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ABSTRACT: We recently developed two fragment based ab
initio molecular dynamics methods, and in this publication we
have demonstrated both approaches by constructing efficient
classical trajectories in agreement with trajectories obtained
from “on-the-fly” CCSD. The dynamics trajectories are obtained
using both Born−Oppenheimer and extended Lagrangian
(Car−Parrinello-style) options, and hence, here, for the first
time, we present Car−Parrinello-like AIMD trajectories that are
accurate to the CCSD level of post-Hartree−Fock theory. The
specific extended Lagrangian implementation used here is a
generalization to atom-centered density matrix propagation
(ADMP) that provides post-Hartree−Fock accuracy, and hence
the new method is abbreviated as ADMP-pHF; whereas the Born−Oppenheimer version is called frag-BOMD. The
fragmentation methodology is based on a set-theoretic, inclusion-exclusion principle based generalization of the well-known
ONIOM method. Thus, the fragmentation scheme contains multiple overlapping “model” systems, and overcounting is
compensated through the inclusion-exclusion principle. The energy functional thus obtained is used to construct Born−
Oppenheimer forces (frag-BOMD) and is also embedded within an extended Lagrangian (ADMP-pHF). The dynamics is tested
by computing structural and vibrational properties for protonated water clusters. The frag-BOMD trajectories yield structural and
vibrational properties in excellent agreement with full CCSD-based “on-the-fly” BOMD trajectories, at a small fraction of the
cost. The asymptotic (large system) computational scaling of both frag-BOMD and ADMP-pHF is inferred as N( )3.5 , for on-
the-fly CCSD accuracy. The extended Lagrangian implementation, ADMP-pHF, also provides structural features in excellent
agreement with full “on-the-fly” CCSD calculations, but the dynamical frequencies are slightly red-shifted. Furthermore, we study
the behavior of ADMP-pHF as a function of the electronic inertia tensor and find a monotonic improvement in the red-shift as
we reduce the electronic inertia. In all cases a uniform spectral scaling factor, that in our preliminary studies appears to be
independent of system and independent of level of theory (same scaling factor for both MP2 and CCSD implementations
ADMP-pHF and for ADMP DFT), improves on agreement between ADMP-pHF and full CCSD calculations. Hence, we believe
both frag-BOMD and ADMP-pHF will find significant utility in modeling complex systems. The computational power of frag-
BOMD and ADMP-pHF is demonstrated through preliminary studies on a much larger protonated 21-water cluster, for which
AIMD trajectories with “on-the-fly” CCSD are not feasible.

I. INTRODUCTION

Ab initio molecular dynamics (AIMD)1,2 is a central tool in the
study of reactive processes and is used, for example, to compute
vibrational spectral properties beyond harmonic approximation
and for biochemical studies when these methods are combined
with hybrid (QM/MM and QM/QM) calculations. Here, the
instantaneous electronic energy and forces determine nuclear
motion, and hence AIMD is much more computationally
intensive compared to force-field based, empirical molecular
dynamics and electronic structure applications such as
geometry optimization and frequency calculations. As a result,
AIMD methods are restricted in their applications, and, apart
from the case for a few small to medium sized systems where

one can afford post-Hartree−Fock studies, most are typically
based on “on-the-fly” DFT.3−7 Unfortunately, despite the large
volume of literature on DFT based electronic structure, the
method is still restricted in many ways,8−10 and post-Hartree−
Fock methods such as coupled cluster and MP2 are desirable
but clearly beyond existing capabilities.
One alternative to this dilemma has recently emerged in the

literature through the advent of fragment based electronic
structure methods.11−32 Details can be found in several review
articles.33−37 Essentially there are two related sets of ideas here:
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In one case a system is subdivided into fragments, and the
overall energy and properties are computed by assembling the
results from individual fragment calculations. The second idea
is based on many-body expansion, where the overall energy is
written as a combination of one-body, two-body, and higher
order interaction terms when necessary. In both cases,
overlapping fragments have been shown to be treated in a
consistent manner, and computational advantages obviously
arise from the need to only compute fragments of the full
system at higher levels of electronic structure theory. These
methods have been used to compute a number of structural
parameters that are in agreement with high level electronic
structure treatment.
While there have been some efforts to combine these

methods with dynamics,29,30,39−41 in recent publications,38,42

we have developed a method that utilizes fragment based
electronic energy and gradients to compute the on-the-fly
electronic energy and gradients required during AIMD. The
approach has both Born−Oppenheimer dynamics42 and
extended Lagrangian38 flavors and has also been shown to
provide good quality potential surfaces.42 It has been
demonstrated through the study of small to medium sized
protonated water clusters and polypeptide fragments with
accuracy comparison of structural distribution functions and
dynamical time-correlation functions with more expensive post-
Hartree−Fock calculations, and the agreement is near perfect!
(See Figure 1.) The approach is part of a C++ module of
computer programs that work in parallel through a
combination of MPI and OpenMP protocols that invoke
electronic structure packages. While the current implementa-
tion invokes the Gaussian series of electronic structure
programs, we are also developing a new platform that will
allow the simultaneous utilization of multiple electronic
structure codes within a single dynamics calculation.
In this publication we show that the approach can be used to

compute accurate coupled cluster trajectories at very low cost.
We compute ab initio molecular dynamics trajectories for the
protonated water clusters, H9O4

+ and H13O6
+, and obtain

vibrational properties for these systems. For H9O4
+ we also

compute the AIMD trajectories with “on-the-fly” CCSD
calculations of energy and forces, and these calculations are
extremely demanding. The agreement with the fragment-based
calculations is very good as will be seen later in this
publications, and as expected the computational cost is
negligible compared to the full calculation (which, in general,
is prohibitive). Funneling from this agreement, we compute

fragment based CCSD calculations for the larger protonated
water cluster where the full CCSD calculations are impossible
to compute in a dynamical fashion. This system is chosen to
demonstrate the power of potential application from this
approach, but the general choice of systems, protonated water
clusters, is particularly significant. These systems have proven a
great challenge to theory in terms of obtaining vibrational
characteristics.43−50 This has been thought to be due to the
following: (a) the anharmonicity of the proton stretch leads to
nontrivial and unexpected coupling between the harmonic
states that has led to discrepancies in the past between the
measured and high-level computed spectra,51−54 and (b), as a
result of point (a), the shared proton tends to have a
delocalized distribution function, that may require quantum
nuclear treatment,55−57 although ab initio molecular dynamics
has been useful in modeling the behavior of such shared H/D
hydrogen bonded systems.54

The paper is organized as follows: In Section II, accompanied
by the Supporting Information, we present a brief overview of
the theoretical formalism with details in refs 38 and 42. Results
are provided in Section III. Specifically, the stability of the
dynamics simulations is discussed in Section III; structural
distribution functions computed from all dynamics trajectories
are presented in Section IIIA, and vibrational density of states is
provided in Section IIIB. Computational efficiency and
implementational aspects are discussed in Section IIA and
Section IV followed by conclusions in Section V.

