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ABSTRACT: We describe how complex concepts in macroscopic chemistry,
namely, thermodynamics and kinetics, can be taught at considerable depth
both at the first-year undergraduate as well as upper levels. We begin with
a careful treatment of PV diagrams, and by pictorially integrating the
appropriate area in a PV diagram, we introduce work. This starting point
allows us to elucidate the concept of state functions and nonstate
functions. The students readily appreciate that for a given transition, the
area enclosed by the PV curve (work) depends on the path taken. It is
then argued that heat, within this chosen framework, is a consequence of
energy conservation and the fact that work is not a state function. This
leads to a visual introduction of all the components involved in the first
law of thermodynamics. The PV diagrams are then used to introduce
entropy as being related to the maximum possible work to be done by the
system. This macroscopic description of entropy is then related to the usual microscopic view of Boltzmann. This
equivalence connects the area inside the PV diagram (work from a specific kind of pathway) and the number of microstates
involved in the Boltzmann expression. The connection between the macroscopic and microscopic description of entropy
also illuminates the exponential dependence of the number of microstates (or probability) on an energy, known as
free energy. The Arrhenius picture of chemical kinetics then readily follows from the exponential dependence stated above,
and finally, a reactive event is viewed as a statistically rare event, to further clarify the appearance of entropy in the rate
expression.

KEYWORDS: First-Year Undergraduate/General, Upper-Division Undergraduate, Physical Chemistry,
Interdisciplinary/Multidisciplinary, Curriculum, Kinetics, Mathematics/Symbolic Mathematics, Thermodynamics, Rate Law

The flow of energy that often accompanies chemical
transformations is a difficult concept to grasp for students,

teachers, and researchers.1−5 The difficulty arises from the
abstract nature of many energy concepts such as work, heat,
entropy, and free energy. The complexities involved in learning
these topics may be gauged through the large number of
innovative teaching tools proposed in the literature that are
specific to thermodynamics. These teaching paradigms range from
innovative mnemonic tools6,7 that help visualize and internalize the
relations between different thermodynamic variables, graphical
ideas that illustrate these dependencies8−10 and others that gauge
the effective portrayal of entropy and free energy11,12 through
connections to Shannon’s13,14 information theory.15−17

Our approach is to simplify the discussion of work and state
functions, through a pictorial introduction of these concepts
using pressure−volume phase diagrams. These ideas are
subsequently used as a conduit to introduce other thermody-
namic quantities. For example, a discussion on reversible and
irreversible processes helps connect entropy to pressure−
volume phase diagrams, through work. When microscopic
descriptions of entropy and free energy are invoked, this allows
us to introduce chemical kinetics in a coherent manner.

This material dealing with macroscopic concepts comprises the
second half of a one-semester course for select, high-achieving first-
year undergraduate students. The composition of this honors
course and its logistics have been previously presented,18 but for
convenience is also provided as part of Supporting Information
(Appendix A).
It is important to juxtapose our efforts with the “organic-

first”19 and “bio-organic-first”20 teaching efforts. The general
philosophy of “explicitly linking what we know about chemistry
with what we do in the classroom” is something we share with
Ege and co-workers as they described in ref 19. However, there
are critical differences. In Figure 2 of Ege’s work,19 physical
chemistry appears at the pinnacle of undergraduate education.
Thus, grounding in the key physical topics of thermodynamics
and kinetics is the last area students learn before they graduate.
In contrast, in this publication and a previous publication,18

we have attempted to place the physical concepts underlying
all of chemistry and biochemistry upfront. These principles
form the underpinnings of all chemistry and biochemistry and
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if well understood, can lead to a more rigorous treatment of
other aspects of chemistry in later years. For example, as part of
the material presented here for honors general chemistry, we
included a discussion on Michaelis−Menton kinetics following
the introduction of chemical kinetics. It was found that once
the students became familiar with the conceptual basis
presented here, the Michaelis−Menton problem was accessible.
A detailed discussion on this topic is however reserved for the
upper-level biochemistry class, given the time frame restric-
tions; however, we believe that connecting the problems at this
early stage would help the students when these ideas are
revisited in upper level.
This paper is organized as follows: The pressure−volume

(PV) phase diagrams are discussed in the next section with the
goal of introducing work and heat; entropy and free energy
follow through the concept of reversibility, also introduced
using PV diagrams. We then connect these macroscopic ideas
to the microscopic description of entropy given by Boltzmann
to arrive at a microscopic view to spontaneity. Chemical
kinetics is then introduced through this probabilistic micro-
scopic picture arising from the discussion of entropy and free
energy. The case is made that a reactive process is a rare event
when viewed from a probabilistic or statistical angle. This course
has a prescribed textbook;21 however, there are substantial
deviations as one would expect based on analysis of this paper
and a previous publication.18 A detailed syllabus is presented as
part of Supporting Information. We believe that this presentation
of the material, somewhat modified, may also be appropriate in
part to upper-level physical chemistry classes. Hence, advanced
material more applicable for upper-level undergraduates is also
discussed in Supporting Information.

