 7.
However, these two cases represent qualitatively different
physics, since a small number of diabatic states generally result
in a relatively confined potential surface to yield higher
vibrational frequencies, as already noted in ref 7. We use this
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difference to further probe the behavior of eigenstates and
potential surface. An instantaneous eigenstate decomposition is
used to characterize the properties of the shared proton’s
quantum wavepacket for the adiabatic ground electronic state,

∑ ψΨ =t b t R tR R( ; ) ( ) ( ; ( ))
n

n n0
(QM)

QM QM C
(34)

The basis functions ψn(RQM;RC(t)) diagonalize the quantum
nuclear Hamiltonian independently at every time step, t,

ψ ε ψ̂ =H R t R t R t R tR R R( ; ( )) ( ; ( )) ( ( )) ( ; ( ))n n nQM C QM C
(QM)

C QM C

(35)

The notation in the above equations is meant to imply that the
time dependence in the potential surface comes exclusively
from the classical subsystem. For such systems, the
instantaneous eigenstates are directly mapped onto eigenstates
parametrically dependent on {RC}. We emphasize that the
initial conditions defined by eqs 28−30 are special cases of this

instantaneous diagonalization associated with the simulation
starting time, t = 0 (bn = bn(t = 0), εn = εn

(QM)(RC(t = 0)) and
ψn(RQM) = ψn(RQM;RC(t = 0))).
The bottom panels in Figure 7 gives the difference between

the zero-point energy and the potential energy surface,
ε0
(QM)(RCl−Cl) − VClHCl

−(RQM ; RCl−Cl), as a function of
quantum proton coordinate, RQM and donor−acceptor
distance, RCl−Cl. Regions where this quantity is negative
correspond to “tunneling” domains where the zero point
energy of the shared proton falls below the barrier energy. For
the five-diabatic-state case, this does not occur during the
course of the simulation. However, for the nine-diabatic-state
case, an integral of the radial distribution function, ρ(RCl−Cl),
starting at the configuration (RCl−Cl

(tn) = 3.211 Å), where the
shared-proton zero-point energy is equal to the barrier height
energy,

Figure 7. Instantaneous eigenenergy analysis for a 2 ps dynamics duration simulation using the (σmax,μmax) = (1,7) basis. (Top) Red curves: radial
distribution function, ρ(RCl−Cl), of donor−acceptor distances for (a) five diabatic states (eq 21 with NDB = 5) and (b) nine diabatic states (eq 21 with
NDB = 9). The area under ρ(RCl−Cl) (shaded in gray) indicates the donor−acceptor configurations, for which the zero point energy of the quantum
proton drops below the intermediate barrier height (∼35% and 36% of the total area under ρ(RCl−Cl) for the ground state (see eqs 28 and 29) and
thermal (see eqs 28 and 30) initial wave functions, respectively for the nine-density matrix case, and zero for the five-density matrix case). The
stretch distance RCl−Cl = 3.211 Å corresponds to the donor−acceptor configuration for which the zero point energy equals the barrier height for the
shared proton. Black curve: 0 ← 1 transition energy for shared proton. (Bottom) Contour map of the difference between the zero point energy and
potential energy surface for the shared proton with position coordinate RQM (vertical axis). The contours at 0.0 kcal/mol correspond to the classical
turning points and negative energies correspond to the region where the shared proton zero point energy drops below the potential energy surface.

Figure 8. Wavepacket probability densities for a 2 ps dynamics duration simulation using the (σmax,μmax) = (1,7) basis starting from (top panels) an
initial ground state condition (eqs 28 and 29) for (a) five diabatic states (eq 21 with NDB = 5) and (b) nine diabatic states (eq 21 with NDB = 9).
Bottom panels show initial thermal superposition (eq 28 and 30 with T0 = 300 K) for (a) five diabatic states (eq 21 with NDB = 5) and (b) nine
diabatic states (eq 21 with NDB = 9).
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∫ ρ≡
∞