II. FRAGMENT BASED AB INITIO MOLECULAR
DYNAMICS: BORN-OPPENHEIMER AND EXTENDED
LAGRANGIAN IMPLEMENTATIONS

Our fragment based AIMD procedure has been discussed in
previous publications38,42, and the key aspects are presented
here. A system may be partitioned into overlapping regions as
shown in Figure 2, and the overall molecular energy
expression42 is assembled in accordance with the set-theoretic
principle of inclusion-exclusion58 as
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That is, as illustrated in Figure 2, the energy is first computed at
a lower level of theory, and this energy is represented in eq 1 as
Elow(0). The energy is then corrected for every possible

Figure 1. Vibrational density of states computed from dynamics trajectories at 150 K for H13O6
+. Two different spectral ranges are shown, and the

agreement is highlighted through gray arrows. See ref 38.
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molecular fragment where the extrapolation term, i( ), for two
levels of theory is defined as

= −i E i E i( ) ( ) ( )high low (2)

Thus, the fragment contributions to Elow(0) are improved by
adding in the difference between the energy at a higher level of
theory, Ehigh(i), and the lower level of theory, Elow(i). This idea
for extrapolation is based on the well-known ONIOM
scheme12 but is generalized using the set-theoretic inclusion-
exclusion (PIE) principle. As a result, the expression in eq 1 is
abbreviated as EPIE−ONIOM. Similarly, the term ∩i j( )
extrapolates the energy for fragment (i∩j) that is obtained
from the intersection of fragment numbers, i and j. As is
evident, each fragment is treated at two levels of theory, and the
entire system (the zeroth fragment) is only considered at the
lowest level of theory. The approach may be generalized to
more levels as outlined in ref 42, but this generalization is not
considered here.
A powerful feature of our approach is that the identity of the

overlapping fragments is evaluated using a bit-manipulation
algorithm42 that reconfigures the fragments during dynamics.
Fragment identities are stored as bits in a large integer, and all
possible sets of fragments are computed using a sequence of
bit-shifting, bitwise symmetric ORs and two’s complement
operations,42 and overlapping regions between fragments are
computed using binary AND operations. The use of bitwise
arithmetic improves efficiency tremendously in this otherwise
exponential scaling bottleneck, but a large integer library is
necessary for large systems. When recomputing the fragment
definition is not required, as might be the case for several
bonded systems, a user defined fragment topology is retained
all through dynamics. Problems associated with dynamical
fragmentation are not considered in this publication.41,59,60

Another important feature that is already present in eq 1 and
needs emphasis is that Elow(0), Elow(i), and Ehigh(i) can refer to
two different levels of theories, two different basis sets for the
same level of theory (thus treating on-the-fly basis set
extrapolation), or two different numerical approximations for
the same level of theory. The ideas presented below are
independent of these choices, and such choices have been
explored by the ONIOM community, which the fragment-
based extrapolation method here is based on. Furthermore,
more levels can also be included in the treatment42 in an
adaptive fashion, but these aspects are not considered in this
publication. Here we are concerned with providing “on-the-fly”
CCSD accuracy at low computational cost.
From the energy expression in eq 1 one can write equations

of motion for the nuclei using gradients, and conservative,
accurate Born−Oppenheimer dynamics based on this idea has
been achieved in refs38 and 42. However, for large systems the

computational expense may be dictated by the calculation of
Elow(0). Thus, in ref 38 the electronic degrees of freedom that
influence Elow(0) are directly propagated using an extended
Lagrangian formalism for cases where Elow(0) is obtained from
a single particle formalism, such as Hartree−Fock or DFT. In
this method, the system is retained in its ground electronic state
through a Car−Parrinello-style dynamics of the single-particle
electronic density matrix propagated in-step with the nuclei. As
such, a fully converged SCF at each step is then avoided during
the calculation of Elow(0). The Hamiltonian that governs such a
dynamics is given by
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and the associated Lagrangian obtained from a Legendre
transform61 is
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where the quantities, R, V, and M are the nuclear coordinates,
velocities, and mass respectively, and the single particle density
matrix, Plow,0, which determines Elow(0) (the first term in eq 1),
has fictitious inertia tensor μlow,0 and velocity Wlow,0. The
quantity Λlow,0 is a Lagrangian multiplier that maintains the N-
representability of Plow,0. The energy functional in eq 1 is thus
augmented here through propagation of Plow,0 which leads to
the additional dependence, Elow(0) ≡ Elow(0,Plow,0). Since we
use the single-particle density matrix as a dynamical variable,
represented using an atom-centered Gaussian basis set, this idea
is along the lines of the atom-centered density matrix
(ADMP)62−65 formalism but with post-Hartree−Fock theory
as afforded through the use of the composite energy functional
in eq 1. As a result, the dynamical approach derived from eqs 3
and 4 is called ADMP-pHF. The corresponding Euler−
Lagrange equations of motion are derived in ref 38 along
with the demonstration of conservative, accurate, and efficient
ab initio molecular dynamics. (Born−Oppenheimer dynamics
trajectories directly constructed using the energy expressed in
eq 1 are referred to as frag-BOMD.) The associated equations
of motion in each case are integrated using the velocity Verlet
algorithm.66 The equations of motion, nuclear, and density
matrix forces, including additional terms to nuclear forces
arising in ADMP-pHF due to nonconvergence of Plow,0, are all
described in ref 38 and are also summarized for completeness
in the Supporting Information. The fictitious inertia tensor for
valence electrons is fixed at a specific scalar value, μvalence, and
core orbitals are weighted using μvalence and diagonal elements
of the single-particle Fock matrix, Flow,0, which determines
Elow(0).