■ USING PV DIAGRAMS TO INTRODUCE WORK,
HEAT, AND THE CONCEPT OF STATE FUNCTIONS

We begin our treatment of energy and thermodynamics using
PV diagrams for an ideal gas. Although many students are
intimately familiar with the numerical manipulation of ideal gas
laws through their high school experience, they are typically not
comfortable in relating the mathematical equations to curves in
a PV diagram. Once they understand how all ideal gas laws, can
be derived from PV diagrams, they are in a position to elucidate
physical relationships from xy plots such as the dependence of
the pressure of an ideal gas on its volume under constant
temperature conditions. It is stressed in class that Boyle’s law
(P ∝ 1/V) and Avogadro’s law (P ∝ the amount of a gas) can
be understood directly from a single PV diagram. Charles law
(V ∝ T) can be rationalized through the relative placement of
two isothermal PV curves at different temperatures on the same

PV plot. Deviations in real gas behavior are then introduced
through modified PV diagrams.
Once PV diagrams are discussed, plots similar to those in

Figure 1 are used to (i) convey the concept of work, (ii) note
that work is not a state function, and (iii) emphasize work
performed during a closed path in a phase diagram is related to
the area enclosed within the path. Toward this goal, we first
recall that work is force multiplied by displacement. Utilizing
the standard textbook example of a cylinder with a moving
piston that contains a gas, we are then able to express the PV
work done on the system as

∫= −w P Vd
(1)

From this launching point it is possible to compare different
changes made in the PV diagram. For example, the plots in
Figure 1A,B show two different pathways for the transition
from (P1,V1) to (P2,V2). In the path depicted in Figure 1A, the
pressure is first quickly changed from P1 to P2, holding the
volume constant. Then, the volume is increased suddenly from
V1 to V2 while holding the pressure fixed at P2. Although the
italicized words quickly and suddenly do not have much meaning
to the student at this point, they become useful when we
discuss reversible and irreversible processes later. Hence, the
students are asked to note this terminology for later reference.
In the second path shown in Figure 1B, the pressure is initially
maintained at P1 and the volume is increased as before from V1
to V2. Next, the pressure is decreased from P1 to P2 while
holding the volume constant at V2. Since PV work done on the
system is given by eq 1, it is clear that no work is done in the
vertical transitions when the volume is held constant.
Moreover, it is graphically evident to the students that the
work done in each of the two paths shown in Figure 1A,B is
different. Due to the higher pressure in the second case, the
magnitude of the work done on the system in this case is larger
than that in the first case. This result is very significant as it
implies that the work done is path dependent!
Students readily recognize that reversing the direction of the

path in the first case (Figure 1A) reverses the sign of the work.
One is now able to combine the two paths previously presented
to create a closed loop, as depicted in Figure 1C. The system
begins and ends at (P1,V1) and the work done in the process is
the difference between the work done in the two half-cycles
shown in Figure 1A,B. As a result, the work performed in
traversing the loop is the area enclosed by the rectangle shown in
Figure 1C.
The path dependence of work that has been demonstrated is

a fundamental result. Because a state function depends only on
the state of the system and not on the path taken to reach that

Figure 1. Plots in (A) and (B) show the use of PV diagrams to explain the path dependence of work. Plot (C), which is derived from (A) and (B) is
used to explain the concept of state and nonstate functions.
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particular state, work done cannot be a state function. A sample
examination problem is provided in Box 1. Note that the

quantity W3 in Box 1 is an isothermal reversible work that has
not yet been formally introduced to the students. (It is
introduced in the next section.) However, the students are able
to answer this question using their understanding of ideal gas
laws (which has already been underlined using PV diagrams at
the beginning of this section) and the fact that work is related
to the enclosed area in PV diagrams for any chosen transition.
It is the understanding of the latter aspect that is tested in this

question. Based on the performance of the students on this and
similar questions we infer that the concepts presented are
internalized by a large fraction of the student population.
We next reflect on the significance of the direction in which

the loop is traversed, either clockwise or counterclockwise.
Mathematically, it is easy to see that the sign is positive when
the loop is traversed in the counter-clockwise direction and
negative when traversed clockwise. But what is the consequence
of the sign? When work is done on the system, (a) the particles
may come closer to each other, thus changing the potential energy
of the system or (b) the particles may move faster, changing their
kinetic energy, or (c) both (a) and (b). Because the internal
energy of the system is defined as the sum of potential and kinetic
energies of the particles, work done on the system is converted to
internal energy. Generally, when work is done on the system, PV
work is considered positive as per the definition in eq 1, and the
internal energy of the system also increases.
However, internal energy, which contains both kinetic and