− −
−

P R Rd ( )tn

R

( )
Cl Cl Cl Cltn

Cl Cl
( ) (36)

as illustrated by the shaded area in the top plot of Figure 7b,
reveals that the zero point energy drops below the barrier
height energy over ∼35% and 36% of the trajectory for ground
and thermal initial conditions, respectively. This difference is
reinforced from the plot of shared proton wavepacket density
(Figure 8) where the wavepackets exhibit qualitatively different
shapes, particularly in the region of highest Cl−Cl stretch. The
differing initial conditions (ground state versus thermal) do not
qualitatively alter this discrepancy, contributing a slight
aggregate increase in Cl−Cl stretch, as seen from both the
radial distribution functions in the top panes of Figure 7 and
increased antisymmetric oscillations in wavepacket density for
the thermal initial case, as opposed to the initial ground state
case in Figure 8. Finally, the morphology of the diabatic state
potential is very different for five and nine diabatic states, and
these aspects are consistent with those noted in ref 7, where it
was shown that reducing the number of diabatic states increases
quantum confinement.
B. Vibrational Properties for ClHCl−: Interpretations

Using an Adiabatic Dressed State Quantum Dynamics
Model. We now compute the asymmetric stretch frequencies
for the shared proton in two different ways. First, the frequency
is directly obtained from the expectation value of the shared
proton quantum flux correlation:

∫ω = ⟨ · ⟩ıω

→∞ =

=
−I t tJ J( ) lim d e { (0) ( ) }

T t

t T
t

J
0

( )
Q (37)

where the expectation value of wavepacket flux is defined in eq
31. The term ⟨···⟩Q represents the quantum ensemble average.
That is, the ensemble average is constructed from the quantum
dynamical portion of the trajectory. The quantity ω is the
frequency. As seen from Table 2, the peak position of the
asymmetric stretch fundamental derived from the spectrum
given by eq 37 agrees well with the second approach, given by a
shared proton ground to the first excited state (0 → 1)
transition energy averaged over the radial distribution function,
ρ(RCl−Cl), of donor−acceptor distances,

∫ν ρ ε≈ − − −R R Rd ( ) ( )3 Cl Cl Cl Cl 01
(QM)

Cl Cl (38)

where ε01
(QM)(RCl−Cl) is computed from the instantaneous

eigenstates calculations discussed in the previous subsection.
That is, the 0 → 1 transition energies, ε01

(QM)(RCl−Cl) (Figure 7,
top panels), are the differences between the ground and first
excited instantaneous eigenstates, as defined by eq 35, and thus,
depend on the Cl−Cl stretch.
The level of agreement between the two techniques above

allows one to interpret the vibrational properties using an
adiabatic dressed state quantum dynamics model. Specifically,
using the instantaneous eigenstates in eqs 34 and 35,

∫∑ ı ε

ψ

Ψ ≈ −
ℏ

′ ′

×

⎡
⎣⎢

⎤
⎦⎥t b t R t

R t

R

R

( ; ) (0) exp d ( ( ))

( ; ( ))

n
n

t

n

n

0
(QM)

QM
0

(QM)
C

QM C (39)

Substituting eq 39 in eq 37 gives

∑ω ω= | || |
>

I b b J( ) 4 (0) (0) ( )
i j i

i j
i j

J
,

( , )

2

(40)

where

∫

∫

ω

ϕ ε
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× +
ℏ

′ Δ ′

ıω

→∞ =

=
−

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

J t

t R t R tj

( ) lim d e

sin
1

d ( ( )) ( ( ))

i j

T t

t T
t

ij

t

ij C ij C

( , )

0

( )

0

(41)

and

ψ ψ≡ −ℏ ∇R t R t
m

R tj ( ( )) ( ( )) ( ( ))ij C j C i C
(42)

Here, we have assumed that the instantaneous eigenstates
defined by eq 34 are real values in quantum nuclear
configuration space. The quantity ϕij is a phase stemming
from the initial probability amplitudes, |bi(0)| and |bj(0)|. We
emphasize that, in this model, the transition energies Δεij and
flux matrix elements jij are parametrically dependent only on
the classical degrees of freedom, RC. All time dependence in
these quantities arises from the implicit dependence of RC on t.
For the 1D systems, RC(t) = RCl−Cl(t) the stretch between the