62,63 Specifically the elements of μlow,0 are represented
using a diagonal mass-weighting matrix, Alow,0, with elements
defined as
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Figure 2. Illustration of the energy expression in eq 1.
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μ μ≡ Alow 0low,0 valence , (6)

where Flow,0
ii are diagonal elements of the Fock matrix

representing Elow(0). This setup has been widely used for
many single particle ADMP applications42,51−54,64,67−76 and for
ADMP-pHF in ref 38. Other options for the fictitious inertia
tensor are possible but are not tested here. As seen from the
Supporting Information, the ADMP-pHF nuclear forces have
additional terms that depend on the commutator [Plow,0,Flow,0],
and these correct for the fact that Plow,0 is propagated as
highlighted above, as opposed to being converged. Further-
more, based on the analysis presented in ref 65 for ADMP, we
expected that the choice of fictitious inertia tensor μlow,0 ∝
[Plow,0,Flow,0].
While extended-Lagrangian methods have thus far been

confined to single-particle formalisms such as Hartree−Fock or
DFT, a powerful feature of ADMP-pHF is that it can include
many-body, post-Hartree−Fock effects such as those in MP2
and CCSD. Hence ADMP-pHF is one recipe to generalize
Car−Parrinello-style methods beyond the realm of DFT. In the
next section we probe the utility of frag-BOMD and ADMP-
pHF in computing accurate Coupled Cluster (CCSD) based
post-Hartree−Fock AIMD trajectories for small and medium
sized protonated water clusters. In Section III we compare
results obtained from ADMP-pHF with (a) full BOMD
constructed using “on-the-fly” CCSD for systems where such
calculations can be done and (b) associated frag-BOMD
trajectories. We also present an analysis of the reduced scaling
afforded by both ADMP-pHF and frag-BOMD while obtaining
results in reasonable agreement with BOMD CCSD; but before
we undertake a full numerical comparison, we present below a
brief discussion on formal scaling of our method and how
additional features can be added based on existing efforts in the
literature.
IIA. Formal Computational Scaling for frag-BOMD

and ADMP-pHF. The power of the frag-BOMD and ADMP-
pHF approaches is clear from the enormous reduction in
computational effort. We first discuss the scaling in computa-
tional effort for the class of systems presented in this
publication. We then present the general scaling principles
for systems with local electronic ef fects. All calculations
performed in this publication utilize hydrogen-bonded
(neighboring) water-dimer fragments, independent of full
system size. See Figure 3 where the primary fragments are
explicitly noted. The identity of secondary fragments is
obtained through the bit-manipulation algorithm discussed
earlier and the detailed approach for fragmentation of
protonated water clusters is listed in the Appendix. For a

water cluster with N-water molecules all the dimer fragment
CCSD and fragment DFT calculat ions sca le as

+N M M(4 [ ])6 3.5 where M is the size of the individual
(dimer) fragments that undergo CCSD (and thus the M6

contribution) and DFT (and thus the M3.5 contribution)
calculations, and the factor of 4N arises from the fact that each
water molecule, on average, resides inside four different
neighboring fragments. Calculation of energy and gradients
for the monomer fragments arising from overlapping dimer
fragments scale as +N M M( [( ) ( ) ])m m

6 3.5 , where Mm

represents the size of the overlapping monomer fragments,
which in this case is approximately M/2. While CCSD formally
scales as N( )6 , note already that the CCSD scaling depends
on fragment size and not system size, and for all calculation
here the fragment size is a constant (water dimer). The full
system low-level DFT calculation formally scales as N( )4 , but
for larger systems the two-electron integrals can be reused77

which reduces scaling in practice to about N( )3.5 . Employing
linear scaling methods for SCF78−83 and SCF parallelism78,84

will further affect the full system low-level calculations, but
these developments are independent of our approach and can
readily be included due to the independence of our fragment
based AIMD approach on the actual electronic structure
package employed to calculate energy and forces. Thus, the
overall reduced asymptotic (large N) formal scaling for the
CCSD:B3LYP frag-BOMD and ADMP-pHF approaches here
is

+ + + + ≈N M M N M M N N(4 [ ] [( ) ( ) ] ) ( )m m
6 3.5 6 3.5 3.5 3.5

to obtain CCSD accuracy. Thus, based on our results the
approach here appears to be quite promising and may be able
to provide CCSD accuracy for “on-the-fly” dynamics at DFT
cost. (We have assumed above that the number of atoms is also
proportional to the number of basis functions, which is
generally the case when atom-centered Gaussian basis functions
are used to describe the electronic structure.) Note that two of
the water clusters treated here (H9O4

+ and H13O6
+) are small

enough that the dimer fragments have comparable sizes. Hence
the CCSD-level fragment calculations in these cases are more
expensive as compared to the full-system low-level calculations.
For larger water clusters, such as the protonated 21-water
cluster described in Section IV, the dimer fragments are much
smaller than the full system, and correspondingly the full-
system DFT calculations do become the computational
bottleneck as compared to the fragment high level calculations.
The discussion above also assumes that the dimer fragment
sufficiently describes the system. At least for the case of
protonated water clusters, we find this to be true. Other
systems may require additional layers of fragmentation as
allowed by eq 1. For systems requiring an accurate description
of nonlocal effects (such as π-conjugated systems), larger
fragments may be needed, and the scaling ideas presented
above will need to be modified accordingly.
Here we must note a few critical efforts in the literature. In

ref 85, the author shows that the MP2 portion of gradients is a
slowly varying quantity as a function of nuclear coordinates.
This allows the author to construct a potentially powerful
multiple time-step method.86 We will consider similar
extensions for our approach in the future. In ref 87 the authors
present a mechanism where the steeper scaling of “on-the-fly”
MP2 is alleviated through the use of GPUs for this portion of

Figure 3. Two protonated water clusters are depicted here. The
ellipses show primitive “dimer” fragments.
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the calculation. These developments are critical and comple-
mentary to our approach and can be merged with our approach
with little effort. In this regard it is also critical to note the effort
in ref 88 that allows AIMD on GPUs for single-particle
electronic structure treatment.