potential energies, is a state function, although work is not.22

Energy conservation mandates that work done on the system
be fully converted to some form of energy. For example, both
panels A and B in Figure 1 represent the transition from (P1,V1)
to (P2,V2). The work done on the system in the two cases is
different and is represented by the respective shaded areas. This
work is converted to internal energy. But the change in internal
energy that results from the work done during the transitions is
the same for the two pathways, because the beginning and end
points of the transitions are the same. (This is a direct result of
the fact that internal energy is a state function, but work is not.)
But if work is path dependent and internal energy is path
independent, there is clearly the need for another term that
would help conserve the total energy in these transitions by
suitably balancing the path dependence of work. This role is
provided by the quantity known as heat. On the basis of the
above discussion, heat may be interpreted as the consequence of
the fact that (a) work is not a state function and (b) the total
energy must be conserved. This discussion leads to the statement
of the first law of thermodynamics, where the change in internal
energy, ΔE, equals the sum of heat, q, and work, w:

Δ = +E q w (2)

Indeed, in class, this dramatic entry of the important
thermodynamic quantity known as heat, purely by invoking
energy conservation and path dependence, has an effect on
several students who have toiled their way through the concept
of heat through traditional introductions. It is also interesting

Box 1. An exam problem that reinforces the idea of work
being path dependent: The performance analysis
indicates that a large fraction of the students are able to
assimilate these challenging concepts.

Consider the following changes for 1 mol of an ideal gas.
Here W1, W2, and W3 are the work done (with the usual
sign convention).

W1: Expansion from 1 to 10 L against an external pressure
of 2 atm.

W2: A two-step process: First, an expansion from 1 to
5 L against opposing pressure of 4 atm. Second, an
isothermal expansion from 5 to 10 L.

W3: Isothermal expansion from 1 to 10 L, where the
final pressure is 2 atm.

Part (a): Represent W1, W2, and W3 in the figures
below and explain the ideas that you have used to draw
each figure. Show scale on axes and make sure these are
consistent across plots. This would make it easier while
answering part (b) below.

Part (b): Based on the figures you drew above which of
the following statements is true? Explain your answer.

I. W1 > W2 > W3.
II. W3 > W2 > W1.
III. W1 > W2 < W3.
IV. W1 = W2 = W3.
V. None of the above.

Figure 2. The transition in (A) is reversible, whereas the ones in (B) and (C) are not reversible. The magnitude of the area for the reversible process
is clearly greater and will always be greater even if the number of steps is increased in (B) and (C). Entropy for processes depicted in (A)−(C) is the
shaded area in (A) plus any change in internal energy that accompanies the process (which for an ideal gas situation would be zero, as there is no
change in temperature) divided by the temperature at which the process occurs. Hence, entropy is related to the maximum possible work done by the
system, or the “work capacity” of the system for a given transition.
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for the students to note that whereas everything on the right
side of the above equation is path dependent, this path
dependence cancels out when the individual components are
added so that what remains on the left side is a path
independent state function.4

Thus, all components that appear in the first law are
physically motivated and rationalized using PV diagrams. Note that
we have side-stepped the usual phenomenological introduction of
heat and work3,4 and replaced it with a description where heat
follows from energy conservation, provided work is well
established. We find that in this fashion, much of the difficulty
in understanding heat and work is alleviated. Once heat is
introduced in this manner, enthalpy follows as a specific
manifestation of heat where the path of a transformation is to
be constructed in a specific manner, that is, under constant
pressure. The discussion on enthalpy leads to heat capacity and
Hess’s law. These topics are treated as in standard texts18 and
hence not discussed further in this manuscript.

■ REVERSIBILITY DERIVED FROM PV DIAGRAMS
LEADS TO ENTROPY

Isothermal Reversible Work in PV Diagrams

Having familiarized the students with the topic of work, we next
broach the distinction between reversible and irreversible work
using PV diagrams. The concept of reversible work and its
companion reversible heat leads naturally to the concept of
thermodynamic entropy.
Consider the transformation depicted in Figure 2A. This

transformation from (P1,V1) to (P2,V2) is assumed to be
conducted at constant temperature, that is, along an isotherm.
Equation 1 indicates that the work done on the system is the
negative of the area enclosed under the curve. However, this
kind of a transformation could equally well have been
attempted in steps, as depicted in Figure 2B. Although the
intermediate point (P′,V′) in Figure 2B still remains on the
same isotherm as the initial and final phase space points, the
area under the curve for this “box-like-transformation” is not
the same as that in Figure 2A. Now, what happens when the
number of steps depicted in Figure 2B is increased, as shown in
Figure 2C? Clearly, one gets closer to the result in Figure 2A;
however, there exists no sequence of discrete box-like-
transformations where the step size in pressure and volume
are both finite, that will lead to a transformation that is identical
to that in Figure 2A.23−25 Only an infinite number of “box-like-
transformations” such as those in Figure 2B,C, where each step
is of infinitesimal size can be used to mimic the process in
Figure 2A.26

