
Quantum Mechanics Course Number: C668

2.6 Representation Theory

2.6.1 Introductory Linear Algebra

1. Revise Sections II and IIIand do the following homework problems

(a) Write down all the dyadic products~i~i†,~i~j†,~i~k†, ~j~i†, ~j~j†, ~j~k†, ~k~i† ~k~j†, ~k~k†

(b) Homework: Show that:

~i~i† +~j~j† + ~k~k† =







1 0 0
0 1 0
0 0 1





 (2.6.1)

The matrix on the right hand side in this equation is called the identity or unit matrix.

This relation is called the resolution of the identity and we will have a great deal of

need for this expression.

2. The resolution of the identity is also known as the completeness relation.

3. Any vector can be written as a linear combination of an ortho-normal and complete set of

vectors. As the set î, ĵ and k̂ are ortho-normal and complete (as seen in point 1b) it comes

as no surprise to us that any vector in three-dimension can be written as a linear combination

of these vectors.

4. Homework: Show that the spin states SG+
z and SG−

z (we learn a better way to represent

these states soon) form a complete orthonormal set. (Use the analogy to the x- and y-filters.)

Hint: This question is simpler than you might think!!

2.7 Dirac Notation

1. The discussion in the linear algebra handouts is heavily couched in the 3-dimensional space.

However, you will note that there is no restriction as such, on the algebra. All of what we

had learned (dot products, dyads, resolution of identity, etc.) could very well be true for

vectors in say 4-dimensions (or (4 × 1) matrices and their (1 × 4) dual counterparts) and

matrices in 4-dimensions (i.e. (4 × 4) matrices). It would be very difficult (!!!!) for me to

draw something in 4-dimensions, but in this lecture we will see how we can think in 4 or

more dimensions.

2. While constructing the analogy of the Stern-Gerlach spin states to polarized light we learned

that the polarized light can be treated using vectors and the Stern-Gerlach states are analo-

gous to these. In a quantum mechanical system there will in general be a large number of

such states. There should be a way for us to generalize the theory of vectors to arbitrary

dimensions. This is what we will look into next.

3. Why arbitrary dimensions? We already saw that four real dimensions or two complex di-

mension were required to represent the spin states. See the Stern Gerlach handout.
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4. To make it to n-dimensions, the first thing we will do is introduce a new set of notations.

The notation in the previous subsection is very nice for 3-dimensional space but turns out to

be highly cumbersome in n-dimensions. The notation we are about to introduce is that due

to Dirac, and hence is called the Dirac notation.

• A vector in n-dimensions will be represented by the object: |i〉, and we will call this a

ket, or a ket-vector.

• The dual space analog of the ket, |i〉, is called the bra and is represented by 〈i|. (Note:

The ket, |i〉, is a vector in n-dimensions. A corresponding vector in 3-dimensions

we represented as~i, earlier. The bra, 〈i|, is the dual-space analogue of the ket. In

3-dimensions we represented the dual space analogue of~i as~i†. It is useful to keep

these straight in our mind, so we do not get lost while we walk up to n-dimensions.

)

• The reason for these peculiar names (bra and ket) is, the “dot” product is now a prod-

uct of the bra and the ket and hence is the bra-ket :-) 〈i| |i〉, analogous to ~i†~i in 3-

dimensions, which is a number like 〈i| |i〉. (In practice we choose to be lazy and drop

one of the vertical bars in the middle of the bra-ket and represent it as 〈i| i〉.)

• The outer product or the dyadic product that we made so much fuss about in the pre-

vious subsection if a ket × a bra. Why? Because the dyadic product in 3-dimensions

(see Eq. (III.0.1)) is a vector times its dual space analogue, for example~i~k†.

• And the vector in n-dimensions is a ket, and its dual space analogue is the bra. So

the dyadic product is |i〉 〈i|.