III. RESULTS AND DISCUSSION
Two protonated water clusters, the Eigen cation (H9O4

+) and
the solvated Zundel cation (H13O6

+), with significance in
biological,89−96 atmospheric,70,76,97,98 and condensed phase
chemistry are studied here. Of particular interest is the role
these two structures have in bulk water and clusters,51,69,99−108

where they exist simultaneously as competing moieties. These
have been studied extensively by both experiments43−50,109 and
by other theories see refs 43, 51, 52, 55, 69, 71, 101, 102, 105,
106, 108, 110−120. Accurate treatment of hydrogen bonding is
crucial to model structural and dynamical behavior, and, to that
end, a “dimer” topology is employed, where primitive fragments
are formed from neighboring water molecules (see Figure 1 and
the Appendix for method of fragmentation). It is possible,
during the course of a simulation, for the (H13O6

+) cluster to
undergo structural rearrangement to a more “eigen-like”
isomer, which would need to be accompanied by a
corresponding change in the fragment topology definition.
Such “topological hops” present challenges to the theory and
will be addressed in future publications. For all simulations
presented fragment topology is static.
A variety of simulations have been performed. The stability

of dynamics and the accuracy (gauged by structural and
vibrational properties) are judged for both of the aforemen-
tioned water clusters. These are investigated with (1) BOMD
using pure CCSD for the Eigen cation only (abbreviated as
BOMD CCSD). Pure CCSD for the solvated Zundel cation is
computationally prohibitive. (2) BOMD using the two-layer
PIE-ONIOM fragment-based electronic structure, with CCSD
as the high level electronic structure and B3LYP as the low
(abbreviated BOMD CCSD:B3LYP). (3) Extended Lagrangian
dynamics is also performed at the CCSD:B3LYP level
(abbreviated as ADMP-pHF CCSD:B3LYP). Initial geometries
in each case were obtained from geometry optimization at the
B3LYP level of theory with 6-31+g(d,p) Gaussian basis. In
addition we have also studied the behavior of ADMP-pHF
trajectories for multiple values of the fictitious inertia tensor in
eqs 3 and 4. These are investigated with a series of simulations
performed at the ADMP-pHF MP2:B3LYP level. Our
computational implementation is achieved through a C++
program that works in parallel using MPI across nodes and
OpenMP within each node. The electronic structure energies
and nuclear gradients were obtained from the Gaussian series of
electronic structure programs. It may be noted that in ref 38, we
have computed MP2 trajectories and established that our
fragmentation methodology provided good agreement with
results from the full MP2 level of theory. (See Figure 1.) In
addition, potential energy surfaces computed using the
CCSD(T):B3LYP level of PIE-ONIOM fragmentation theory
along normal mode coordinates for these water clusters were
found to be in excellent agreement with the surface obtained
from CCSD(T) calculations. (See Figure 1(b) in ref 38.)
All simulations are performed under constant total energy

conditions, where the conserved Hamiltonian is given by eq 3
for ADMP-pHF simulations. For BOMD trajectories there is
no constraint penalty or fictitious kinetic energies. A summary
of the simulations performed can be found in Tables I and II.

Table I contains simulations primarily used in Sections IIIA and
B to establish the accuracy of frag-BOMD and ADMP-pHF

Table I. Energy Conservation in the Dynamics Simulations
(NVE Simulations)

system
hybrid
methoda timeb av temp (K)c Δ d

Drift
e

H9O4
+ BOMD

CCSD
2.3 ps 157.7 K ± 29.4 K 0.002 0.000

BOMD
CCSD:
B3LYP

3.43 ps 159.4 K ± 29.3 K 0.021 0.017

ADMP-pHF
CCSD:
B3LYPf

2.61 ps 146.3 K ± 27.0 K 0.010 0.012

H13O6
+ BOMD

CCSD:
B3LYP

3.00 ps 151.1 K ± 24.5 K 0.018 0.073

ADMP-pHF
CCSD:
B3LYPf

3.92 ps 139.6 K ± 18.8 K 0.027 0.009

aThe 6-31+g(d,p) basis is used for all simulations. bThe time step is
0.2 fs for all simulations. For production calculations, it is known from
previous studies that BOMD can allow time steps of the order of 0.4 fs
steps,64 and for larger μvalence values, ADMP can also allow similarly
large steps;64 but these are not considered in the current publication.
We only benchmark the possible accuracy allowed by these
simulations. cThe average and RMS temperatures are computed
assuming an equipartition theorem where the total kinetic energy is

−N kT( 1)3
2

. These are simply a measure of the amount of kinetic

energy in the system that in turn affects the extent to which the
potential surface is sampled in these classical nuclear simulations. The
initial kinetic energy was chosen such that the corresponding
temperature was 300 K. Within this prescription the nuclear velocities
were chosen to be random. dRMS deviation of total energy in kcal/
mol. The total energy reflects the Hamiltonian in eq 3. eDrift in total
Hamiltonian, eq 3, is obtained as the difference between the average
total energies for the first and last 100 fs of dynamics data (in kcal/
mol). fμvalence = 180 au. See eq 6. 180 au = 0.1 amu·bohr2.