What is the physical realization of the process in Figure 2A,
when an infinite number of rectangular transformations such as
those in Figure 2B,C are concatenated to achieve the process in
Figure 2A? One can use the classic textbook example of a gas
enclosed within a cylinder and confined with the help of a
piston to illustrate this idea. It suffices to state that when the
external force used to expand or contract the system volume is
increased monotonically by infinitesimal amounts, the process
in Figure 2A is realized. But, what happens if the direction of the
external force is suddenly reversed by an inf initesimal amount?
Because the change is only infinitesimal, the effect of the
change may not be immediately apparent to an observer.
However, there are nontrivial changes that occur at the
microscopic level, and it can be seen that when the direction of
the external force is changed by a small amount, the process in

Figure 2A is microscopically reversed! Thus, one arrives at a
pictorial definition of reversible transformations from PV
diagrams.
Hence, Figure 2A represents a “reversible” transition. This is

clearly not the case for Figure 2B or Figure 2C, where a small
change in the external pressure will not change the direction of
the transition. Thus, Figure 2A represents a microscopically
reversible process, whereas the processes in Figure 2B,C are not
microscopically reversible and are hence irreversible. Despite
the clarity of the above discussion, one may find that this
discussion on reversibility is not accessible to even many bright
undergraduate students. In that case, we have in place an
additional discussion, with an additional figure to clarify this
concept as part of Appendix B in Supporting Information.
The graphical changes described above also allow one to

explore the meaning to the italicized terminology “quickly” and
“suddenly” seen in the paragraph following eq 1. Indeed for the
transformation in Figure 2B, the pressure reduction P1 → P′
ought to be constructed suddenly and quickly. If this was not the
case, and the pressure was changed gradually, then the system
will remain on the isotherm as the volume is also allowed to
relax slowly during the “gradual” pressure change.
It is also clear from the above discussion that the area under

the curve in Figure 2A will always be larger in magnitude
irrespective of the number of finite steps used in Figure 2B,C. It
is thus illustrated that the magnitude of the reversible work will
always remain a maximum. In other words, the reversible work is
the maximum work that the system can perform on the
surroundings during the chosen process.
At this juncture, it may also be useful to underscore that any

other smooth transformation from (P1,V1) to (P2,V2) will
contain a thermal contribution because it would not be along
the isotherm. In this situation, when the direction of external
force is suddenly reversed, that is, when a sequence of
infinitesimal expansions is interjected by a sudden, infinitesimal,
compression, the system has two degrees of freedom, pressure
and temperature, which it can use to respond to such a sudden
external change. Thus, the reverse trajectory of compression
may not follow the exact same path as the expansion because
both temperature and pressure can change in the reverse
process. For the reversible process constructed earlier in this
section, the additional degree of freedom that the system
possesses for its response, temperature, is eliminated through
the isothermal constraint. Hence, in such a case, the
infinitesimal compression guarantees an identical change in
pressure as in the case of expansion, thus assuring that the
reverse pathway of compression is identical to the forward
pathway of expansion. It may also be useful to the note that a
reversible process could equally well have been constructed as
an isobaric transition depicted within a V−T phase diagram, or
a constant volume transition represented in a P−T diagram. We
have chosen to use a PV diagram here to convey our ideas as
our goal was to pictorially explain work and all discussions
funnel from that focal point.
Entropy in Terms of Isothermal Reversible Work

Using the first law of thermodynamics, we note that there exists
a reversible heat that is connected to reversible work. This
reversible heat includes contributions from the internal (kinetic
plus potential) energy in addition to contributions from work.
That is, using eqs 1 and 2,

∫ α= Δ − = Δ + = Δ +q E w E P V Edrev rev
rev

rev (3)
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where the quantity “αrev” above is the area enclosed by the
transition pathways depicted in the PV diagram when such
transition is constructed in a reversible manner. This aspect is
denoted in the above expression through the subscript “rev”
under the integral sign.27 The quantity reversible heat is special
and is the basis for the thermodynamic quantity entropy.
Specifically, when an infinitesimal (or small) quantity of heat is
reversibly added (dqrev) to a system at temperature “T” a
corresponding change occurs to the entropy of the system as
given by

=S
q

T
d

d rev

When this infinitesimal change in heat is extended over the
entire reversible path, one obtains the change in entropy for the
process as

