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1.4 Harmonic oscillator revisited: Dirac’s approach and introduction to

Second Quantization

1. Dirac came up with a more elegant way to solve the harmonic oscillator problem. We will

now study this approach. The reason we want to study this approach is because this, in fact,

gives an alternative approach to quantum mechanics and this is known as second quantiza-

tion. The whole field of quantum field theory is a generalization of the concepts introduced

by Dirac in the late 1920s. Second quantization also forms an important portion of mod-

ern day research in quantum theory since mathematics generally becomes simpler in second

quantization notation.

2. We define a new operator a as a linear combination of the position and momentum operators:

a =
ı√
2h̄ω

(

1

m1/2
p̂− ık1/2x̂

)

(1.4.1)

This operator is simply a linear combination of the position and momentum operators as we

can see. Hence the dual space analogue of this operator is given by:

a† =
1

ı
√
2h̄ω

(

1

m1/2
p̂+ ık1/2x̂

)

(1.4.2)

Therefore,

a†a =

[

1

ı
√
2h̄ω

(

1

m1/2
p̂+ ık1/2x̂

)

] [

ı√
2h̄ω

(

1

m1/2
p̂− ık1/2x̂

)

]

=
1

h̄ω





p̂2

2m
+

1

2
kx̂2 +

ı

2

(

k

m

)1/2

[x̂, p̂]



 (1.4.3)

Now, [x̂, p̂] = ıh̄, p̂2

2m
+ 1

2
kx̂2 = H , the harmonic oscillator Hamiltonian and we defined

earlier that k = mω2 as the relation between the force constant and the angular velocity.

Therefore,

a†a =
H

h̄ω
− 1

2
(1.4.4)

Similarly,

aa† =

[

ı√
2h̄ω

(

1

m1/2
p̂− ık1/2x̂

)

] [

1

ı
√
2h̄ω

(

1

m1/2
p̂+ ık1/2x̂

)

]

=
1

h̄ω





p̂2

2m
+

1

2
kx̂2 − ı

2

(

k

m

)1/2

[x̂, p̂]





=
H

h̄ω
+

1

2
(1.4.5)
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Therefore the harmonic oscillator Hamiltonian can be written as

H =
1

2
h̄ω

[

a†a+ aa†
]

(1.4.6)

and the commutator
[

a, a†
]

= aa† − a†a = 1 (1.4.7)

3. Lets also derive a couple of more commutators [a,H ] and
[

a†, H
]

that will be useful later.

[a,H ] =
1

2
h̄ω

[

aa†a+ aaa† − a†aa− aa†a
]

=
1

2
h̄ω

[(

aa† − a†a
)

a + a
(

aa† − a†a
)]

= h̄ωa (1.4.8)

Similarly,

[

a†, H
]

=
1

2
h̄ω

[

a†a†a+ a†aa† − a†aa† − aa†a†
]

=
1

2
h̄ω

[

a†
(

a†a− aa†
)

+
(

a†a− aa†
)

a†
]

= −h̄ωa† (1.4.9)

4. Now, let |E〉 be an eigenstate of H with eigenvalue E. Therefore,

H |E〉 = E |E〉 (1.4.10)

Let a |E〉 = |Q〉, another ket vector. Therefore,

〈

E
∣

∣

∣a†a
∣

∣

∣E
〉

= 〈Q |Q〉 ≥ 0 (1.4.11)

This implies
〈

E
∣

∣

∣a†a
∣

∣

∣E
〉

=
〈

E

∣

∣

∣

∣

H

h̄ω
− 1

2

∣

∣

∣

∣

E

〉

=
E

h̄ω
− 1

2
≥ 0 (1.4.12)

Therefore, E ≥ 1

2
h̄ω !!! This means the energy of the quantum Harmonic oscillator cannot

be lower than 1

2
h̄ω, hence that is the zero-point energy of the oscillator. (Recall that we got

the exact same result last time but by solving the differential equation. This time we have

done none of that, we have introduced a new algebraic technique, and we have used that to

obtain this result in a much easier fashion.) Now it remains to see what the operators a and

a† really mean.

5. For this lets consider the following:

aH |E〉 = Ea |E〉 (1.4.13)
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Using the commutation relations:

(Ha+ h̄ωa) |E〉 = Ea |E〉
(H + h̄ω) [a |E〉] = E [a |E〉]

H [a |E〉] = (E − h̄ω) [a |E〉]
(1.4.14)

Therefore the ket vector [a |E〉] is an eigenket of H with eigenvalue (E − h̄ω).

6. Similarly consider

a†H |E〉 = Ea† |E〉 (1.4.15)

And using the commutation relations:

(

Ha† − h̄ωa†
)

|E〉 = Ea† |E〉
(H − h̄ω)

[

a† |E〉
]

= E
[

a† |E〉
]

H
[

a† |E〉
]

= (E + h̄ω)
[

a† |E〉
]

(1.4.16)

and the ket vector
[

a† |E〉
]

is an eigenket of H with eigenvalue (E + h̄ω).

