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Abstract

We present a mixed basis, time-dependent formalism for electron trans-
port through molecular wires. The simultaneous dynamics of electrons
and nuclei in the wire is coupled to the dynamics of the tunneling elec-
tron (described here as a wavepacket) within the framework of the recently
developed Quantum Wavepacket - Ab-Initio Molecular Dynamics treat-
ment[1,2,3]. The motion of the classical nuclei in response to the tunneling
electron is accounted for in detail. The electronic structure is partitioned
as follows. The flux of electrons flowing through the wire is treated using
a grid representation as a wavepacket. The electrons within the wire are
written as a density matrix using gaussian basis representation. To ac-
count for the non-equilibrium conditions due to external applied bias on
the electrodes, the dynamical operators are adjusted to include absorbing
potentials connected to the Non-Equilibrium Green’s Function approach.
As a example, we present preliminary results for electron conduction in
the Au-S-C6H4-S-Au molecule.

Introduction

• Investigation of the current-voltage characteristics for electron transport
in organic molecules has received considerable attention recently. Such
studies involve treatments which account for a non equilibrium or open
system compared to the closed systems in standard quantum chemistry.
Non-equilibrium Green’s Function (NEGF) and Time-Dependent Den-
sity Function Theory treatments are common tools for studying such
system.

• The system consists of a molecular wire system sandwiched between
two semi-infinite metal electrodes at different chemical potentials with
respect to each other.

• Due to the difference in potential between the
two electrodes, electrons tunnel through the
molecular wire from the electrode at nega-
tive bias potential, called the Source (S) elec-
trode to the electrode at positive bias poten-
tial, called the Drain (D) electrode.
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• In NEGF treatments, the Green’s function describes the dynamics of
the electron inside the wire.

• The tunneling electron interacts with the electrons and nuclei of the
molecular wire resulting in interesting dynamics which can be looked
into from a time-dependent perspective.

• The method we present of the simultaneous dynamics of electrons and
nuclei of the molecular wire with the tunneling electron can also be
applied to systems where such dynamics is/may be important such as
electron-molecule scattering, solvated electron, etc.

• We consider a molecular wire device which interacts with the electrodes
only at the contact and assume that there is no interaction between the
electrodes.

• The effective Hamiltonian arising from the interaction between the wire
and the contacts is described by the self energy, Σ of the electrodes.
To properly account for the interaction at the contacts, we include a
portion of the electrode in the wire device.

• We present our method as follows: We first give a brief overview of the
standard NEGF treatment to obtain the self energy of the electrodes
and obtain the Green’s function for wire. Next, we make a connection
of the NEGF with the evolution operator of time-dependent treatments.
This connection permits us to create a formalism similar to the NEGF
treatment where we treat the injection of charge from the sink as
a time-dependent quantum system interacting with the molecular
wire device. We also make an assumption that the non-equilibrium
condition due to the voltage bias interacts directly with the tunneling
electron and through it indirectly with the wire.

Theory

Non-Equilibrium Green’s Function Formalism for

Molecular Electronics

• Partition the system into source and drain electrodes and the molecular
wire device. Solve the time-independent Schrödinger equation for the
system to obtain the self energy of the electrode in terms of the green’s
function of the isolated electrode or surface green’s function

• Self energies for the source and drain are given in terms of the surface
green’s function,

ΣS = τ
†
SgSτS ; ΣD = τ

†
DgDτD

where τ is the wire-electrode coupling and g is the green’s function for
an isolated electrode given in terms of the electrode Hamiltonian as

gS(D) = (E −HS(D))
−1

• The Green’s function for molecular wire device is given by

G(E) = (E −H − Σ)−1

where Σ = ΣS + ΣD
• The Green’s function allows us to replace an infinite open system with

a finite one, consisting of just the molecular wire device with the self
energy describing the effect of the electrodes on the molecular wire.

• The Non-Equilibrium Green’s function and the evolution operator in
the time-dependent Schrödinger equation are related by

(E −H − Σ)−1 = lim
ǫ→0
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Quantum Wavepacket Ab-initio Molecular

Dynamics

• To model open system boundary conditions
and non-equilibrium conditions, we split the
general schematic into four stages named I-IV
separated by absorbing or emitting potentials.

• Stage I consists of propagation of an initial
electron wavepacket in the semi-infinite elec-
trode at higher potential

• Stages III and IV consists of propagating the
wavepacket in the right and (back into the)
left electrodes respectively. Stage III and IV
thus propagate the transmitted and reflected
wavepacket respectively.

• Stage II is the region of primary interest con-
sisting of the electron tunneling through the
molecular wire contact interface.

• The total wavefunction Ψ(t) is partitioned as
follows

Ψ(t) = ΨI(t) + ΨII(t) + ΨIII(t) + ΨIV (t)
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Figure 1: (a)
Schematic for Stages
I-III. The light grey
vertical lines represent
absorbing potentials
introduced between
the various Stages. (b)
Schematic for Stages II,
III and IV.

satisfying the time-dependent Schrödinger equation,

ih̄
∂

∂t
Ψ(t) = (H + ∆)Ψ(t)

where ∆ is an applied external bias.