∫ ∫ α
Δ = = = = Δ +S S

q

T

q

T
E

T T
d

d

i

f

i

f
rev rev rev

(4)

where we have assumed that the reversible heat, “qrev”, for the
process depicted as “i” → “f” in the definite integral is
independent of temperature.29 In addition, we have used eq 3
to express the change in entropy in terms of the change in
internal energy and the work that is depicted within PV
diagrams.
On the basis of the expressions above, it is also noted that the

entropy for all three processes depicted in Figure 2 is defined as
the area highlighted in Figure 2A plus the change in internal
energy divided by the temperature at which the process occurs.
Note that the areas in Figure 2B,C do not arise in the
determination of entropy because those processes are not
reversible. For an ideal gas, the change in internal energy would
be zero, as there is no change in temperature, and the entropy
change is simply the quotient of the shaded area in Figure 2A
divided by the temperature. Thus, the entropy change is related to
the maximum possible work, or “work capacity” for a given
transition through its connection to αrev. (This idea is revisited
when free energy is introduced, as discussed below.)
At this point, entropy is simply another way of writing work

or, more specifically, reversible work. The physical implications
of this new variable are made clear in the next section.
It is useful to further emphasize the challenging concepts

introduced in the previous paragraphs. We do so by noting that
Figures 1A,B and 2, all represent different paths for the transition
from (P1,V1) to (P2,V2). However, it is only the process
represented in Figure 2A that is reversible. Hence it is the area
under the curve in Figure 2A that defines the entropy and not the
areas in Figures 1A,B and 2B,C. Similarly, panels A and B in
Figure 3 represent two different pathways for the cyclic
transformation (P1,V1) → (P2,V2) → (P1,V1). The individual
component pathways of Figure 3B are reversible, and hence, it is
the area enclosed within Figure 3B that is associated with
entropy.28

Each segment within Figure 3B contributes a specific amount
to the total entropy. These contributions are illustrated in
Figure 4. Specifically, contributions toward the entropy for this
process can be divided into four parts and these are shown
diagrammatically as the sum of the four subplots in Figure 4.
Note that the terms ΔS2 and ΔS4 do not contain contributions
from PV work because the volume is constant in these cases.
However, these segments do contribute entropy through the
change in internal energy, ΔE, as dictated by eq 4, and this may

be computed using the (temperature dependent) constant
volume heat capacities.30 The entropies corresponding to ΔS1

Figure 3. The plots represent different pathways for the cyclic
transition (P1,V1)→ (P2,V2)→ (P1,V1). The components of plot B are
constructed using two isotherms and the different components of plot
B are reversible. Hence, it is the area enclosed within plot B that
contributes to entropy.28 This specificity of the path involved
further underscores the path independence of entropy, although
entropy has been derived using the concept of work. The various
components of the entropy for this particular change are depicted in
Figure 4.

Figure 4. A graphical representation of the total entropy for the cyclic
transformation (P1,V1) → (P2,V2) → (P1,V1) represented in Figure 3:
the total entropy in this case is ΔS1 + ΔS2 + ΔS3 + ΔS4. The quantity,
ΔS1, is the area of the shaded region on the top left panel divided by
the temperature T2. This is similarly the case for ΔS3; however, the
contribution is negative because the system contracts. The quantity
ΔS2 does not have any contributions from PV work (see eq 4) and the
change in internal energy is obtained from the constant volume heat
capacity. This is also the case for ΔS4. The figure is further analyzed in
Supporting Information, Appendix C, where a final expression is also
provided.
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and ΔS3 are, of course, constructed using the areas under the
curve as shown in Figure 4 and may contain additional
contributions if the potential energy also changes, as would be
true for real gases and other states of matter. Such
contributions from the PV diagram, when entered into eq 4,
yield the value of the total entropy change for the (P1,V1) →
(P2,V2)→ (P1,V1) transition. As a result of the fact that entropy
is a state function, the final answer for the above closed path
transition may be expected to be zero. An analysis to this effect,
along with a derivation of ΔS1, ΔS2, ΔS3, and ΔS4, is provided
as part of Supporting Information, Appendix C. A discussion
toward this final goal could definitely be a part of upper-level
education and can be included at the introductory level with
some care. Irrespective of this detail, the above discussion
provides rationale connecting entropy to the other thermody-
namic quantities encountered as part of the first law, along with
a pictorial depiction.
We have found that students generally know how to solve

problems involving entropy, free energy, and other state
functions using Hess’s law and other similar definitions, but
they have difficulty accomplishing a conceptual grasp on these
challenging ideas. The above discussion appears to us as one
cogent development that clarifies the physical basis for these
concepts without becoming mathematically embroiled.

■ MACROSCOPIC TO MICROSCOPIC CONNECTIONS
THAT ENHANCE THE TREATMENT OF ENTROPY
AND FREE ENERGY

Microscopic Definition of Entropy (Boltzmann Entropy)

The above discussion connects entropy to the macroscopic
thermodynamic properties and specifically to the area enclosed
inside a PV diagram. However, at this point, entropy is just
another variable that signifies a specific kind of work (see eq 4).
To delve further into the physical basis behind the concept of
entropy and make connections to the microscopic world, we
introduce Boltzmann’s definition of entropy:

