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ABSTRACT: A first-year undergraduate course that introduces students to
chemistry through a conceptually detailed description of quantum mechanics is
outlined. Quantization as arising from the confinement of a particle is presented
and these ideas are used to introduce the reasons behind resonance, molecular
orbital theory, degeneracy of electronic states, quantum mechanical tunneling,
and band structure in solids and quantum dots.
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The nurturing of a nascent scientist during the under-
graduate years is a delicate matter. Studies indicate that

the number of students who take advanced placement (AP)
courses and examinations is growing significantly.1 Measured by
the metric of their successful completion of advanced
placement chemistry, an increasing number of students are
entering the university “well prepared”. This trend presents a
unique opportunity to attract good students to the field
beginning in the first year of undergraduate studies. Never-
theless, first-year university courses are generally perceived to
reiterate much of what the students have already learned in
high school, even if at greater depth and with more nuance.
Consequently, these courses, even honors courses, are often
underappreciated by the students. Many develop the opinion
that chemistry is boring and are drawn toward other fields. In
response to the change in student preparedness, along with
other factors, a number of approaches have been implemented.
For example, one curriculum revision has implemented an
Organic-first approach.2 In this article, we propose an alternate
approach, namely, a physically oriented course stressing the
fundamental concepts that underlie chemistry. There are two
main advantages in this approach. In a traditional curriculum,
students often first encounter quantum mechanics in their final
year. They often become lost in the mathematics and
consequently lose sight of the physical result. By presenting
chemical concepts through a quantum mechanical description
in the first year, faculty teaching the course are forced not to
rely principally on mathematics and thus can focus on how the
quantum world behaves. When students re-encounter quantum
mechanics more formally as upperclassmen, they already have
an exposure to the fundamental concepts. A second advantage

in this approach is that students who are inclined toward the
more physical side of our discipline become interested early on.
There is considerable evidence that the number of U.S.-born
students pursuing the physical sciences is declining,3 an
alarming trend for our society. A quantum principles-first
approach works to address this deficiency. In this article, an
honors introductory chemistry course that has evolved at
Indiana University over the past decade is described. It
developed organically, driven not by any grand design at
curriculum revision but by the desire of a couple of research
faculty to teach advanced concepts, fundamental to an
understanding of chemistry, at the introductory level.

■ THE STUDENT POPULATION

Students enrolling in the main general chemistry sequence are
required to take both chemistry and mathematics placement
tests. Upon the basis of their performance on these tests, a
cohort is selected. This group (approximately the upper 5%) is
invited to enroll in the honors version of introductory
chemistry, which is entitled “Principles of Chemistry and
Biochemistry”. The remaining students register for the regular
class. At an introductory meeting prior to the first scheduled
class, the professors teaching the honors class invite the
prospective students to enroll in this challenging course. At this
meeting, the faculty stress that the course will not be a rehash of
AP Chemistry. Each year approximately 48 highly motivated
students elect to enroll in the honors course. The average
mathematics SAT scores for the honors students is 736 and
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their average ACT score is 32.8. The majority of these students
have taken AP chemistry in high school and earned a score of 4
or 5 on the exam. Most of them, though not all, have had a year
of physics and a year of calculus in high school.

■ COURSE LOGISTICS
This particular general chemistry course consists of both
laboratory and lecture portions. For the lecture portion of the
course, students meet with the faculty member for three 50 min
lectures weekly. For the laboratory section of the course,
students meet with a faculty member for one 50 min lecture in
which both the theory underpinning the particular laboratory
exercise and the experimental details are described. In addition
to this interaction with the faculty member, the students are
each assigned to a discussion section. This discussion section,
which is also 50 min in duration, is conducted by a graduate
student teaching assistant. The final component of the course is
the 3-h long laboratory that the students attend weekly. During
the course, four in-term exams and a cumulative final are
administered. These exams are conducted in the evenings to
provide sufficient time for the students to demonstrate their
understanding of the material presented. Each exam is 2 h in
duration. Although a textbook is utilized in this course,4 it is
only loosely followed, as a suitable textbook has not been found
that is consistent with the organization or depth of presentation
as described below. A syllabus for this course can be found in
the Supporting Information.