5. This notation is due to P. A. M. Dirac in the late 1920s and hence is called the Dirac notation.

6. The resolution of identity in Dirac’s notation.

• Do we recall what a complete set of vectors in 3-dimensions is? A set of vectors that

are ortho-normal and a set of vectors that obey the resolution of identity, Eq. (2.6.1).

So, as we saw in the previous section, î, ĵ and k̂ form a complete set.

• In more simple terms, what we mean by î, ĵ and k̂ form a complete set in 3-dimensions

is that any vector in three-dimensions can be written as a linear combination (as in Eq.

(II.0.1)) of î, ĵ and k̂. (Homework: By extension, could you comment on why Eqs.

2.4.13, 2.4.14 2.4.17, and (2.4.18), might actually make sense based on what we

have noted here? Utilize your result from the homework problem on page 32.)

• Here we want to see what the corresponding set of rules would be for n-dimensions.

And as we will see below these set of rules are very similar to what we have in 3-

dimensions.

• But, first, what does the number n in {|n〉} mean? It could, for example, be a number-
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ing scheme:

|m〉 ≡

























0
0
...

1
...

0

























(2.7.2)

where the 1 is on the m-th position. n columns in all. So |m〉 in the equation above is

a (n× 1) matrix that has all zeroes except at the m-th position.

• Note: Eq. (2.7.2) is just an example of what |m〉 can be. More generally, it is just

some vector in n-dimensions.

• Now we are in a position to generalize the resolution of identity or completeness rela-

tion that we derived earlier for the 3-dimensional case. The corresponding relation for

n-dimensions is:
n
∑

i=1

|i〉 〈i| = I (2.7.3)

where the right hand side is the identity matrix. You can see that for n=3, the left hand

side in Eq. (2.7.3) has three terms just like in Eq. (2.6.1). In fact Eq. (2.7.3) is identical

to Eq. (2.6.1) in three-dimensions !!! In higher dimensions Eq. (2.7.3) provides us an

additional tool.

• Homework:

(a) Can you show that |SG+
z 〉 and |SG−

z 〉 (notice the new ket notation being used here

to describe these states) form a complete set? How about |SG+
x 〉 and |SG−

x 〉? How

about
∣

∣

∣SG+
y

〉

and
∣

∣

∣SG−
y

〉

? Show your results.

7. The n-dimensional space that we just spoke about, is also called the Hilbert space in quan-

tum mechanics. (After D. Hilbert a famous mathematician in the 20 century.)

8. Why do we care about all this?

9. These are the necessary mathematical tools we need to develop quantum mechanics.

10. Consider the Stern-Gerlach experiments we studied earlier. We may now choose to the

denote the SG+
z state by the ket |SG+

z 〉. Why is this interesting? Because now we see that

a state in quantum mechanics such as |SG+
z 〉 is essentially a vector in some n-dimensional

space (the Hilbert space).

11. And since |SG+
z 〉 is a ket, it can be written as a linear combination of some complete set of

kets like in Eq. (2.7.2). That is,

∣

∣

∣SG+

z

〉

≡

{

n
∑

i=1

|i〉 〈i|

}

∣

∣

∣SG+

z

〉

=
n
∑

i=1

|i〉 〈i| SG+

z

〉

=
n
∑

i=1

ci |i〉 (2.7.4)
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where ci = 〈i| SG+
z 〉 are just numbers (but they could be complex !!). Note, we have intro-

duced “1”, i.e. the resolution of the identity of Eq. (2.7.3) in the second part of Eq. (2.7.4).

Physically ci are the “dot” product or inner product or bra-ket of 〈i| with |SG+
z 〉. The ci are

just numbers and note the similarity between the above equation and the first equation in the

linear algebra handout Eq. (II.0.1). x, y and z are also just numbers in Eq. (II.0.1).)

12. In addition, Eq. (2.7.4) tells us how to “change basis” from |SG+
z 〉 to {|i〉}. Can we visualize

change of basis in three-dimensions?

2.8 So what about measurements? For this we will need to invoke a new

mathematical beast called Operators

1. An operator is a quantity that “operates” on any element of a vector space and yields another

element of the vector space:

O |η〉 = |χ〉 (2.8.5)

Where |η〉 and |χ〉 are ket vectors belonging to some n-dimensional vector space.