= ΩS k ln (5)

where we now introduce the number of microstates, Ω, namely,
the number of realizations of the system in a given configuration
and the Boltzmann constant, k. The latter is simply the ratio of the
ideal gas constant and the Avogadro number. The quantity Ω is
abstract, and to make this transparent, we utilize standard textbook
examples,18 such as counting the number of ways in which a set of
gas molecules can be spread in a closed container if (a) the
molecules are constrained to remain in one-half of the container,
or (b) the molecules are free to expand and occupy the entire
volume of the container. Once the students see that the answer
obtained from basic combinatorics is also the chemically relevant
solution, they have one more physical picture of entropy that is
based on the number of microstates, or the number of ways in
which a system can manifest itself under a given set of conditions.
Furthermore, using eq 4, along with the analysis of Figure 4
presented in Appendix C in Supporting Information, one obtains a
rationalization for the logarithmic dependence in eq 5.
Equations 4 and 5 yield a connection back to the macro-

scopic description as

α

Δ = − = Ω − Ω =
Ω
Ω

= Δ +

S S S k k k

E
T T

ln ln lnf i f i
f

i

rev

where we have used Ωi and Ωf to represent the number of
microstates available to the system at the initial (“i”) and final
(“f”) points of a certain transition. The accompanying changes
in internal energy and work are those stated on the right side of
the above equation. This equation can also be written as

Ω
Ω

= = = =α αΔ + Δ + Δ Δe e e eE kT E RT S R S kf

i

( / ) ( / ) ( / ) ( / )rev rev

(6)

where overbars represent molar quantities. Thus, as the number
of microstates increases from the initial to the final
configuration (that is, Ωf > Ωi), the entropy increases, which
in turn is microscopically facilitated by (a) the change in kinetic
and potential energy of the molecules, that is, internal energy,
during the transformation and (b) the magnitude of the
graphical interpretation of work, “αrev”, that we have discussed
in some detail.
Equation 6, in some sense is a culmination of our efforts in

elucidating the connections between work (from the pictorial, PV
diagrams perspective), entropy, and number of microscopic states
available to the system. This, in our experience, is a departure from
most curricula where, at the very least, Boltzmann’s interpretation
of entropy is presented as a disconnected side-bar, leaving the
inquisitive student with two separate notions about entropy and
thus not realizing the connections between these two
approaches.3,17 The connection is one of the major goals that
are achieved in the current layout.31 In addition, eq 6 turns out to
be a fundamental step that is later used in the description of free
energy and in chemical kinetics.

Microscopic Connections for the Second Law of
Thermodynamics

On the basis of heuristic discussions involving the number of
possible ways in which four marbles can be placed inside four
containers,18 the students already understand the meaning of
the term “most probable event”. To extend this to
thermodynamics, we further analyze eq 6. If the final state,
“f”, is more probable as a result of an increased number of
microstates (that is, Ωf > Ωi in eq 6), then the left-hand side of
eq 6 is greater than one. This is, however, only possible if ΔS
on the right side of eq 6 is concurrently greater than zero.
The discussion in the above paragraph only involves the

system and this discussion on probabilities needs to be
generalized to include the universe. This universe contains a
system where a chemical change is taking place and its
surroundings. The role of the surroundings (or reservoir) is
critical because arguably the surroundings in the immediate
vicinity of the system may also exhibit significant change during
a transformation. Consequently, we note that for a trans-
formation to occur spontaneously, the number of microstates
available to the universe in the final configuration should be
greater than those available to the initial state. This statement is
an extension of eq 6, where the analysis is now reflected on the
universe. This leads to the statement of the second law of
thermodynamics in terms of microscopic states:

Ω > Ω

Ω = >Δ

and

e 1S k

f
univ

i
univ

f
univ ( / )univ (7)

In other words,

Δ = Δ + Δ >S S S( ) 0univ sys surr
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Notice that in the above discussion our starting point is the
fact that the increase in microstates implies spontaneity. The
corresponding increase in entropy is only a consequence. We
find that this provides further rationalization to the second law,
making it easier to understand for students.
Because the change in Gibb’s free energy is defined using the

entropy change for the universe, that is, ΔG = −TΔSuniv, it
follows that ΔG < 0 for a spontaneous process.
One can also connect it to the graphical interpretation of

work described above. That is,

α α

Δ = − Δ

= − Δ + Δ

= − Δ + − Δ −

G T S

S S

E E

( )

( ) ( )

univ

sys surr

sys rev
sys

surr rev
surr

(9)

where we have assumed that the work done on the system and
surrounding are of opposite signs. Thus, the sign in front of
αrev
surr has been switched to allow the area, αrev

surr, to always have a
positive numerical value. This is because when work is done on
(by) the system, it is done by (on) the surrounding. (See
Supporting Information, Appendix D, for a discussion on the
physical meaning of free energy.)
The connection between free energy and microstates can

also be made by combining eqs 7 and 9 to obtain

Δ = − Δ = −
Ω
Ω

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠
⎟⎟G T S kT lnuniv

f
univ

i
univ

(10)

The ratio on the right side includes all microstates in the universe
as part of the final and initial configurations, and hence is
essentially the number of the possibilities in which the universe can
exist when the system is in the final or initial states. Thus, one may
be inclined to interpret this, as a ratio of probabilities. As upper
classmen, and later as graduate students, the students will see that
this ratio of probabilities is essentially the isothermal−isobaric
partition function, but this connection is not made in class.
If we further decompose the number of microstates in the

universe using those from the system and surrounding, that is,
[Ωf

univ/Ωi
univ] = [Ωsys

f Ωsurr
f /Ωsys

i Ωsurr
i ], we obtain
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This last expression will be used in the next section, when
chemical kinetics is introduced.