Table II. Energy Conservation for ADMP-pHF Simulations
at the MP2:B3LYP Level of Theory

systema μvalence
b timec av temp (K)d Δ e

Drift
f

H9O4
+ 90 4.7 ps 146.4 K ± 26.5 K 0.043 0.062

180 8.6 ps 153.98 K ± 25.61 K 0.030 0.060
270 6.0 ps 152.43 K ± 23.13 K 0.030 0.080
360 10.8 ps 133.7 K ± 24.4 K 0.079 0.319g

aThe 6-31+g(d,p) basis is used for all simulations. bAs noted in eq 6,
μvalence scales the electronic inertia tensor, with all numbers in atomic
units. 180 au = 0.1 amu·bohr2. cThe time step is chosen to be 0.2 fs for
all simulations, except for μvalence = 90 au, which uses a 0.05 fs time
step. dAs noted in Table I, the average and RMS temperature in Kelvin
are computed assuming an equipartition theorem. eRMS deviation in
total energy in kcal/mol. The total energy represents the Hamiltonian
in eq 3. fDrift in total Hamiltonian, eq 3, is computed as a difference
between the average total energies for the first and last 100 fs of
dynamics data (in kcal/mol). gThe larger μvalence = 360 au simulation
has a pronounced drift for long time-scale dynamics. This is on
account of larger deviations from the Born−Oppenheimer surface. See
the Supporting Information, where it is noted that μlow,0 ∝
[Flow,0,Plow,0]. While one needs to be careful in using such a large
μvalence for production calculations, it appears from our discussion of
results later in the publication that these simulations do describe the
system to reasonable accuracy and in agreement with the remaining
simulations. It must be further noted that these simulations are
included here to facilitate the discussion in Section IIIC.
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simulations. The simulations in Table II are used in Section
IIIC to study the effect of choice of μvalence on accuracy.
For uniformity in comparison of results, most simulations are

carried out using a time step of 0.2 fs. The only exception is the
μvalence = 90 au, ADMP-pHF simulation which required a much
smaller time step of 0.05 fs, and this choice is consistent with
previous studies.64 Production simulations using BOMD and
those involving ADMP-pHF with larger μvalence values can use
larger time steps, but an analysis of time steps is not considered
here. Our focus here is to determine the accuracy of these
simulations in reproducing results in agreement with full CCSD
BOMD calculations. All trajectories conserve the total energy
to well under a kcal/mol, and we note that the drift in total
energy is similarly small. The one exception is the relatively
larger drift seen for the μvalence = 360 au ADMP-pHF simulation
over an ≈10 ps trajectory length. This is on account of larger
deviations from the Born−Oppenheimer surface. See the
Supporting Information, where it is noted that μlow,0 and
[Flow,0,Plow,0] are directly related, and thus the choice of μvalence
presents a bound on deviations from the Born−Oppenheimer
surface.65 While one needs to be careful in using such a large
μvalence for production calculations as noted elsewhere,121−123 it
appears from our discussion of results later in the publication
that these simulations do describe the system to reasonable
accuracy and in agreement with the remaining simulations.
Furthermore, this larger μvalence value is now in the range of the
inertia that is commonly used in Car−Parrinello molecular
dynamics (CPMD) calculations,121,122 where such drifts have
been noted,123 and, in fact, ref 123 was developed to overcome
such drifts in CPMD. It must however be noted that these
larger μvalence simulations are only included in the current study
to facilitate the discussion of μvalence-dependence of results in
Section IIIC. These large values are not generally recom-
mended for production simulations. In addition, as we have
seen in our previous fragment-based AIMD publications the
correlated AIMD trajectories (MP2 in refs 38 and 42) show 1

order of magnitude better Δ and Drift as compared to (a)
DFT-based BOMD and ADMP trajectories and (b) frag-
BOMD and ADMP-pHF trajectories. See, for example, Table 1
in ref 38 and Table 3 in ref 42, where it is seen that all DFT
based BOMD and ADMP trajectories have Δ and Drift that
are 1 order of magnitude larger as compared to BOMD MP2
trajectories. This is similarly the case for the fragmentation
dynamics trajectories in refs 38 and 42 and also the case here, as
noted in Table I for the frag-BOMD and ADMP-pHF results.
Thus, Δ and Drift in frag-BOMD and ADMP-pHF are
limited by the intrinsic error in the DFT forces due to the
exchange-correlation quadrature grid.124 While this can, in
principle, be improved, by using ultrafine dense grids, we find
that this is (a) neither necessary as we can already see from the
accuracy of the spectra in refs 38 and 42 and those presented
later here in this section, (b) nor is it desirable given the
additional expense of ultrafine grids to be incurred at every time
step.
The computational gain is discussed in detail in Section IV.
IIIA. Structural Features from Dynamics Simulations.

We compute and compare the oxygen−oxygen and oxygen−
hydrogen radial distribution functions (RDF) for each of the
simulations listed above. The Eigen cation125,126 comprises a
single H3O

+ cation solvated by three water molecules that are
symmetrically arranged and act as hydrogen bond acceptors
and for the case of the minimum energy geometry has the
charge symmetrically delocalized107 about the central oxygen
atom. The solvated Zundel cation, on the other hand, features a
centrally located proton shared between two equally spaced
water molecules, the so-called Zundel cation,127 that is then
solvated by four other water molecules that again act as
hydrogen bond acceptors. Figure 4(a) shows the Eigen O−O
radial distribution function, whereas Figure 4(b) shows the
Eigen O−H radial distribution function. The average
distributions and the method of computing error bars are
described in the figure caption. The broad peak extending

Figure 4. Radial distribution functions for oxygen−oxygen and oxygen−hydrogen distances for H9O4
+ trajectories. Shown in lighter colors in part (b)

is a trace of the O−H radial distribution, magnified for ease of readability. The statistics are obtained by constructing averages from incremental 1 ps
snapshots taken from the full trajectory. We compute the distributions using data from 0 to 1 ps, 0.25−1.25 ps, etc., for all trajectories. The
distributions are then averaged, and standard deviations are presented as error bars.
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between 2.4 and 2.9 Å describes the Eigen O−O inner
solvation shell and is followed by a broader outer solvation shell
spanning 3.7 Å−4.8 Å. The lower peak has two features, one
wider compared to the other. The first feature, consistently
represented in all three simulations, is at ≈2.5 Å and indicates
the presence of an unsymmetric Zundel substructure sampled
as part of the Eigen simulations. The second feature at ≈2.7 Å,
which appears as a broad shoulder in all three cases, is the
classical Eigen configuration. The distribution beyond 3.8 Å is
the incomplete second solvation shell present in Eigen and is
sampled only to a reasonable extent in all simulations; the frag-
BOMD result appearing more structured in comparison, but
this is likely to be due to the relatively short simulation time for
this system. Figure 4(b) shows the Eigen cation O−H
distribution. The first and most intense peak corresponds to
the covalently bound hydrogens, and there is a shoulder on the
right side of this intense peak which corresponds to anharmonic
vibrations of the covalent OH bonds. The peak at ≈1.6 Å
encompasses the region between 1.4 and 1.8 Å and corresponds
to the internal hydrogen bonds between the central hydronium
and the peripheral water molecules. At the shorter end of the
distribution (≈1.5 Å), this peak along with the covalently
bound distribution at ≈1 Å together depict an unsymmetric