2. For simplicity we could look at rotation operators in 3-dimensions. For example, consider

the unit vector î in 3-dimensions. A rotation operator about the z-axis converts î → ĵ, the

unit vector along the y-direction. Such a rotation operator conforms to the definition in Eq.

(2.8.5) and is hence an operator in this sense. But this definition also applies to any general

transformation in three-dimensions that takes an arbitrary vector ~r to ~r′.

3. Every experimental measurement has a mathemaically corresponding operator!! Operators

and vectors spaces (which we have already discussed using the Dirac notation) form a basic

tool in quantum mechanics.

4. We will now introduce a specific kind of an operator. This operator is called the momentum

operator and has the following form:

p̂ = −ıh̄
∂

∂x
(2.8.6)

Note that we have seen h̄ before in Eq. (2.2.9) and the section of wave-particle duality. The

full theoretical reason for the choice of the momentum operator in Eq. (2.8.6) is based on

the analogy to generator functions for infinitesimal translation in classical mechanics. This

is nicely discussed in Section 1.6 (on page 44) of Sakurai. I urge you to read it.

5. We will see that every observable quantity has an operator associated with it in quantum

mechanics and momentum is an observable quantity.

6. We noted above that an operator is one that acts on a vector and converts it to a different

vector. Is it possible that an operator can act on some vector and not change it? That is,

O |η〉 = ≀ |η〉 (2.8.7)
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where ≀ is a number. Is this possible? Indeed, as we will see, for every operator that we

will see in this course, there will always exist “special” ket vectors that do not change (only

get re-scaled) on the action of some operator. These “special” ket vectors are called eigen-

vectors of the operator O. Every operator has a set of eigen-vectors. (Yes, a set of them.)

The “special” numbers ≀ are called the eigenvalues. The term eigen comes from German; it

means characteristic. So we are trying to say that the set of eigen-vectors and eigenvalues

are characteristic of the operator they are obtained from. We will see more on this later as

we solve quantum problems.

7. Since every operator has an eigenvector, what is the eigenvector for the momentum operator

in Eq. (2.8.6)? To answer this question, lets try the action of the momentum operator in

exp {ıkx}:

−ıh̄
∂

∂x
exp {ıkx} = h̄k exp {ıkx} (2.8.8)

You can check that this is true by differentiating the left hand-side once with respect to x. It

is left as homework for the student to prove Eq. (2.8.8). The eigenstates of the momentum

operator may also be represented by the ket |k〉. (Note: k = 2π
λ

.)

2.8.1 The coordinate and momentum representation and the Wavefunction

1. We shall also note here that the set {|n〉} represented in Eq. (2.7.3) is a discrete set. How

do we know this is discrete, the summation in Eq. (2.7.3) has a countable number of terms.

In three-dimensional the summation in Eq. (2.7.3) has three terms; in four-dimensions it

has four terms and in n-dimensions the summation in Eq. (2.7.3) has n terms. In the next

section we will discuss a continuous representation which is basically obtained by converting

the summation in Eq. (2.7.3) into an integral:

∑

→
∫

(2.8.9)

At this point it will be useful to review some of your calculus. In particular we would like to

remember that the integration is “the limit of a sum”. Hence the integration is very similar

to a sum, but only has infinitely many terms in it. Hence the correspondence in Eq. (2.8.9)

makes sense.

2. The eigenstates of momentum for a continuous representation which we discussed earlier

(Eq. (2.8.9).
∫

dk |k〉 〈k| = 1 (2.8.10)

Why continuous? The k in Eq. (2.8.8) can take on any real value and exp {ıkx} would still

remain an eigenstate of the momentum operator.