■ CHEMICAL KINETICS: THE MICROSCOPIC PICTURE
AND CONNECTIONS TO THERMODYNAMICS

The Arrhenius Formula

Let us reconsider eq 11. If we were to assume that the reactive
component is buried within the definition of “system”, we may
obtain a free energy for activation, “reactant” → “transition
state” where the latter configuration is represented by “TS”, as

Δ = −
Ω

Ω
+

Ω
Ω

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G kT ln lnactivation

sys
TS

sys
react

surr
TS

surr
react

(12)

Notice that in the above expression we have used eq 11, and
substituted “TS” for “f” and “react” for “i”. If we further assume
that the surrounding contributions are virtually the same for
reactant and transition states, since all reactive components
(and hence modifications from reactant to transition state, TS)
are represented within the system, then the free energy
difference between reactant and transition state may be written
(to very good approximation) as

Δ = −
Ω

Ω

⎛
⎝
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⎞
⎠
⎟⎟G kT lnactivation

sys
TS

sys
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(13)

or
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= =− Δ −Δ − Δ
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sys
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(14)

Equation 14 is, of course, the celebrated Arrhenius rate
equation when the left-hand side, Ωsys

TS/Ωsys
react, is interpreted as

the rate constant for the reaction. Since the idea of probabilities
has been introduced, the statement in eq 14 lends further
credence to the physical interpretation that the rate constant
within the classical regime is nothing but ratio of the probability
of finding the system at the transition state configuration and at
the reactant configuration. In addition, the form eq 14 includes
the Arrhenius pre-exponential factor, and hence when one uses
the fact that

Δ = Δ − ΔG H T Sactivation activation activation

one obtains the textbook form of the Arrhenius formula as

Ω
Ω

= =Δ − Δ − Δ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ A[e ]e eS k H kT H kTsys

TS

sys
react

( / ) ( / ) ( / )activation activation activation

(15)

and the term inside square brackets, is the Arrhenius pre-
exponential term,

= ΔA e S k( / )activation (16)

No wonder, this term is purported to be the “entropic factor”.3

The connection between the pre-exponential term and PV
diagrams can be further understood using eq 4. Furthermore,
we can readily relate the exponent in eq 14 to the area enclosed
within the PV diagrams using eq 10. In this fashion, the
(empirical) Arrhenius equation is introduced in a physically
meaningful fashion. Thus, a connection between kinetics and
thermodynamics is achieved. Now that we are equipped with
eq 14, we may go back to thermodynamics and revisit the
meaning behind spontaneity and the second law of thermo-
dynamics. Also note that eq 15 is closely related to the
celebrated Eyring equation. These subtle issues are considered
in the Appendix E (see Supporting Information). It may further
be noted that the roots for the exponential dependence of rate
in eq 15 may be directly traced to the logarithmic dependence
of entropy on the number microstates in introduced in eq 5.
It must also be understood that the concepts presented here

are among the most challenging ideas to be encountered during
the class. Hence, these ideas require reiteration across
semesters, perhaps through a reintroduction as part of upper-
level physical chemistry. However, the students’ retention of
concepts across semesters may be a concern. To alleviate such
factors, we have suggested to several honors general chemistry
students that they pursue the physical chemistry sequence soon
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after completion of general chemistry (during second year).
This mentoring has been easier to implement for students
joining research programs immediately following general
chemistry (and there are generally a good fraction of students
from the honors class that do join research programs within the
department following the honors freshman class) and this
experiment has thus far proven to be successful. However, the
long-term effectiveness of this change in the traditional
curricula sequence remains unexplored.

The Chemical Reaction Is Statistically a Rare Event

Finally, we touch upon an important message that is either
omitted or simply mentioned in passing at the undergraduate
level. The reactive process is, statistically speaking, a rare event.
This idea is illustrated using Figure 5. We spend some time to
make sure the students understand that a chemical system has
3N degrees of freedom. However, the reaction profile noted in
most textbooks is represented as a transition in just one-
dimension. Of course, the situation presented in textbooks is an
idealized situation and in general more than one degree of
freedom can be involved. However, there are still a large number
of degrees of freedom that do not lead to a reactive event. In
Figure 5, the set of all degrees of freedom that lead to a reactive

event are represented in one axis, whereas the remaining,
nonreactive, dimensions are represented in an orthogonal axis.
When a reactant is placed in its stable configuration, that is, its
potential well, there are 3N orthogonal directions for these
reactant molecules to sample. Of these 3N directions, there is
generally only a very small subset (one if you look at a chemistry
textbook and in reality, perhaps only a few more) of the degrees of
freedom that can lead to a reactive event. Because energy is
generally distributed in a random fashion, the probability of the