■ THE PHOTOELECTRIC EFFECT AND RETARDING
POTENTIALS: AN EXAMPLE THAT CONVEYS THE
NEED FOR A QUANTUM MECHANICAL THEORY

We begin the course by describing the fundamental experi-
ments conducted at the onset of the 20th century that shattered
the classical interpretation of the world around us. Although the
students may have heard of some of these experiments such as
the photoelectric effect and the interference patterns obtained
in classical water waves as part of high school, they have not yet
been exposed to others such as blackbody radiation and the
ultraviolet catastrophe. From the outset, the depth of detail and
level of understanding expected of the students is stressed.
Over the years, experience demonstrates that although almost
all the students in the class have learned about the photoelectric
effect, this generally means they have memorized the results of
the experiment and the conclusions deduced. This course is
differentiated from their high school experience by a detailed
description of the experiment. Consequently, students are
introduced to the concept of a retarding potential. The concept

of using a retarding potential to measure the kinetic energy of a
particle is new to all the students. To convey the concept, the
classical analog of a ball rolling up a ramp is used. As shown in
Figure 1, the students learn that measurement of the
dependence of the maximum kinetic energy of the ejected
electron on the frequency of the incident light yields a linear
relation. This introduces them to not only to Planck’s constant
(the slope of the plot in Figure 1) but also the idea of the work
function, which binds the electron in the metal. Finally, by
showing that the retarding potential is not a continuous
function of the applied frequency, discrete states (and hence
quantization) is introduced as an experimentally observed
result.
One key aspect of the lectures on the photoelectric effect is

making students comfortable in moving between plots,
equations, and words, all different communication modes to
describe the results of the experiment. Practicing scientists
employ all these modes of communication to a greater or lesser
extent and it is important that students become familiar with
these different means of communication early in their
undergraduate experience.

■ CONFINING A PARTICLE IN ONE DIMENSION

Although many advanced texts used for general chemistry
explicitly solve Schrodinger’s equation for the particle in the
infinite square well,4 few focus on why the particle’s behavior
changes. Students are typically puzzled as to what the physical
significance of the box is and why the particle “moving in the
box” should behave as a standing wave. Although they follow
the mathematics presented, the implications of the result elude
them (Figure 2). Many wonder what the wave function is. Some
mistakenly think that the wave function is simply the square root of
the probability and that the probability is the fundamental
quantity. A common source of confusion is: How does the
particle travel from the left half of the box to the right half in
the first excited state if there is a node in the middle? This
critical point is addressed in class by presenting an analogy
between the quantum mechanical wave function and classical
water waves. It is stressed that the particle depicted by the wave
function is simultaneously present on both sides of the box, just
as is the case for water at various points on a classical wavefront.
The students further recognize from the mathematics that the
energy is quantized, but why? In this course it is discussed in
detail how it is the behavior of the wave at the boundaries of
the box (boundary conditions) that results in quantization. It is
further inferred that quantization, zero-point energy, and the
uncertainty principle are all a direct consequence of physical

Figure 1. Cartoon illustrating the experimental setup of the photoelectric effect. By using retarding potentials, the dependence of the maximum
kinetic energy of the ejected electron on the frequency of the incident light is established. A classical depiction of a retarding potential is included.
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confinement. This also leads the students to understand how
the difference between energy levels is related to the extent of
confinement (that is size of the box or spatial region where the
particle is to be retained). The latter concept is particularly
exciting, as a connection is then made to resonance, as
discussed below.
During the course of presentation, it is emphasized that the

wave function is a more fundamental quantity than the
probability because the wave function has a sign (or a phase
that can sometimes arise from a complex number) whereas the
probability does not. This latter fact is easily illustrated to the
students by asking them the question: “Which of the two
following statements has more information? A number is minus
four or the square of a number is sixteen.” Appreciating the
fundamental nature of the wave function is crucial not only for
understanding how waves constructively and destructively
interfere in molecules to make bonds but in understanding
the atomic and molecular transitions involved in spectroscopy.
From these lectures, the students are exposed to the basic
concept that it is the confinement of the particle-in-the-box that
leads to quantization. They learn that the confinement in one
dimension results in one quantum number and that confine-
ment results in a zero-point energy (and hence uncertainty
between position and momentum), which cannot be removed
from the particle. All these points are taught with appropriate
drawings as well as with numerical formulas to stress their
interdependence.
Having set the abstract tone with these discussions, it is then

stressed that several important concepts in chemistry can be
clearly understood from these ideas. Three such ideas are
presented, namely, resonance states in conjugated polyenes,
molecular orbital theory, and band structure in solids and in
quantum dots. These ideas are presented by invoking concepts

learned during the treatment of the particle confined within a
one-dimensional box.