Zundel sampled during the finite temperature Eigen
simulations consistent with the corresponding OO distribution
feature noted above. Critically, all of these characteristic
features (including the second solvation peak at ≈3.2 Å in
the OH distribution) are captured in our fragment-based
trajectories and agree with those from the CCSD simulation.
For the solvated Zundel cation (Figure 5), the O−O

distribution contains two types of nearest oxygen pairs: (1) a
tight O−O pair caused by the strong Zundel-like hydrogen
bond at <2.5 Å, and (2) the Eigen-like O−O peak centered
around ≈2.7 Å. While full CCSD-based AIMD is intractable for
a system as large as the solvated Zundel cation, both frag-
BOMD and ADMP-pHF predict a broadening of the larger O−
O peak, consistent with CCSD predictions made for the Eigen
cation. In Figure 5(b), the O−H distribution exhibits a strong
peak corresponding to the covalently bound OH, a feature
expectedly shared with the Eigen cation simulation. Consistent
with the O−H distribution in Figure 4(b), the solvated Zundel
cation also exhibits two types of hydrogen bonds. The small
bump centered at approximately 1.2 Å is seen only upon
enhancement and is consistent with a hydrogen bond in a pure,
unsolvated Zundel cation. At ≈1.6 Å, we note a second
hydrogen bonded OH distribution, consistent with the one

Figure 5. Radial distribution function for O−O and O−H distances from H13O6
+ trajectories. As in Figure 4, peaks at larger OH distances are

magnified. Statistics and error bars are as in Figure 4.

Figure 6. Vibrational density of states from full CCSD and frag-BOMD CCSD:B3LYP trajectories for H9O4
+ (at ≈150 K). The fragment-based

calculation replicates the spectral activity predicted at the CCSD level of theory to very good accuracy. In part (a), the statistics is obtained by
constructing averages from incremental 1 ps snapshots. We compute IV(ω) using data from 0 to 1 ps, 0.25−1.25 ps, etc., for all trajectories. The
results are averaged standard deviations presented by error bars. See the text for details. In part (b), the averaged spectra from (a) are reproduced,
and the agreement in frequencies is emphasized through arrows to guide the eye.
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exhibited for the Eigen cation. Thus, it appears that both
solvated Zundel trajectories do exhibit Eigen-like substructures!
Additional solvation shells are also seen in the 2.8 Å−3.6 Å
range which specifically include two features, one peaked
around 3 Å and a second at approximately 3.3 Å which
correspond to second solvation shell peaks. All of these features
are noted in both frag-BOMD and ADMP-pHF simulations.
IIIB. Vibrational Properties with CCSD Accuracy. In this

section we benchmark the accuracy of our fragment-based
dynamics by computing the vibrational density of states
(VDOS) for all trajectory. This is computed using the Fourier
transform of the velocity autocorrelation function128

∫ω ω

ω ω ω

= −ı ⟨ · ⟩

= ̃ · ̃ = | ̃ |
→∞ =

=
I t t tV V

V V V

( ) lim d exp( ) (0) ( )

( ) ( ) ( )

V
T t

t T

0
2

(7)

where V(t) represents the 3N velocity vector at time t with
Fourier transform Ṽ(ω). We have used the convolution
theorem129 in presenting the second and third equalities in
the equation above. Our previous studies on hydrogen bonded
systems51−54,70,71,119,130 have shown that vibrational properties
obtained from AIMD are particularly sensitive to the internal
cluster temperature, which dictates the extent to which the
potential energy surface is sampled. It has been shown in
previous publications54,71,119 that results from simulations
generally in the temperature range of ≈150 K are found to
be in good agreement with argon-tagged action spectroscopy
and those >300 K are in agreement with infrared multiphoton
dissociation (IRMPD) for hydrogen bonded systems. Hence
the choice of cluster temperature is significant, and initial
conditions were chosen for all trajectories such that the average
kinetic energy was in the 150 K range in all cases.
For each trajectory described in Table I we have computed

IV(ω). Shown in Figure 6 is a comparison between the spectral
activity predicted by full CCSD and our frag-BOMD method
for H9O4

+. In computing these spectra, we have used the
following steps: (a) The convolution theorem129 is used to
simplify the Fourier transform of the autocorrelation function,
as already noted in eq 7. This reduces the Fourier transform of
the velocity autocorrelation function to simply the power

spectrum of velocities. This is also known as the Wiener-
Khinchin theorem.129 (b) The idea of introducing a 1 ps
moving window that is explained in the caption of Figure 6 is
related to two aspects in the theory of computing accurate
Fourier transforms that (i) reduce “leakage”129 and (ii) reduce
variance in the Fourier transform. Specifically, whenever a finite
sample of frequencies is constructed, there is always a leakage
(or smudging phenomenon) where information from one
frequency leaks to the neighboring frequency regions of the
spectrum. The extent of the leakage domain is generally quite
substantial and falls of as 1/ω2. Data windowing reduces the
leakage of information in the frequency domain, and the
recommended form of data windowing is one that includes
overlapping segments, as explained in the caption of Figure 6.
The second reason for computing the Fourier transforms of
these segments and subsequent averaging of these is to reduce
variance in the Fourier transform as explained in ref 129.
We find excellent agreement between the spectra in Figure 6.

The high frequency proton stretching motions are replicated in
frag-BOMD in excellent agreement, and the lower frequency
peaks are also in very good agreement. Error bars are explained
in the figure caption and shown in Figure 6(a), whereas in
Figure 6(b) the gray arrows are placed as a guide to
demonstrate the level of agreement.
A well-known issue in ADMP and other extended Lagrangian

methods is the dependence of vibrational frequencies on the
fictitious electronic inertia parameters.64,121,122,131−134 The
fictitious electronic oscillations are much faster than nuclear
oscillations but contribute to deviations from the BOMD
forces, as indicated in the Supporting Information. These
additional forces act as fluctuations to the nuclear gradients and
may add coherently to produce a net phase shift in ADMP
forces from BOMD forces,131,132 which manifests as a red-shift
in vibrational frequency. Hence we apply a scaling factor to the
frequencies in all ADMP-pHF spectra shown here. Figure 7
compares spectra obtained from frag-BOMD and ADMP-pHF
after the ADMP-pHF spectral frequencies are scaled by 1.021.
This implies that a 2.1% blue-shift in the ADMP-pHF
frequencies was necessary for the level of agreement with
frag-BOMD and full CCSD BOMD results shown in Figure 7.