3. Eigenstates of many different kinds of “special” operators in quantum mechanics always

form a complete set. We will prove this general statement in detail later in this class.
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4. Like the momentum operator, there is another kind of operator in quantum mechanics called

the position operator.

x̂ |x〉 = x |x〉 (2.8.11)

The eigenstates of the position operator form another important complete set of ket vectors

that form a continuous representation.
∫

dx |x〉 〈x| = 1 (2.8.12)

5. As the name suggests, the variable “x” above is the position (in 3-dimensions or in n-

dimensions, but it is easier to picture this in 3D). What this means all point in a 3-dimensional

space (for example) form a complete set of ket vectors. (This point is extremely subtle.)

6. The Wavefunction: In the Stern-Gerlach experiments we represented the states using the

ket |SGx〉. More generally, the state of any system can be represented by a ket, say |ψ〉.
Consider the inner product of the bra state 〈x| with a ket vector |ψ〉, i.e. 〈x |ψ〉 ≡ ψ(x).
This quantity is called the wavefunction. Hence the wavefunction is the inner product of

the abstract ket vector that represents the state of the system (for example the state of the

Stern-Gerlach experiment) with the position representation. We will discuss a lot more in

the next few lectures regarding this “wavefunction”.

7. In fact the story of quantum mechanics, as we are going to learn it, is the story of how to find

the wavefunction of the system. Why is this important?

(a) We noted that the wavefunction is obtained by the inner product of the abstract ket vec-

tor that represents the state of the system with the position representation. (This process

of performing this inner product is also called a projection. Hence, the wavefunction is

the projection of the abstract ket vector |ψ〉 on to the position representation.)

(b) Since |ψ〉 represents the state of the system, (as the states in the Stern-Gerlach ex-

periment fully represent the state of the system, in a similar fashion |ψ〉 contains all

information about the system). we would like to know everything there is to know

about |ψ〉.

(c) What is the equation that gives us |ψ〉 ? It is called the Schrödinger Equation, which

we will see soon.

(d) Properties of the Wavefunction: We will simply state the required properties here.

Later when we solve our first quantum mechanical problem (the particle in a box) we

will see how these properties become necessary.

• The Wavefunction must be continuous.

• The wavefunction must have finite values in all space.

• The wavefunction must be normalized. That is the integral of the square of the

wavefunction over all space must be 1:

〈ψ |ψ〉 = 〈ψ|
{∫

dx |x 〉〈 x|
}

|ψ〉 =
∫

dxψ∗(x)ψ(x) = 1 (2.8.13)
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This condition is extremely important, mathematically. It allows only a certain

kind of function to be a wavefunction: ones that are square integrable. It also

implies that the length of the ket |ψ〉 is always 1.

• And finally the quantity dxψ∗(x)ψ(x) ≡ dx|ψ(x)|2 is interpreted as the proba-

bility density of the system. That is the probability of finding the system in a

infinitesimal area of size dx around the point x.
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3 Summary of Dirac’s notation:

Normal 3D space Hilbert Space

Vectors ~i |ψ〉

Dual Space ~i† 〈ψ|

Vector representations ~r = âi+ bĵ + ck̂ |ψ〉 = {
∑n

l=1 |l〉 〈l|} |ψ〉

OR

∫

dx |x〉 〈x |ψ〉

~r ≡







a

b

c





 ≡









~i†~r
~j†~r
~k†~r









|ψ〉 ≡



















...

〈x1 |ψ〉
〈x2 |ψ〉
〈x3 |ψ〉

...



















Matrix representations A ≡
∑

3

i=1

∑

3

j=1Ai,j
~i~j† A ≡

∑

i,j |i〉 〈j|Ai,j

=







A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3





 A matrix with matrix element Ai,j

=









~i†A~i ~i†A~j ~i†A~k
~j†A~i ~j†A~j ~j†A~k
~k†A~i ~k†A~j ~k†A~k









Ai,j = 〈i|A |j〉
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Normal 3D space Hilbert Space

Vectors ~i |ψ〉

Orthonormality of the vector space ~i†~j = δi,j 〈i |j〉 = δi,j

〈x |x′〉 = δ(x− x′)
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