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1.3 Harmonic Oscillator

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total

Hamiltonian looks like:

H = −
h̄2

2m

d2

dx2
+

1

2
kx2 (1.3.1)

where k is the force constant for the Harmonic oscillator. (Note: the k here has nothing

to do with momentum eigenvalues. It is just coincidental that we are using the same letter

in the alphabet to describe these two unrelated items.) We will now look at the solution to

this problem, since this forms the basis to a number of problems, for example the solution

to vibrational motion in molecules and in infra-red spectroscopy. It also plays an important

role in the quantum theory of solids, vibrational spectroscopy, etc.

2. The classical harmonic oscillator comprises a single mass attached to the end of a spring.

When the spring is stretch the particle undergoes a simple harmonic motion. This is char-

acterized by the particle moving from one end to the other and back and when there is no

external disturbance this motion is perpetual. Furthermore all values of energy are possible,

since the particle can vibrate about its equilibrium position with any amount of energy. (The

energy determines how much the spring stretches.) It is possible for the particle to have

zero energy (no motion). There is no zero point energy in classical mechanics. The simple

pendulum is another example of the classical harmonic oscillator.

3. The quantum mechanical treatment of the harmonic oscillator leads to a different set of

results. The particle can have zero point energy. The energy will be discrete. All this, as we

can guess, will be enforced by the boundary conditions as we have seen before for PIB.

4. Plus, the zero point energy is something that reflects the Heisenberg uncertainty principle.

Classically you can have the particle stationary at a given point. But this amounts to knowing

its position as well as velocity (or momentum), which is clearly in violation of the uncertainty

principle.

5. The harmonic oscillator energy eigenvalue problem (or the time-independent Schrödinger

Equation) is:

Hψ = Eψ
[

−
h̄2

2m

d2

dx2
+

1

2
kx2

]

ψ = Eψ

d2ψ

dx2
+

2m

h̄2

[

E −
1

2
kx2

]

ψ = 0

d2ψ

dx2
+

[

λ− α2x2
]

ψ = 0 (1.3.2)

where we have substituted λ = 2mE

h̄
2 and α2 = mk

h̄
2 .
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6. We will use an asymptotic analysis to solve this problem. [We will do something similiar for

the hydrogen atom later in the semester.]

7. For any fixed value of E, as x → ∞, α2x2 >> λ and this leads to:

d2ψ

dx2
= α2x2ψ (1.3.3)

For large x the solution to this equation is

ψ(x) = exp
[

±
α

2
x2

]

. (1.3.4)

This is true because:

d2

dx2
exp

[

±
α

2
x2

]

=
[

α2x2 ± α
]

exp
[

±
α

2
x2

]

(1.3.5)

and for large x the second term in the bracket is small as compared to the first term which

helps us recover Eq. (1.3.3). Furthermore, as x → ∞ only exp
[

−α

2
x2

]

remains finite and

exp
[

+α

2
x2

]

becomes infinitely large. Hence, only exp
[

−α

2
x2

]

in an acceptable solution.

8. We propose the following solution to the Harmonic oscillator problem:

ψ(x) = exp
[

−
α

2
x2

]

f(x). (1.3.6)

We want to approximate f(x) as a power series.

9. And when we substitute this into the differential equation we can get an equation that in-

volves the coefficients of the power series used to approximate the function f(x). And we

can equate like powers of xi for all values i. We end up with another special function as a

solution to this equation. And this function is known as the Hermite polynomials!!

10. It is critical to go over this drivation for two reasons. (a) Burried in this derivation is a

deep insight. In the final step of this derivation which leads to the Hermite polynomials,

boundary conditions are again required to be enforced. Without the boundary conditions

being enforced you dont get Hermite functions and you dont get discrete states!!. (a) We are

all physical chemists and hence should have a certain degree of mathematical facility as part

of our education (google/wikipedia notwithstanding).
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11. The n = 0 state is a Gaussian (proportional to exp [− (α/2)x2]) and the wavefunction and

the probability density look as follows:

Figure 2: n = 0 wavefunction and probability for the harmonic oscillator. The x-axis is γ.
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12. Consider the point where the total energy is equal to the potential energy:

1

2
hν =

1

2
kx2 =

1

2
hνγ2 (1.3.7)

Note now that what this expression means is the total energy is equal to the potential energy.

This could only happen at the “turning point” of the classical oscillator. Hence the classical

turning point for the ground state oscillator is at γ = ±1. But from the above figure we

see that the ground state wavefunction of the quantum harmonic oscillator is not zero at this

point. Hence there is substantial tunneling!! In fact 0.16 of the probability exists beyond the

classical turning point.

13. Another striking feature from Fig. 2 is that the probability is a maximum at γ = 0. We

should compare this with the classical harmonic oscillator. In the classical case the velocity

is maximum at γ = 0. And in fact the velocity is zero at the edges, which is why it turns

back towards the equilibrium point. Since the classical harmonic oscillator moves very fast

at the equilibrium point and very slow at the classical turning point, we would conclude that

the classical harmonic oscillator spends the least bit of time at the equilibrium point and

the maximum at the turning point. Hence the likelihood of finding the classical particle is

maximum at the edges (or the turning point) and is minimum at the equilibrium point. This

is exactly contradictory to what we have for the quantum harmonic oscillator ground state as

seen in Fig. 2.
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14. In Fig. 3 a few higher harmonic oscillator wavefunctions are presented and in Fig. 4 the

probability density for the n = 10 state is presented.

Figure 3: The harmonic n = 1 through n = 6 states. Note each state has n− 1 nodes. The x-axis

is γ.

15. From both of these figures the probability along the edges increases and the state becomes

more and more “classical-like” for large n. But is this really true?
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Figure 4: Probability of the n = 10 state.

16. In fact the quantum description of a macroscopic harmonic oscillator is exactly equivalent to

a classical description. Lets see if this makes sense. Consider a 1 gram mass connected to a

spring that is initially displaced an amount equal to 1 cm. Let the frequency of oscillation be

1 Hz. This implies the force constant, k = 4π2g/s2. At the classical turning point, x = 1cm
and the total energy is equal to the potential energy 1

2
kx2 = 2π2gcm2/s2. Now if we were

to treat the exact same system quantum mechanically then we would have
(

n+ 1

2

)

hν =
1

2
kx2 = 2π2gcm2/s2, which gives approximately n = 1027 !! This means the classical

system corresponds to the quantum system at this very large quantum number. But the

quantum system has (1027 − 1) nodes with an average separation of 10−27cm very much

smaller than what we can measure. Hence the quantum density also looks smooth and is

indistinguishable from the classical density!!

17. This last argument very nicely demonstrates the Bohr correspondence for the harmonic os-

cillator.
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