Figure 7. Comparison of vibrational density of states from CCSD BOMD, frag-BOMD CCSD:B3LYP, and ADMP-pHF CCSD:B3LYP. Part (a):
Eigen cation, part (b): solvated Zundel cation. The ADMP-pHF frequencies are scaled by 1.021. Statistics and error bars are as in Figure 6.
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Qualitatively, all of the significant spectral features are captured
in ADMP-pHF as compared to frag-BOMD and BOMD with
full CCSD, except for the peak at ≈3000 cm−1 for the Eigen
case (Figure 7(a)). This region is the highly polarizable Eigen-
cation proton stretch and likely leads to enormous coupling
with electronic structure. To probe the level of ADMP-pHF
accuracy in this region of the spectrum, in the next subsection
we present the spectroscopic dependence on choice of μvalence;
but, before that, we also note that low frequency regions of the
spectra in Figure 7 are in good agreement even before the
scaling factor is applied, and the uniform frequency scaling
factor of 1.021 applied to ADMP-pHF appears to be sufficient
to correct the ADMP red-shift for the most part and provide
accurate spectra in the higher frequencies. There still remains a

slight, but notable red-shift in the 2500−3500 cm−1 frequency
window. Apart from that, both frag-BOMD and ADMP-pHF
are in agreement with the full CCSD simulation.

IIIC. Effect of μvalence on the Structural and Vibrational
Properties from ADMP-pHF and Comparison of Vibra-
tional Properties with DFT. To probe the effect of the choice
of inertia tensor we compute IV(ω) and radial distribution
functions using the MP2:B3LYP level of theory for a series of
simulations varying in μvalence. The details for these trajectories
are summarized in Table II, and our computed results are
shown in Figures 8 and 9. The structural properties are
reproduced with good accuracy for all values of μvalence as seen
in Figure 8. Higher frequency peaks in the vibrational density of
states are red-shifted as expected, but reducing the ficticious

Figure 8. Radial distribution function for O−O and O−H distances at multiple values of μvalence. The structural distributions are in reasonable
agreement for all μvalence values.

Figure 9. Vibrational density of states calculated from dynamical trajectories. ADMP-pHF simulations using multiple values of μvalence are shown to
illustrate the μvalence-dependence of the red-shift in the higher frequency modes. (a) As the ficticious mass parameter is reduced, the red-shift in
higher frequency modes reduces, and modes tend to converge to those predicted by frag-BOMD and full MP2. (b) Each simulation is independently
scaled by a μvalence-dependent uniform scaling factor as shown in Figure 11. Statistics and error bars are as in Figure 6.
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inertia reduces the red-shift. Furthermore, the same uniform
scaling of 1.021 can be employed for both MP2 and CCSD
when the fictitious inertia tensor scaling parameter is chosen to
be 180 amu bohr2. Thus, the scaling factors appear to be
independent of theory based on this limited analysis and, as
noted in Figure 7, system independent as well at least for the
hydrogen bonded water clusters studied here. Future studies
will further probe this dependence for larger water clusters and
then for other hydrogen bonded systems, but below we also
find our choice of scaling factors to be consistent for DFT.
DFT based BOMD and ADMP studies for Eigen and

solvated Zundel were conducted in ref 38. While structural
features were in agreement, the DFT vibrational peaks were
red-shifted with respect to MP2. The corresponding compar-
ison between DFT and CCSD is presented in Figure 10. Both
ADMP and ADMP-pHF frequencies have been scaled by 1.021,
consistent with our observations above. As is clear the free−
OH stretch peaks on the far right are red-shifted in DFT, and
the effect on the hydrogen bonded Eigen-like OH stretch peaks
is even greater when one compares DFT and CCSD.
As the value of μvalence is decreased, the scaling factor also gets

smaller, and in Figure 11 we present the behavior of this scaling
factor as a function of μvalence and compare it to a quadratic fit
that is expected from the discussion in ref 65. Specifically, in ref
65 it has been shown that the commutator [Plow,0,Flow,0] ∝
μvalence. The difference between ADMP and Born−Oppen-
heimer forces is also proportional to the commutator
[Plow,0,Flow,0] (see the Supporting Information), and hence it
follows that the difference in forces must be proportional to
μvalence. Additionally, due to the quadratic dependence of the
correlation function, IV(ω) in eq 7, we expect a shift in the
velocity spectrum that is quadratic in μvalence, and this aspect is
consistent with Figure 11.

It is clear that while structural features are well reproduced by
ADMP-pHF, vibrational properties can be in acceptable
agreement provided a scaling factor is applied.

IV. NUMERICAL EFFICIENCY IN COMPUTING CCSD
BASED AIMD TRAJECTORIES FOR (H2O)21H

+

Our computational implementation for frag-BOMD and
ADMP-pHF is achieved through a C++ program that is
written in parallel and works using MPI across nodes and with
OpenMP inside each node. For small water clusters such as the
ones treated here, the computational bottleneck involves
evaluating energies and forces for water dimers at the high
level of theory (CCSD in this case), and we see little
performance difference between ADMP-pHF and frag-BOMD.
For larger systems, however, the low level calculation over the
full system becomes a bottleneck. In Figure 12 we present the
computational scaling of our implementation of fragment-based
AIMD for the challenging protonated 21-water cluster. The
protonated 21-mer system is interesting because it presents a
long-standing challenge to theory.135 The system, noted to be a

Figure 10. Vibrational density of states calculated from dynamical trajectories. The high-frequency, free−OH stretches are noticeably red-shifted in
DFT simulations as compared to CCSD and fragment-based CCSD. (a) The Eigen cation. (b) The solvated Zundel cation. The ADMP and ADMP-
pHF frequencies are scaled by the same 1.021 scaling factor used for all other μvalence = 180 au simulations.