■ RESONANCE
Although the phenomenon of resonance stabilization in
conjugated polyenes will be presented to students in their
organic chemistry course as they study aromatic molecules,
their background of the particle-in-the-box presents a wonder-
ful opportunity to convey the fundamental basis for resonance
stabilization. As indicated in Figure 3, the four π electrons in

the conjugated diene can either exist localized in two separate
double bonds (that is two separate boxes) or can exist
delocalized over the entire molecule (one larger box). The
benefit of delocalization is that the box is bigger than if the
electrons are confined to being just between two atoms. (By
this time, the students have already been exposed to the
dependence of zero-point energy and the spacing between
energy levels on box-size, this connection is exploited to
reinforce the concept of resonance stabilization.) The benefit of
the electron wave function spreading out over the molecule can
be appreciated by comparing the two scenarios. For the
localized situation one has:
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where the factor of 2 for each term arises from that fact that
there are two electrons occupying each energy level. In
contrast, for the delocalized situation one has:
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Because (10/9) < 4, clearly the delocalized configuration
corresponds to a lower-energy configuration and is more stable!
This basic fact of the stabilization of the wave function by
spreading out over a larger box is the fundamental factor
driving of all resonance in molecules. (Also see refs 5 and 6 for
an interesting discussion on the topic of resonance.)
Box 1 contains two questions given during an exam. Clearly

the questions gauge the understanding of the concepts involved
in resonance stabilization. It is, however, useful to note that
these concepts are not only accessible to the honors level
students, but also to many in the broader first-year general
chemistry class. To illustrate this, the performance of students
for similar questions in the general chemistry class that is
accessible to all students has been tracked. Their performance is
presented in Figure 4. Clearly evident is that their performance
in these questions is reasonably good indicating their

Figure 2. Behavior of a particle confined to an infinite square well. The
infinitely high, infinitely repulsive, and infinitely thick walls result in
the requirement that the wave function is exactly zero at the walls.
Solution of Schrodinger’s equation with this boundary condition
reveals that the wave function must be an integer number of half-sine
waves with the quantized energies indicated above. It should be noted
that there are two vertical scales displayed in the figure. The energy
scale indicates the potential energy in the different regions and the
relative placement of the two wave functions. For a given wave
function, the amplitude of the wave function is indicated by the second
vertical scale designated ψ(x).

Figure 3. Schematic diagram illustrating localization and delocalization
of π electrons in a conjugated diene.
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comprehension of the material presented. Apparently, this is
one of the more popular concepts and one that the students are
able to assimilate to a very large degree.

■ BONDING AND ANTIBONDING ORBITALS IN
MOLECULAR ORBITAL THEORY AS A DIRECT
CONSEQUENCE OF INTERFERENCE OF WAVES

In teaching this course for a decade, it is apparent that students
arrive from high school with a good understanding of the rules
for drawing Lewis dot structures and VSEPR. Though these
concepts are reiterated briefly, we concentrate on a more

advanced understanding of bonding, namely, the constructive
and destructive interference of the wave function that is the
basis of molecular orbital theory. Depicted in Figure 5 is the
situation of two hydrogen atoms approaching each other. How
do the two wave functions for the two electrons (represented
by boxes in the figure) add? It is clear that addition of the
overlapping waves leads to an increase in the amplitude. The
increased amplitude corresponds to an increased probability for
the electron being located between the two hydrogen nuclei.
Thus, the electrons reduce the Coulomb repulsion of the two
nuclei from each other. On the other hand, subtraction (180°
out-of-phase addition) leads to a node between the two nuclei.
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Both situations exist. The lack of electron density between the
two nuclei means that there is more Coulomb repulsion
between the two nuclei than when there is no node.
Consequently, the configuration with a node is higher in
energy than when there is no node. This simple illustration
perfectly illustrates the existence of bonding and antibonding
orbitals and the relative energies of the σ1s and σ1s* molecular
orbitals for H2.
Although the students generally understand these concepts,

one of the questions that remain in their minds is why do the
atomic s and p orbitals only add and subtract with each other to
create the new (bonding and antibonding) orbitals that belong
to the molecule? To understand this tricky point, it is necessary
to reiterate that waves interfere either constructively or
destructively. Constructive interference of the atomic s and p
orbitals yields a bonding molecular orbital, whereas destructive
interference of the same atomic orbitals leads to antibonding
orbitals. Petersen and co-workers7 provide a lab-based
alternative to teach molecular orbital theory using computa-
tional chemistry. Pritchard8 presents the current situation in

teaching the concept of bonding and suggests that an IUPAC
committee be formed to review the teaching of this important
concept. Our goal here was to provide a conceptual basis for
the topic.

