
Quantum Mechanics Course Number: C668

6 A Measurement is a Projection or a “dot” product (or inner

product)!!

1. Lets go back and consider the Stern Gerlach experiment that we studied earlier:

Figure 17:

2. After the second magnetic field, the molecules can only be seen to have an S
+
x

and S
−

x

component.

3. As a homework convince yourself by running the java script on the course website that the

probability of obtaining an |SG+
x 〉 or |SG−

x 〉 state as a result of the above experiment are

both equal to 1/2.

4. Now to understand this mathematically consider the following:
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We have of course seen this equation before. All we have done is “resolve the identity” in

terms of the kets {|i〉}. But we could have equally well done the following:
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Notice that the quantity inside {· · ·} is just equal to 1. (The resolution of the identity!!! See

homework problem on page 37.)

5. How do we rationalize the above statement? We have noticed that the x̂′ and ŷ′ vectors are

“isomorphic” to the kets |SG+
x 〉 and |SG−

x 〉. And any vector in the x-y plane can be written

as a linear combination of the x̂′ and ŷ′ vectors. Hence these vectors form a complete set

in “2-dimensions”. The resolution of the identity is simply a mathematical language that

conveys the same meaning as the above set of words.

6. As a result of the above it must follow that |SG+
x 〉 and |SG−

x 〉 also form a complete set and

hence the resolution of the identity in terms of these is valid.
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7. We can simplify Eq. (6.0.2) by multiplying out the bracketted terms {· · ·} to obtain
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where the quantities inside the square brackets are only (complex) numbers since these are

“dot” products or projection between two (ket) vectors.

8. Now lets compare Eq. (6.0.3) with Eqs. (2.4.13) and (2.4.14) (page 23) which are reproduced

below for your convenience:
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We can add these two equations to obtain |SG+
z 〉 in terms of |SG+

x 〉 and |SG−

x 〉:
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9. By comparison of Eq. (6.0.6) and Eq. (6.0.3) it follows that:
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Note that we could have obtained the above two equations directly by multiplying both sides

of Eqs. (6.0.4) and (6.0.5) by 〉SG+
z |.

10. So what does all this mean? (Note: you already obtained the two equations above in a

homework problem earlier and showed that the angle between these kets is π/4.

11. Now go back and look at the results of your homework (item number 3 above) again. You

got the probability of obtaining an |SG+
x 〉 or |SG−

x 〉 state as a result of the experiment are

both equal to 1/2. (Dont take this statement for granted convince yourself by doing the

experiment.)

12. Would it be correct to say that the probability of obtaining an |SG+
x 〉 state from a beam of

|SG+
z 〉 waves is: {|〈SG+

x | SG+
z 〉|}

2

13. Similarly the probability of obtaining an |SG−

x 〉 state from a beam of |SG+
z 〉 waves is:

{|〈SG−

x | SG+
z 〉|}

2
?
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14. So the probability of obtaining these measurements is basically a dot product. The dot prod-

uct can also be interpreted as a projection. Do you find this last statement to be meaningful?

15. Rationalize everything we are seeing here with respect to the plane polarized light analogy.

Indeed the probability of obtaining an x′-polarized beam from an x-polarized beam is related

to the “dot” product of x′ onto x.

16. What is the problem? You have an SG+
z state coming in. Your measurement “changes” this

state to either SG+
x or SG−

x with equal probability. For example, using the x-magnetic field

you can certainly not get SG+
z back or SG+

y for that matter. You can only see SG+
x or SG−

x .

This is what many people refer to as the “wavefunction collapses when you make a observa-

tion”. We have not used the terminology “wavefunction” before but this statement essentially

means that the ket |SG+
z 〉 collapses to either |SG+

x 〉 or |SG−

x 〉 upon “measurement” using an

x-magnetic field!!

17. These observations are profound and have long reaching implications in ellucidating to us

the strange dissimilarities between the quantum theory and the classical framework that we

are so much used to. All this of course makes sense when you interpret states as vectors and

measurements as “dot” products.

18. Homework: Now go ahead and do the experiment: Attach detectors to all outputs and

Figure 18:

explain the numbers you get using the “generalized-dot” products we have seen above.

19. Work out the above experiment for SGy.

20. Replace SGy with a magnetic field along an arbitrary direction (You can use the pull down

menu to set angle θ and φ for the direction of an arbitrary magnetic field.) Plot the population

on |SG+
z 〉 and |SG−

z 〉 as a function of θ and φ (Two three dimensional plots) and comment

on what you see.
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