reaction is related to the probability of the system being present in
one of the reactive pathways. Quantum mechanically speaking,
when multiple pathways are available all of these paths will
simultaneously contribute to the process. This, along with the
previous paragraph, exposes the students to a statistical description
of reaction rates.
We find that the subject matter of the paragraph above is

generally quite challenging for most students. Hence, we construct
a real-life analogy to help the students better assimilate the concept
of rare events in reactive systems. (The pictorial representation of
such analogies is known as concept-maps32,33 in the learning
community.) Let us consider the entire class of students and let us
also assume that each student has exactly $50 in their respective
wallets. Now, one student in the front row, labeled as student A for
further discussion, feels that he or she needs to buy a television for
the dorm room. The student is aware that all the students in his
favorite class, S117, have enough resources when combined such
that if a large portion of this money (for example, $1000) were
redistributed to student A, he or she would be able to achieve the
goal of buying a television. However, such a redistribution process
is highly unlikely and hence is deemed as a rare event.
Now, if we allow for exchange of capital through collisions,

perhaps during an episode of flag football, then the likelihood
of student A achieving the goal improves. However, this may
not be a significant improvement if the games were drab and
boring due to player lethargy. However, as the energy involved
in each player (and at this juncture the word “player” is
replaced by “degrees of freedom” in our discussion) increases,
perhaps they collide more often during the football game,
which further facilitates exchange of capital and improves the
chance that student A might be able to achieve their goal.
The analogy above was presented in our Honors general

chemistry class, and it was found that the students were quite
comfortable in assimilating the concept of rare events when it
was pointed out to them that each student in the classroom, in
this example, is a metaphor for a degree of freedom in a
molecular system and exchange (or redistribution) of energy in
molecular systems occurs through collisions. Furthermore,
since energy is randomly arranged in a molecular system (for
example, $50 per degree of freedom!), the likelihood that a
large quantity of energy (or capital in the above example)
appears in one of the molecular modes is less. The number of
different ways in which energy can be arranged in a system is, of
course, related to the number of microstates defined in eqs 5
and 6, and hence, the connection between entropic factor in
chemical reactions and redistribution of energy between
molecular degrees of freedom is made. Certainly, the jovial
nature of the discussion above helps the cause to an extent and
we find that abstract notions can be easily conveyed once the
activation barrier is lowered through the use of such analogies.

■ CONCLUSIONS
We have presented a novel approach to introducing the under-
pinnings of macroscopic chemistry, namely, fundamental
thermodynamic and kinetics concepts. Specifically, the entire
realm of thermodynamics is introduced beginning from PV phase
diagrams that were originally used to conceptualize the ideal gas
laws. The discussion, while having a strong mathematical basis, is
presented in a rational, diagrammatic fashion. Ideas related to state
functions and reversibility are directly obtained from transitions
constructed on PV diagrams. These developments, in turn, allow
for a pictorial description of work, heat, entropy, and free-energy
based on the PV diagrams. Connecting the macroscopic definition

Figure 5. A reactive process is in general a rare event. The illustrated
scenario shows one dimension that leads a facile process. This
direction is implied here to be a composite direction that contains a
subset of all dimensions involved in the reaction process. The
remaining 3N − X directions (that are for clarity combined into a
single degree of freedom orthogonal to the reactive process) are
nonfacile. As energy is randomly distributed within a molecular
system, the probability of having sufficient energy along the reactive
direction is generally small. Thus, a reactive process is a rare event.
(While this figure serves as a generic example here to convey the
concept of rare events in chemical kinetics, the particular example
shown is that pertaining to a hydrogen transfer event within the catalytic
cycle for the enzyme soybean lipoxygenase-1 studied in ref 34).
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of entropy with the microscopic definition of Boltzmann entropy,
one obtains a relation between the number of microstates, or the
probabilistic interpretation of entropy, and the area enclosed
within the PV diagram.
We then proceed to introduce chemical kinetics using the

connections gathered between entropy, free energy, and the
number of available microstates. The second law is first introduced
as a byproduct of simple statistics. Following this, the fundamental
basis behind classical transition state theory is realized allowing for
a conceptually elegant description of the Arrhenius formula.
Furthermore, the connection between the rate constant and the
number of microstates responsible for entropy is established. It is
further stressed that a reactive process is a rare event, when viewed
within a statistical framework. Analogies are presented to drive
home the concept of rare events. This presentation allows the
students to fundamentally understand the connection between the
concept of probabilities of events and reaction rates.
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additional discussions on reversibility, further analysis of Figure 4
and a statement on how the entropy is to be computed from such
a figure, the physical correspondence between free energy and the
maximum possible work, an examination of ideas related to
spontaneity, treatments on chemical kinetics that connect to the
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This material is available via the Internet at http://pubs.acs.org.
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