7. We obtained the relation E ≥ 1

2
h̄ω as a result of Eq. (1.4.12). This means that the energy

can have values only greater than (but including) 1

2
h̄ω. Lets say:

H |E0〉 =
1

2
h̄ω |E0〉 (1.4.17)

where we represent the ket vector corresponding to the energy 1

2
h̄ω by |E0〉.

8. Now, using Eq. (1.4.16)

H
[

a† |E0〉
]

=
(

1

2
h̄ω + h̄ω

)

[

a† |E0〉
]

(1.4.18)

since 1

2
h̄ω is the energy eigenvalue for the ket |E0〉.

9. Lets now denote the new eigenvector: |E1〉 = a† |E0〉. Then we can use Eq. (1.4.16) again

on |E1〉 to obtain:

H
[

a† |E1〉
]

=
(

1

2
h̄ω + 2h̄ω

)

[

a† |E1〉
]

(1.4.19)

and we could call the new eigenvector: |E2〉 = a† |E1〉. We could keep doing this and we

will obtain the following for the n-th ket vector:

H |En〉 =
(

1

2
h̄ω + nh̄ω

)

|En〉 (1.4.20)
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which leads us to the harmonic oscillator energy expression: E =
(

n + 1

2

)

h̄ω (which we

got earlier by solving some tedious differential equation. This new approach that we have

introduced involves a lot less math (as compared to the differential equation we solved to

obtain the Hermite polynomials) and we obtain the same result.

10. However, what does a do when it acts on the eigenket |E0〉? Lets see if we can answer this

question. Lets assume:

a |En〉 = βn |En−1〉 (1.4.21)

where the βn are to be determined. This equation also means:

〈En| a† = 〈En−1|βn
∗ (1.4.22)

where we have written the dual space analogue of Eq. (1.4.21). From Eq. (1.4.21) and Eq.

(1.4.22) we obtain:

〈En| a†a |En〉 = |βn|2 〈En−1 |En−1〉 = |βn|2 (1.4.23)

Using Eq. (1.4.4) we see that

〈En| a†a |En〉 = 〈En|
H

h̄ω
− 1

2
|En〉

= n+
1

2
− 1

2
= n (1.4.24)

(For this reason a†a is called the number operator.) Therefore βn =
√
n and

a |En〉 =
√
n |En−1〉 (1.4.25)

This leads to a |E0〉 = 0. That is the operator a “annihilates” the state |E0〉. For this reason

a is also called the annihilation operator. For similar reasons the operator a† is called the

“creation” operator. Creation and annihilation operators are extremely important in quan-

tum chemistry, since many advanced techniques to solve the time independent Schrödinger

Equation are based on the use of these techniques. The interested reader should look at the

following two references for further reading in this subject: (a) H. C. Longuet-Higgins, in

Quantum Theory of Atoms and Molecules, A TRIBUTE TO JOHN C. SLATER, Ed. P.-O-

Löwdin, Academic Press 1966. p. 105. (b) Simons and Jorgensen, “Second Quantization

methods in quantum chemistry”.

11. Now the question:

a† |En〉 = αn |En+1〉 (1.4.26)

and what is αn. We follow the same approach as before:

〈En| a = 〈En+1|αn
∗ (1.4.27)
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and multiplying the two equations:

〈En| aa† |En〉 = |αn|2 〈En+1 |En+1〉 = |αn|2 (1.4.28)

Now using Eq. (1.4.5) we have 〈En| aa† |En〉 = n + 1 and therefore αn =
√
n + 1. There-

fore,

a† |En〉 =
√
n+ 1 |En+1〉 (1.4.29)

12. Homework: Use Eqs. (1.4.29) and (1.4.25) in Eq. (1.4.6) to confirm the eigenvalues and

eigenvectors of the Harmonic oscillator.

1.5 Selection rules for vibrational transitions within the harmonic approxi-

mation

1. In the next few pages we will see an important application of the harmonic oscillator prob-

lem, that is infra-red spectroscopy. In particular we will see that second quantization can be

used to obtain selection rules for IR spectra with little effort.

2. One very important reason for studying the harmonic oscillator problem is vibrational spec-

troscopy. To a first approximation one could assume that the chemical bond is harmonic.

That is when perturbed from its equilibrium position the bond tends to relax back to its

original equilibrium position. As a result we could assume that a carbon-carbon bond (for

example) has a spring that connects the two carbon atoms as seen in the figure below. (Note

this approximation is only true at low energies. As we approach the dissociation limit the

potential energy in the bond deviates substantially from the harmonic potential.)