Table 2. Symmetric (ν1) and Antisymmetric (ν3) Vibrational Stretch Frequencies and Kinetic Energy Contributions from the
Shared Proton (⟨K̂(1)⟩) and the Cl Moieties (K{Cl}) for the ClHCl− Bihalide Cluster for Multiwavelet (σmax,μmax) = (1,7) and
Grid-Based Shared Proton Propagation Algorithms

NDM
a prop. scheme ν1

b (cm−1) ν3
b (cm−1) ⟨K̂(1)⟩c (K) K{Cl}

c (K)

1D 5d multiwavelet 317 ± 8 800 ± 8,f 808g 347 (21) 41 (28)
5d grid 317 ± 8 800 ± 8f 347 (21) 42 (29)
5e multiwavelet 317 ± 8 800 ± 8,f 806g 359 (22) 42 (29)
5e grid 317 ± 8 800 ± 8f 359 (22) 43 (30)
9d multiwavelet 283 ± 8 634 ± 8,f 634g 286 (27) 47 (34)
9d grid 283 ± 8 634 ± 8f 287 (28) 50 (35)
9e multiwavelet 283 ± 8 617 ± 8,f 631g 301 (29) 48 (35)
9e grid 283 ± 8 617 ± 8f 301 (30) 51 (37)

3D 9d multiwavelet 318 ± 11 785 ± 11f 3297 (65) 75 (53)
9d grid 318 ± 11 785 ± 11f 3302 (66) 78 (55)

aDefined in eq 21. bDenoted as ν ± δν, where ν is the peak position and δν is the frequency uncertainty as determined by the time duration of the
simulation. cDenoted as K̅ (σ[K]), where K̅ is the time average and σ[K] is the standard deviation of K over the simulation duration. dGround-state
initial wave function (see eqs 28 and 29). eThermal initial wave function (see eqs 28 and 30 with T0 = 300 K). fCalculated from quantum flux (see eq
37). gRadial distribution function averaged 0 → 1 transition energy calculated using eq 38.
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Cl moieties. As noted in Figure 9, the adiabatic dressed state
approximation agrees well with the full QWAIMD result.

Figure 9a presents the flux matrix element j01, corresponding
to the ground-to-first excited-state transition in the shared
proton stretch, sampled every 25 fs from a 1D dynamics
trajectory with nine diabatic states (NDM = 9). The initial
conditions for this simulation correspond to the choice of the
ground state for the shared proton stretch (eq 29). In addition,
a least-squares fit to a second-order polynomial is also provided
for j01. An equivalent fit is performed for the ground-to-first
excited-state transition, Δε01. Figure 9b compares the flux given
by the full dynamical simulation as defined by eq 37 to that
predicted by the dressed state approximation in eqs 40−42.
The spectral fundamentals as well as side bands that couple the
asymmetric and symmetric stretches are reasonably represented
by this model.

VII. CONCLUDING REMARKS
The quantum vibrational subsystem within quantum-wave-
packet ab initio molecular dynamics (QWAIMD), which is an
“on the fly” ab initio mixed quantum classical methodology, is
represented using a basis derived from a set of Hermite
Gaussian multiwavelet functions in place of the discrete grid
representation used previously. This representation has the
following properties: (a) reduction of polynomial order in the
basis set via an hierarchical spatial rescaling, (b) analytically
known expressions for the kinetic energy and free propagation
operators, and (c) spatial symmetry and localization leading to
sparsity and repetition in matrix representations that result in
computational overhead reduction. The representation is
implemented for a quantum subsystem with an arbitrary
number of degrees of freedom.
A detailed performance analysis is carried out for multiple

parametrization of the multiwavelet basis. Based on this
analysis, a suitable choice of parametrization is subsequently
benchmarked against the already-existing grid-based scheme for
propagating quantum nuclei in QWAIMD. The benchmarks are
carried out for one-dimensional (1D) and three-dimensional
(3D) quantum dynamical representations of the shared proton
motion in the ClHCl− bihalide system. In the 1D
representation, separate comparisons are carried out using
two levels of electronic structure theory that represent
qualitatively different physical behavior for the shared proton
motion. In all cases, good agreement is observed between the
multiwavelet and grid-based schemes for energetic and spectral
properties for multiwavelet basis sets that are significantly

smaller than the number of grid points used in the grid basis
propagation scheme.
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