■ DIMENSIONALITY, SEPARABILITY, SYMMETRY,
AND DEGENERACY

With the concept of the one-dimensional infinite box firmly
established, along with illustrations on resonance, molecular
orbital theory and band structure (see below), the discussion is
extended to the two-dimensional box. Unfortunately, this topic
is often not discussed in most texts or else it is relegated to a
homework problem. However, extending the 1D box to two
dimensions is incredibly useful to illustrate the role of
symmetry on degeneracy. Consider a particle of mass m
allowed to “move” freely within a box with length Lx in the x
direction and Ly in the y direction as indicated in Figure 6.

Without any mathematics it is easy to justify that if the motion
in the two dimensions is independent (uncorrelated), then the
energy of the particle should be given by:
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and the wave function should be the product of the 1D wave
functions. Though initially puzzled as to why the wave function
ψxy = ψxψy, the students are able to understand it when asked
about the probability of achieving two heads on successive coin
tosses. They all recognize that for two independent coin tosses
the probability of achieving two heads is the product of the
probability of achieving a head on an individual toss. Because
probability is the square of the wave function, if the probability
associated with independent events is multiplicative, then wave
functions should also be multiplicative. The link between
independent motion and the nature of the wave function
established for the 2D box is also useful later in the course
when discussing the separability of the hydrogen wave function.
Separability is inextricably linked to independence. Exposure of
the students to the case of the 2D box also allows us to connect
degeneracy with symmetry. It is trivial to demonstrate from the
formula above that when Lx = Ly, degeneracy results, that is, the
states with n = 1, k = 2 and n = 2, k = 1 have the same energy.
Of course this is not the only type of degeneracy possible. What
if Ly = 2Lx? The students quickly appreciate that degeneracy, a
measurable quantity, always teaches us about the symmetry of

Figure 4. The concepts described in this work, slightly modified, have
also been taught to the students in the main sequence course. We
evaluated their understanding of the concepts of the stabilization
energy that occurs due to delocalization in polyenes (blue histogram)
and the concept of wave addition as the underpinning of MO theory
(red histogram). The number of students in each of the three
semesters ranged from a low of 418 in 2006 to a high of 491 in 2008.

Figure 5. Constructive and destructive addition of “box” electron wave
fuctions. A node results between the two atoms due to cancellation of
the wave functions in the case of ψ1 − ψ2.

Figure 6. Illustration of how independent motion of a particle in a
symmetric potential (box) results in degeneracy. The measurement of
degeneracy thus provides insight into a symmetry of the confining
potential.
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the box (potential that confines the particle). This connection
is a fundamental concept often not presented at the
undergraduate level.

■ ANOTHER BOX, THE HYDROGEN ATOM

One of the central concepts encountered in any general
chemistry course is the hydrogen atom. Explicitly solving
Schrodinger’s equation for the hydrogen atom is beyond the
mathematical ability for even the talented first-year students in
an honors course. Nevertheless, building on what the students
have already learned, quite a bit can be done beyond the
standard treatment of the topic. First and foremost, the
students are confronted with the realization that the hydrogen
atom is simply a situation where the electron is confined by a
different type of box. The Coulomb attraction of the electron to
the nucleus results in attractive potential that falls off inversely
with the distance, r, between the nucleus and the electron. This
1/r potential binds the electron within the atom. For this “box”
one must therefore solve Schrodinger’s equation resulting in
the wave function, ψ, and eigenenergies, E. As the shape of the
box is different from the one-dimensional square well, one does
not expect that the solutions (wave functions and energies)
should be the same as those in the case of the one-dimensional
infinite square well previously studied. Given the symmetry of
the potential, it is apparent to the students that it makes sense
to express V(x,y,z) in terms of the spherical coordinates (r,θ,
and ϕ). When posed the question “How many quantum
numbers do you expect for the electron confined in the
hydrogen atom?”, students are conflicted. Based upon what
they have learned in the course, half the students reason
correctly that as the electron is confined in three spatial
dimensions one would expect to find three quantum numbers
(labeled n, , and m ). Yet all the students know from their high
school course that the electron in the hydrogen atom is
characterized by four quantum numbers. How can they resolve
this apparent conflict? Because quantum numbers arise from
confinement, what other quantity is being confined? We explain
to the students that it is confinement in time that causes the
intrinsic spin of the electron.9 It was only with the relativistic
treatment of quantum mechanics by P.A. M. Dirac that the spin
of the electron was realized.

