4.1 Spin matrices

1. Consider the ket vectors $|+\rangle$ and $|-\rangle$. Let these ket vectors represent the up-spin and downspin states of an electron along the z-orientation. (i.e., $\left|S_{z}^{+}\right\rangle$and $\left|S_{z}^{-}\right\rangle$) A state with spin $=+1 / 2$ and is represented by the vector $|+\rangle$. What is meant by this statement is that $S_{z}|+\rangle=+\hbar(1 / 2)|+\rangle$. The state with spin $=-1 / 2$ is represented by the vector $|-\rangle$. Again, this statement implies $S_{z}|-\rangle=-\hbar(1 / 2)|-\rangle$) That is, these are eigenstates of the S_{z} operator. These two vectors form a 2-dimensional vector space that is complete and orthonormal. In matrix notation, these ket vectors may be written as
and

This is based on the isomorphism between $|+\rangle$ and x-polarized light and $|-\rangle$ and y-polarized light.

Since these two vectors form a 2-dimensional vector space that is complete and orthonormal the resolution of the identity in this space can be written as:
2. Using these ket vectors the S_{z} operator can be represented as follows:

$$
\begin{align*}
S_{z} & \equiv S_{z}[\{|+\rangle\langle+|\}+\{|-\rangle\langle-|\}] \\
& =\left[\frac{\hbar}{2}|+\rangle\langle+|-\frac{\hbar}{2}|-\rangle\langle-|\right] \\
& =\frac{\hbar}{2}[|+\rangle\langle+|-|-\rangle\langle-|] \tag{4.1.16}
\end{align*}
$$

(Note that the quantity in square brackets [...] on the left side in Eq. (4.1.16) is just the identity as per Eq. (4.1.15). Also note that we have used $S_{z}|+\rangle=+\hbar(1 / 2)|+\rangle$ and $S_{z}|-\rangle=-\hbar(1 / 2)|-\rangle$ to obtain Eq. (4.1.16). Obtain similar expressions for S_{x} and S_{y}.
3. S_{z} can then be written in matrix form using the basis-ket vectors $|+\rangle$ and $|-\rangle$ as:

$$
\begin{align*}
S_{z} & \equiv\left(\begin{array}{cc}
\langle+| S_{z}|+\rangle & \langle+| S_{z}|-\rangle \\
\langle-| S_{z}|+\rangle & \langle-| S_{z}|-\rangle
\end{array}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{4.1.17}
\end{align*}
$$

Homework: Write down similar matrix forms for the expressions you obtained for S_{x} and S_{y} in the previous problems. These three matrices are called the Pauli-spin matrices.
4. Homework: Using the three matrices you have for S_{x}, S_{y}, and S_{z}, confirm that these matrices do not commute.
5. Pauli-spin matrices are 2×2 matrices. Which means they will act on 2×1 vectors. As noted earlier
and

And the Pauli-spin matrices can act on either these vectors or linear combinations of these vectors. Such vectors obtained from arbitrary linear combinations of $|+\rangle$ and $|-\rangle$ are called "spinors" (which comes from spin-vectors. And in general the coefficients in front of each vector $|+\rangle$ and $|-\rangle$ can be complex.