3. Hence for lower vibrational states, the harmonic potential should be a valid approximation

and what we have derived in the previous section could be used to get the properties that one

might see in vibrational spectroscopy. Lets see what we can do here.

4. We have seen before that electromagnetic radiation is a set of perpendicular electric and

magnetic field vectors. The frequency of oscillation of these field vectors is proportional to

the amount of energy.

5. Can this energy from the photon be absorbed by a given molecule? Which transitions (mo-

tions of the molecule) absorb energy, and which ones dont?

6. Consider a diatomic molecule: Only when a given transition gives rise to a change in dipole

moment, will the corresponding frequency be absorbed. Why?

7. Hence the change in dipole moment with respect to a given transition is significant here.

8. In IR spectroscopy, radiation of a certain frequency is incident on the system, and response

is studied and this is what leads to the “spectrum” of the molecule. In most cases, when the

applied radiation is weak, one quantity that is very useful to calculate is the transition dipole
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bracket (which we will define below), since the response of the system is proportional to

the transition dipole bracket. What this essentially means is the probability of the transition

from state |m〉 to state |n〉 in the presence of an electromagnetic field (or light) is given by

the quantity:

P(t) ∝ |〈m |x̂|n〉|2 (1.5.1)

Eq. (1.5.1) will not be derived in this class. It can be derived using time-dependent perturba-

tion theory which we may not have time to cover. The interested reader may look at Chapter

12 of Fayer.

9. However, we note the following. The incident radiation comprises electric and magnetic

fields. (We saw earlier, during the SG experiments, that light consists of mutually orthogo-

nal electric and magnetic field vectors.) The electric field vector interacts with the “dipole

operator”. In fact, the quantity 〈m |x̂|n〉 is called the transition dipole bracket. Why? It has

the units of a dipole (position times a charge density). And that is why its called the tran-

sition dipole bracket. The magnitude of this elements tells us the probability of transition

between states m and n in the presence of an external field.

10. Now the probability of transition from state |m〉 to state |n〉 in the presence of radiation is

proportional to the dipole bracket. Lets see if we can evaluate this for the harmonic oscillator

and get some results for IR spectroscopy.

11. Using the definition of the creation and annihilation operators in Eqs. (1.4.1) and (1.4.2) we

can write the position operator as:

x̂ =

√

h̄ω

2k

(

a† + a
)

(1.5.2)

Therefore,

P(t) ∝ |〈m |x̂|n〉|2 = h̄ω

2k

∣

∣

∣

〈

m
∣

∣

∣

(

a† + a
)∣

∣

∣n
〉∣

∣

∣

2

=
h̄ω

2k

〈

m
∣

∣

∣

(

a† + a
)∣

∣

∣n
〉 〈

n
∣

∣

∣

(

a† + a
)∣

∣

∣m
〉

=
h̄ω

2k

[〈

m
∣

∣

∣a†
∣

∣

∣n
〉 〈

n
∣

∣

∣a†
∣

∣

∣m
〉

+ 〈m |a|n〉 〈n |a|m〉+
〈

m
∣

∣

∣a†
∣

∣

∣n
〉

〈n |a|m〉+ 〈m |a|n〉
〈

n
∣

∣

∣a†
∣

∣

∣m
〉]

(1.5.3)

Now since [a |m〉 = √
m |m− 1〉] and

[

a† |m〉 =
√
m+ 1 |m+ 1〉

]

, the first and second

term in the last equation above must be zero. Therefore:

P(t) ∝ h̄ω

2k

[〈

m
∣

∣

∣a†
∣

∣

∣n
〉

〈n |a|m〉+ 〈m |a|n〉
〈

n
∣

∣

∣a†
∣

∣

∣m
〉]
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=
h̄ω

2k

[

∣

∣

∣

〈

m
∣

∣

∣a†
∣

∣

∣n
〉∣

∣

∣

2

+ |〈m |a|n〉|2
]

=
h̄ω

2k

[

(n + 1)|〈m |n+ 1〉|2 + n|〈m |n− 1〉|2
]

(1.5.4)

which can only be non-zero when m = n+ 1 or m = n− 1.

12. This means the transition in IR spectroscopy is allowed only between eigenvalues that differ

by 1, if the harmonic approximation is valid. This a vibrational spectrum selection rule.

Now we have seen earlier that the harmonic approximation is valid for the lower vibrational

states, but not for the higher vibrational states (close to dissociation). Hence these selection

rules are not valid at higher vibrational states. However, it turns out in practice that even at

higher states the major contribution does come from the lines that differ by one quanta!!

13. Homework: Using the approach due to Dirac (ie the creation and annihilation operators),

derive expressions for 〈x〉, 〈x2〉, 〈p〉 and 〈p2〉 for the harmonic oscillator. Use this to obtain

the uncertainty product ∆x∆p. Comment on your result.
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