■ BAND STRUCTURE IN SOLIDS AND QUANTUM
DOTS

Using the concepts gleaned from one-dimensional confine-
ment, molecular orbital theory and the hydrogen atom, the
students are now in a position to tackle band-structure in solids
and quantum dots. The primary concept here is the fact that a
greater degree of spatial “overlap” between waves, or wave
functions, yields greater interference between these waves;
interference between these waves is always constructive
(bonding) and destructive (antibonding). For example,
consider a one-dimensional lattice of atoms. The overlapping
1/r potentials for adjacent atoms results in the periodic
potential energy diagram shown in Figure 7. In this case, the
quantity r represents the distance between an electron and the
nucleus of an individual atom. For the orbitals buried deep
inside the Coulomb well (the atomic core energy levels), the
overlap between orbitals (wave functions) localized on
neighboring atoms is small. This leads to a lesser degree of
interference between these atomic waves on neighboring atoms.
For orbitals closer to the top of the potential, on the other

hand, the overlap is greater leading to larger interference. Such
interference leads to a combination of bonding and antibonding
orbitals. These “interfered orbitals” yield a “band of orbitals”
due to the closeness in energy of the corresponding bonding
and antibonding counterparts. The relative energetic spread of
these bands is directly related to the extent of overlap, and
hence interference, between the atomic orbitals on neighboring
atomic centers. Note, for example, that the spread of the
continuum band corresponding to overlap between neighbor-
ing 3s and 3p orbitals is much greater than for the core 1s
orbitals. This is due to the greater overlap and great
interference between neighboring atomic 3s and 3p orbitals.
In addition, in the energetic regime corresponding to the

atomic 1s orbitals, the confining potential is deep and hence in
this region the wave functions are strongly bounded. What
about the energetic regime corresponding to the 3s and 3p
orbitals? In this region, which lies above the overlapping 1/r
potentials, the electron is not confined or bounded by the
adjacent atoms. The wave function can spread out, that is,
delocalized. That is the orbitals created after interference have a
greater degree of delocalization in this case. This scenario is
similar to the situation within a large box where the confining
potential is relatively weak.
The distinction between metals, semiconductors, and

insulators comes about when the difference between energies
of the occupied and unoccupied bands of orbitals is small or
large with respect to room temperature. Following this
presentation, the students are in a position to grasp the ideas
and distinctions between semiconductors and metals.
Quantum dots are introduced as solids-chunks that are

additionally confined by an infinite particle-in-a-box potential;
that is, boundary conditions of confinement, similar to those
seen in particle-in-a-box, are introduced over and above the
band structure obtained from the periodic potential illustrated
above. The connections to the particle-in-a-box are utilized to

Figure 7. Potential energy diagram for a one-dimensional lattice of Na
atoms. The overlapping 1/r potentials for each atom produce the
indicated potential. The periodic, attractive potential energy
experienced by the electrons due to the periodic lattice arrangement
of nuclei is shown using the solid lines. The gray and light red boxes
represent the band of orbitals formed due to interference between
neighboring atomic orbitals that are listed on the left. The gray band
represents orbitals that are occupied whereas the light red band
represents unoccupied orbitals. Each band contains a combination of
constructive (bonding) and destructive (antibonding) “interfered”
orbitals.
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qualitatively understand trends in the functional dependence of
absorption frequency to nanoparticle size.

