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Abstract
We discuss the hydrogen tunneling problem in the active site of the biological enzyme, soybean lipoxygenase-1. Toward this, we utilize quantum wavepacket

dynamics [1, 2, 3, 4] performed on potential surfaces obtained by using hybrid density functional theory under the in'uence of a dynamical active site. By

computing the hydrogen nuclear orbitals (eigenstates) along the reaction coordinate, we note that tunneling for both hydrogen and deuterium occurs through

the existence of distorted, spherical s-type proton wave functions and p-type polarized proton wave functions for transfer along the donor-acceptor axis. In

addition, there is also a signi↓cant population transfer through distorted p-type proton wave functions directed perpendicular to the donor-acceptor axis (via

intervening pi-type proton eigenstate interactions) which underlines the three-dimensional nature of the tunneling process. The quantum dynamical evolution

indicates a signi↓cant contribution from tunneling processes both along the donor-acceptor axis and along directions perpendicular to the donor-acceptor

axis. Furthermore, the tunneling process is facilitated by the occurrence of curve crossings and avoided crossings along the proton eigenstate adiabats [5].

In addition we investigate the role of hydrogen bonding interactions on the proton transfer process in the active site. We will also discuss the tunneling

process from the perspective of a new, complementary, analysis tool that utilizes concepts from von Neumann quantum measurement theory. In this case,

the problem is reduced to that of a control problem, where the active site is interpreted as a control device so as to reproduce several qualitative features of

the hydrogen transfer from this tool[6]

Introduction
• Experimental studies have indicated that

hydrogen tunneling plays a crucial role in
enzyme catalysis for example in case of
Soybean Lipoxygenase-1 (SLO-1) as sug-
gested by unexpectedly large primary ki-
netic isotope effect (KIE) and weak tem-
perature dependence of KIE.

• SLO-1 is an oxygen-dependent non-heme
iron enzyme and catalyses the oxidation
of linoleic acid (LA). Experimental stud-
ies have indicated that in SLO-1, the

room-temperature rate constant for pro-
ton transfer catalyzed by SLO-1 is ∼80
larger than that for deuteron transfer
(kD) and thus understanding effect of hy-
drogen tunneling in SLO-1 is challenging.

• The rate-limiting step in the catalytic cy-
cle is the abstraction of a hydrogen atom
from the linoleic acid chain by the octa-
hedral Fe3+-OH complex present in the
active site.

• The reaction is then followed by a radical

attack by O2 that results in a final perox-
ide complex.

• In our study, the transferring hydrogen
nucleus is treated as a three-dimensional
quantum wavepacket.

• We simulate the rate-limiting hydro-
gen abstraction step by using quantum
wavepacket dynamics of the hydrogen un-
dergoing transfer[1, 2, 3, 4], facilitated by
ab initio molecular dynamics (AIMD).

Langevin type ab initio Molecular Dynamics (AIMD)
• To sample rare events, we couple the fictious

particles with coordinates R̃, momenta P̃ , and
mass tensors M̃ directly to the nuclear degrees of
freedom via a harmonic potential. Each fictious
particle is assigned a mass that allows us to define
kinetic energy. The Hamiltonian for the nuclear-
electronic-fictious particle system is then,
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• For Quantum dynamics, the fictious particles are all
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• We also carry out hybrid Quantum Mechan-
ics/Molecular Mechanics (QM/MM) simulations of
part of the SLO-1 enzyme. The system consists

of residues within 15 Å sphere of enzyme that in-
cludes all the iron cofactors and complete linoleic
acid substrate.

• As a model of SLO-1, we used pruned representa-
tion of the active site amino acid ligands binding
to the central iron atom in addition to a portion of
the substrate that contains the π-bonded atoms on
either side of the donor carbon atom.

• The variation of the reaction coordinate (RCH −
ROH/RCO) as a function of the number of steps is
displayed in the figure below with the active site ge-
ometries in right panel (reactant state: (a), shared
proton state: (b), and product state: (c)).