Figure 11. Scaling factors used in Figure 9 follow the expected
quadratic dependence in μvalence.
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“magic” cluster with pronounced stability,43,136 has been
studied experimentally using argon-tagged action spectrosco-
py43−45 , 135 and theoret ica l ly by us51 , 52 and by
others.43,116,117,135 While AIMD simulations using DFT and
lower levels of theory have been able to qualitatively capture
the essence of experimental findings,43,51,52 the problem
remains a great challenge since it is beyond the realm of
dynamics based on electronic structure treatments at the post-
Hartree−Fock level. While we reserve a full discussion of the
vibrational spectrum obtained from frag-BOMD and ADMP-
pHF to future publications, here we use this system to gauge
the computational power of our methodology and its numerical
implementation.
A typical structure found during a protonated (H2O)21H

+

dynamical simulation may require upward of 25 primitive
fragments (water dimer units) and nearly 18 derivative
fragments (water monomers formed from overlapping primitive
fragments) to accurately describe the system. Computations
involving these fragments are evenly divided over the ensemble
of MPI processes and evaluated in parallel. A theoretical scaling
curve is provided in Figure 12(a), and the real scaling for
CCSD:B3LYP is provided in Figure 12(b). Here, frag-BOMD
is expected to provide near-linear parallel speedup until the full
system calculation at the lower level of theory becomes the
primary bottleneck at roughly 10 MPI processes. ADMP-pHF
alleviates the bottleneck and allows efficiently parallelization
until the point at which the primitive dimer fragments become
the bottleneck. As seen in Figure 12(b) our approach is capable
of studying these complex systems at the CCSD level.

V. CONCLUSION

In a recent set of publications38,42 we developed a method for
dynamical treatment of molecular systems using fragment based
electronic structure. The fragmentation method is based on
ONIOM but includes overlapping model systems that are
suitably treated using the set-theoretic inclusion-exclusion
principle. Both Born−Oppenheimer and extended Lagrangian
treatments are possible as shown in ref 38, and the latter is
particularly interesting since the approach now allows Car−
Parrinello-style dynamics but with post-Hartree−Fock accuracy.
The particular extended Lagrangian employed here is a post-
Hartree−Fock extension of the previously develop atom-
centered density matrix propagation and is hence called
ADMP-pHF. It is in this setting that the current publication
makes a contribution as we discuss here a coupled-cluster
implementation of “on-the-fly” dynamics both within the Car−

Parrinello (or ADMP-pHF) and Born−Oppenheimer (frag-
BOMD) paradigms.
The approach is rigorously tested for two protonated water

clusters: H9O4
+ and H13O6

+, where in the case of the former full
CCSD dynamics results are also presented. It is noted that the
vibrational density of states and temperature dependent
structure distribution functions computed from Born−
Oppenheimer implementation of fragment based CCSD
dynamics are in near perfect agreement with the full CCSD
dynamics simulations. As a further demonstration of the
computational power of the method, we have also bench-
marked the computation times required to obtain dynamics in
agreement with CCSD for the larger sized, protonated 21-water
cluster, (H2O)21H

+, and this turns out to be an attractive option
for large scale simulations in complex systems. The approach is
promising because both frag-BOMD and ADMP-pHF may be
able to provide CCSD accuracy for “on-the-fly” dynamics at
DFT expense.
The corresponding ADMP-pHF simulations are faster than

the Born−Oppenheimer, frag-BOMD, counterpart as seen in
the protonated 21-water cluster, (H2O)21H

+ test case, and
provide excellent agreement for the temperature governed
structural distribution for H9O4

+ and H13O6
+. The vibrational

properties, on the contrary, show an inertia tensor dependent
red-shift, that is overcome here through introduction of a
uniform scaling factor, which then improves the agreement
between CCSD-based ADMP-pHF and the full Born−
Oppenheimer based CCSD simulations. We have also studied
the behavior of properties as a function of choice of inertia
tensor and find that while the structural properties remain in
good agreement all through, the vibrational properties show a
monotonic improvement with decreasing inertia, converging
toward the accurate full CCSD simulation results. Thus, we
expect both frag-BOMD and ADMP-pHF to have significant
impact in computing accurate ab initio dynamics trajectories for
complex systems.

■ APPENDIX

Fragmentation Algorithm for Protonated Water Clusters
We obtain fragments for a given molecular structure as follows:
1) Given the minimum oxygen−oxygen distance for a chosen

oxygen atom, denoted as OOi, a maximum of three additional
water molecules are included inside the solvation sphere of the
water molecule such that the respective oxygen−oxygen
separations are within 10% of OOi.
2) Bonded hydrogens are then included to form primitive

fragments. Here, we use two well-known limits for the

Figure 12. MPI scaling for the 21-water cluster: (H2O)21H
+. (a) frag-BOMD shows linear parallel speedup until bottle-necked by the full system

calculated at the lower level of theory. ADMP-pHF calculations are bottle-necked by the cost of the largest primitive fragments. (b) The MPI scaling
shown for a single frag-BOMD step.
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protonated water cluster system: (a) the Zundel H5O2
+ system

where the oxygen−oxygen distance is 2.5 Å, on average, and the
shared proton is situated in the middle. (b) Second the Eigen,
H9O4

+, system, which is most H3O
+ like but fully solvated. To

include the definition of delocalized charge as afforded by these
two systems, the cutoff for the O−H distance is 1.4 Å in all our
simulations.
3) All fragments that include the excess proton inside their

envelope have a net charge of +1. The rest are neutral.
4) Finally, all fragments that do not contain electrons are

excluded from the calculation. See for example the intervening
proton in Figure 3(b). This fragment does not contain any
electrons. Since the energies computed using electronic
structure are interaction energies, a fragment containing just
one proton has zero interaction energy. (This definition would
need to be modified if molecular mechanics is used at the lower
level, which is not the case in this publication.)
Primitive fragments generated by this algorithm overlap with

adjacent fragments through an intervening hydronium ion or a
water molecule. These intersections ensure all hydrogen bonds
are equally treated. Two examples are given in Figure 3.
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