■ THE HARMONIC OSCILLATOR AND THE
INTERATOMIC POTENTIAL

In a typical honors first-year course, students are unquestion-
ably introduced to the interatomic potential. By teaching
students about the harmonic oscillator first, one is positioned to
explore the differences encountered in the asymmetric, finite
potential of the interatomic potential as compared to the
infinite, symmetric harmonic oscillator. The students have little
difficulty in relating to the concept of the classical oscillator as
depicted in Figure 8. They also appreciate that due to the

confinement in one dimension one should expect quantization
with one quantum number. Most students can correctly sketch
the wave function with the number of nodes increasing as the
energy increases. The students are told that for a particle of
mass m, the expression for the eigenenergies is:

ω ω= + ℏ = =⎜ ⎟
⎛
⎝

⎞
⎠E n n

k
m

1
2

where 0, 1, 2, 3, ... andn

with the strength of the spring (curvature of the parabola)
given by k. For this infinite harmonic oscillator, it can be seen
that the adjacent energy levels are evenly spaced apart by ΔE =
ℏω.
The students are then engaged to realize that for the

interatomic potential shown in Figure 9, the minimum of the

potential resembles the harmonic oscillator just discussed. How
though does the top of the potential differ? The finiteness and
asymmetry of the potential are apparent and inevitably the
students realize that the wider potential must result in quantum
states that are more closely spaced as the energy (quantum
number) increases. The finiteness of the potential means that
for large internuclear separation the wave function is not
confined (bounded). This lack of boundedness means that
bonds can break and that chemical reactions can occur.

■ THE TREATMENT OF MORE ADVANCED
CONCEPTS AT THE FIRST-YEAR UNDERGRADUATE
LEVEL: CASE STUDY ON THE CONSEQUENCES
FROM TREATMENT OF A FINITE CONFINING BOX,
NEGATIVE KINETIC ENERGIES, IMAGINARY
MOMENTA, AND TUNNELING

In the above analysis, it has been shown how subtle features
from quantum mechanics, such as wave interference, play a
direct role on (a) the creation of bonding and antibonding
energy levels and (b) the presence of continuum bands in
solids. In addition, the treatment of particle-in-a-box yields a
conceptually elegant and complete treatment of resonance in
delocalized systems. In this section, the discussion is expanded
to include how the treatment of finite box potentials leads to
one of several vagaries of quantum mechanics, namely,
quantum mechanical tunneling. As usual, the focus here is on
the conceptual understanding of these ideas, without being
confounded by the mathematics that may be challenging to
some. However, it should be noted at the outset that, thus far,
this has only be presented at the honors level.
Before delving into these “quantum-eccentricities”, their

significance to chemistry was highlighted. There are several
areas of chemistry where these anomalies disconcertingly
manifest themselves. For example, α-particle decay is one of
the first instances where this was noted.10 The large
dependence of the alpha decay half-lives on decay energy
occurs only because the α particle tunnels through a finite
barrier. In addition, several hydrogen transfer reactions in
physical organic chemistry11,12 display anomalous primary or
secondary isotope effects; these are now believed to result from
quantum mechanical tunneling. The umbrella inversion of an
ammonia molecule is another example where significant
population transfer occurs under the barrier and forms the
basis for the ammonia maser.13 Scanning tunneling microscopy
(which the students are exposed to as part of the laboratory
section of the honors course, a lab syllabus may be found in
Supporting Information) is yet another example where
tunneling is significant.
The fundamental definition of quantum-mechanical tunnel-

ing comes about from the following discussion. Consider a
particle moving inside a binding potential. At any given
temperature, the particle has high velocity at the minimum of
the potential. As the particle starts to traverse higher regions of
the potential, its kinetic energy decreases, and one reaches a
point in the high potential region where the kinetic energy
becomes zero. This point is the classical turning point; that is,
this is the point where the classical particle decides that it needs
to turn around. However, the quantum mechanical particle,
being eccentric, keeps going further! As it goes further, the
particle tunnels through the barrier. A finite box potential is
used to illustrate this concept.

Figure 8. The potential energy diagram for a harmonic oscillator.
Shown at left is the physical situation of the classical oscillator.