• The simulations thus indicate importance of
hydrogen-bonding interaction of Ile839 with accep-
tor group is neccessary for the proton transfer.

• The minimum-energy
reaction profile for the
rate-limiting hydrogen
abstraction step, and
the critical tunneling
region is highlighted
within a box (see figure
below). Note that the
horizontal axis repre-
sents a reduced reaction
coordinate computed
from donor, acceptor

and shared proton, and
the vertical axis repre-
sents the corresponding
electronic-structure en-
ergy.
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Nuclear quantum effects
• To account for nuclear quantization, we

compute proton potential surfaces as a
function of three-dimensional Cartesian
proton coordinates for a large number
of geometries along the classical reaction
profile[5].

• For constructing proton potential sur-
face, the electronic-structure calculations
at each model geometry were performed
using the B3LYP density functional and
lanl2dz Gaussian-type basis set.

• Level surfaces as a function of two Carte-
sian dimensions and contour lines of the
full proton potential-energy surface is il-
lustrated above. The left panel is the sur-
face on the reaction coordinate situated
on the reactant side of the tunneling re-
gion, the central panel displays the sur-
face in the tunneling region, and the right
panel displays the surface at the classical
transitions state.

• The classical transition-state localize the
lower-energy proton eigenstates to the
acceptor side (right panel in above fig-
ure), and intermediate-state surfaces en-
force a double-well character that retains
the proton to be partially bound to both
donor and acceptor.

• In the figure below, the evolution of first
three proton (left panel) and deuterium
(right panel) eigenstates are displayed.
The classical transition state is shown by
using a vertical dashed line.

• The quantum nuclear eigenstate energies
peak before the classical transition state
and drop down as one approaches the
classical barrier. In the figure below, evo-
lution of the proton ground eigenstates

(a-c) and deuteron ground eigenstates (d-
f) are displayed.

• It should be noted that if an effective re-
action profile were to be constructed that
included contributions from the quantum
mechanical ground state of the tunneling
nucleus, the new profile would display a
maximum closer to the reactant. This ef-
fect is completely caused by the quantum
mechanical nature of the hydrogen nu-
cleus and the associated potential-energy
surface.

von Neumann Measurements
• We treat the enzyme active site as a de-

vice that performs a measurement on the
quantum proton at each step in dynamics
[6] and employ the ideas of von Neumann
measurement theory.

• The figure below is an illustration of fil-
tered (top panel) and unfiltered (bottom
panel) measurements: The initial den-
sity matrix population is shown using a
red, horizontal arrow. The measurements
are represented by the horizontal, dotted
arrows and the eigenstates of the mea-
surement operators are shown using dark
green, dashed lines above these arrows.

• For example, the eigenstates of the first
measurement are oriented at 30◦ and
120◦, while those for the second are ori-
ented at 60◦ and 150◦. The vertical
line after the arrow in (top panel) is the

{|D〉; |Am〉} filter, which removes the ver-
tical, |A〉〈A| component and repopulates
the |D〉〈D| dyad. In the unfiltered case,
the measurements populate the measure-
ment eigenstates as can be seen from the
purple and blue arrows in Fig. (bottom
panel). The population driven to the
|A〉〈A| dyad after both measurements is
0.61 for (top panel) and 0.56 for (bottom
panel).

• We find that such a measurement can
accelerate the hydrogen nuclear transfer
process as compared to the deuterium
transfer process[6].

Conclusions
• The hydrogen bonding interactions of the active-site residues is

essential for the hydrogen transfer reaction.

• The calculations indicate that a quantum dynamically corrected
transition state may be shifted toward the reactants relative to
the classical transition state and depends on the temperature.

• The shift in the corrected transition state is obtained purely
from quantizing the transferred proton and thus emphasize the
importance of nuclear quantum effects in enzyme catalysis.
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