•The goal in Stage I is to create an electron wavepacket that tunnels
through the contact/molecule/contact region in Stage II with the ap-
propriate coupling between the molecular wire and the electrode. To
realize this goal, we propagate a wavepacket through the semi-infinite
electrode, truncated by negative imaginary absorbing potentials, VI−II
at the molecular wire end in the presence of an external bias, ∆.

ih̄
∂

∂t
ΨI = [HI + ∆ − iVI−II ] ΨI

• Stage II contains the region of primary interest, viz the molecular wire
and contact regions. The accumulated wavepacket density from the pre-
vious step in the absorbing region, is treated as the initial wavepacket
for propagation through the molecular wire and wire/electrode interface
region. Here the negative imaginary potential included in the previous
step, is rigorously canceled through a positive imaginary potential in
the current step and the associated time-dependent Schrödinger equa-
tion for Stage II is

ih̄
∂

∂t
ΨII = [HII + ∆ − iVII−III − iVII−IV ] ΨII + iVI−IIΨI

• Introducing the relations, V ′ΨII = VI−IIΨI , Γl = V ′ − VII−IV and
Γr = −VII−III , we obtain the time-dependent version of the equation
commonly used in NEGF theory,

ih̄
∂

∂t
ΨII = [HII + ∆ + iΓ] ΨII

where Σ = ∆ + iΓ is the self energy due to the two electrodes and
Γ = Γl + Γr.

• If the imaginary potentials are assumed to be diagonal[4] in real space,
then the time evolution of ΨII(RQW , t) is approximated using the sym-
metric split operator approach
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and the free propagator K(RiQW , R
j
QW ; ∆t) represented using dis-

tributed approximating functionals (DAFs)[5]
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where H2n are even order Hermite polynomials.

•The quantity V (RiQW ) is the potential experienced by the electron flux,

V (RiQW ) = E({Rc,Pc}, RiQW ) + ∆(RiQW ) + iΓ(RiQW )

•The energy functional, E({Rc,Pc}, RiQW ) is the QM/QM interaction

term between the electron flux and the molecular wire. For convenience,
it is one-electron in character. We currently include the electrostatic in-
teraction between the electrons and nuclei of the wire but future versions
will include, polarization, and exchange repulsion.

•We can quantify the flow of electrons through the molecular wire in
Stage II by computing the flux-flux (or current-current) correlation func-
tion

σ(ω) ∝
∫ +∞

−∞
dte[−ıωt]〈J(t)J(0)〉

where the wavepacket flux, J(t) = R
[〈

ψ(t)
∣

∣

∣

−ıh̄
m ∇

∣

∣

∣ψ(t)
〉]

. Here

R [· · · ] represents the real part of the complex number in square paren-
thesis.

• In Stages III and IV, the collected wavepacket from Stage II is propa-
gated to give the transmitted and reflected wavepacket respectively,

ih̄
∂

∂t
ΨIII/IV =

[

HIII/IV + ∆
]

ΨIII/IV + iVII−III/IVΨII

•To compute conductance,we obtain scattering matrix elements from the
wavepacket propagation

S(III/IV ) ∝
{∫ ∞

0
dt exp {ıEt/h̄}

〈

ξIII/IV

∣

∣

∣ Ψ(t)〉
}

where S represents the probability of the wavepacket in regions III or
IV; the probability in IV being the reflection coefficient and III being
the transmission coefficient.

•The current through the wire is calculated as

I =
2e2

h

∫ ∞

−∞
T (E,∆) [fS(E) − fD(E)] dE

where T (E,∆) is the transmission coefficient for energyE and bias volt-
age ∆, and f (E) is the Fermi distribution function of the electrodes.

Preliminary Results and

Discussion
•We have carried out calculations for the electron dynamics on Au−S−
C6H4 − S −Au with an potential of 1 eV between the Au atoms.

Figure 2: Snapshots of the Electron Wavepacket at (a) initially, (b)
0.05fs, (c) 0.1fs, (d) 0.15fs, (e) 0.2fs and (f) 0.25fs.

Conclusions

•The method we present considers the explicit treatment of the tunneling
electron and simultaneously treats the effect of the tunneling electron
on the electrons and nuclei of wire device.

•Our formalism provides (a) a physically consistent representation for
the self energy of the electrodes analogous to that of Goyer et al.[6] and
(b) a method to quantify flow of electrons through the wire.

• Exchange interactions between tunneling electron and the electrons in
the wire are important and will be accounted for later.

•QW-AIMD has proven to provide good description of vibrational spec-
tra in clusters. In systems where nuclear motions are important, this
method can be used to obtain accurate vibrational spectra.
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