Figure 9. Variation of potential energy with separation distance
between two atoms (interatomic potential). The bottom of the
potential is well described by a harmonic oscillator.
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Imagine the situation shown in Figure 10. A particle of mass
m in region 1 has a kinetic energy, K, which is greater than the

potential energy, V. In this region the particle has a total energy
E = K + V. Because

= =K mv
p
m

1
2 2

2
2

with p being the particle momentum, the momentum can be
expressed as

=p mK2

Consequently, the particle’s de Broglie wavelength is

λ = =h
p

h
mK2

Because the mass m > 0 and K > 0, then λ > 0.
Now what happens when the particle enters region II? Its

potential energy is zero in this region. Because its total energy is
conserved, it remains the same as it was in region I. Thus, the
particle’s kinetic energy, K, must increase over what it was in
region 1 which means that the de Broglie wavelength of the
particle must decrease. (See equation above.) In region III the
particle’s wavelength returns to the original value it had in
region I.
Next, consider a particle confined in region II. It has no

potential energy in this region. Its total energy is simply its
kinetic energy, which is less that the potential energy, V, at the
walls. Because it has K > 0, it has a finite de Broglie wavelength.
How does the particle behave in region I (or region III)? In the
case of the infinite box, the particle cannot exist within the wall.
However, in the case of the finite box, it can! Because the total
energy of the particle must be conserved, and because E < V,
there must be another form of energy (kinetic energy!) that
needs to be added to (or subtracted from!) V to obtain
conserved energy, E. It is, thus, clear that K < 0 in regions I and

III. The particle, thus, has a negative kinetic energy in regions I
and III! Because momentum is proportional to the square root
of the kinetic energy (see above), it implies that the particle has
an imaginary momentum and consequently an imaginary
wavelength. Although the students have encountered imaginary
numbers in mathematics in high school, they have not learned
of physical situations requiring imaginary numbers. This lends
further credence to the notion that advanced mathematical
ideas have a significant role in scientific endeavors.

But What Does Imaginary Wavelength Really Mean? Is It
Really a Wave or Is It Something Else?

To address this question, the Schrodinger equation used for the
infinite square well (particle in a box) problem was revisited
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Based on their high school calculus, students recognize that the
solution is

ψ = =
ℏ

⎜ ⎟
⎛
⎝

⎞
⎠x a

ip
( ) e whereax

which is an exponential decay function inside the barrier
(regions I and III). In these regions V > E, which means (V −
E) > 0, and consequently quantity, ip is real. Hence, the
momentum p (and wavelength) is imaginary under the barrier.
However, when V < E (above the barrier), p is real, the

solution then is ψ(x) = e[ip/ℏ]x. How does one reconcile this
new realization with the result earlier in the course that the
wave function for the particle in the infinite square well is an
integer number of half-sine waves, namely,

ψ π= ⎜ ⎟
⎛
⎝

⎞
⎠x

L
n x

L
( )

2
sin

The answer lies in the Euler relations. Consequently, on-the-fly,
the students can be exposed, albeit briefly, to the idea that
“advanced” mathematics (imaginary numbers!) is used in
chemistry and enable them to make a connection in the
process.
To conclude, the physical consequence of this situation is

that the wave function under the finite barrier is an exponential
decay; it is not zero. This means that there is a probability for
the wave function to exist in this classically forbidden region.
This result is not just an abstract concept. All of the students
have learned in high school of the spontaneous emission of α
particles (4He nuclei) from radioactive ores. They are surprised
to learn that α decay only occurs because of quantum
mechanical tunneling. However, α decay is not the only
occurrence of quantum tunneling. As previously stated,
isomerization reactions at low temperatures and several
hydrogen transfer reactions in physical organic chemistry
provide other examples.

Figure 10. Behavior of a wave above and inside a finite square well.
When confined to a finite square well, a particle has a finite probability
of penetrating inside the wall, the phenomenon of quantum tunneling.
For the wave function above the finite well, the kinetic energy is
indicated by the light horizontal gray line. The variation of the wave
function from this horizontal line reflects the amplitude of the wave as
a function of position and not a change in its energy. The lower wave
function in the figure has a smaller kinetic energy. Its amplitude as a
function of position is displayed by the blue curve. The labeling of the
kinetic energy, K, applies to region I and region III. In region II, as V =
0, K is positive.
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■ SUMMARY
We have developed a first-year undergraduate honors course
that teaches students fundamental quantum concepts that
underlie chemistry and biochemistry. This material is presented
in a manner that is intrinsically different from the mathemati-
cally intensive route typically encountered in an upper-level
undergraduate course. Introducing the concepts in this way
allows us to focus on the physical situation rather than the
mathematics. This approach clearly establishes a high level of
intellectual engagement of the students with the subject matter.
Despite the rigor of the course, many students, not only upon
finishing the course but later in their undergraduate experience,
comment favorably on their experience and what they learned.
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