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1.6 The Hydrogen Atom

1. We want to solve the time independent Schrödinger Equation for the hydrogen atom.

2. There are two particles in the system, an electron and a nucleus, and so we can write the

Hamiltonian as:

H(~r, ~R) = − h̄2

2m
∇2

r −
h̄2

2M
∇2

R − Ze2
∣

∣

∣~r − ~R
∣

∣

∣

(1.6.1)

3. The spherical coordinate system is ideal to solve such problems, on account of the spherical

symmetry of atoms.

4. But lets see if we can first reduce this problem to a simpler problem.

5. There are two particles, the electron and the nucleus. Lets assume the vector ~R represents

the position of the nucleus (massM) and the let ~r represent the position of the electron (mass

m).

6. What is the center of mass of this system? The position of the center of mass is given by the

vector:

~RCM ≡ m~r +M ~R

m+M
(1.6.2)

and lets introduce the vector:

~re−N ≡ ~R− ~r (1.6.3)

Or we can write the old coordinates in terms of the new as:

~R = ~RCM +
m

m+M
~re−N (1.6.4)

and

~r = ~RCM − M

m+M
~re−N (1.6.5)

7. So now we have introduced two new coordinates, the center of mass vector, and a vector

denoting the position of the electron with respect to the nucleus. (As we will see later this

new set of coordinates are more convenient to work with.) Lets see if we can write the kinetic

energy of the two particle system in terms of these two new coordinates.
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8. Note: |~a|2 = ~a · ~a.

9. Now if we represent the total mass, Mtot = (M +m) and the reduced mass, µ =
(

mM
m+M

)

then we have
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1
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Mtot
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∣

∣

∣

d~RCM

dt

∣

∣

∣

∣

∣

∣

2

+
1

2
µ

∣

∣

∣

∣

∣

d~re−N

dt

∣

∣

∣

∣

∣

2

=
pCM

2

2Mtot
+
pe−N

2

2µ
(1.6.7)

10. Now lets see if we can use all this to simplify the hydrogen atom Hamiltonian. Consider the

kinetic energy part of the Hamiltonian as seen in Eq. (1.6.1):

T (~r, ~R) = − h̄2

2m
∇2

r −
h̄2

2M
∇2

R

=
pr

2

2m
+
pR

2

2M

=
pCM

2

2Mtot
+
pe−N

2

2µ

= − h̄2

2Mtot
∇2

RCM
− h̄2

2µ
∇2

re−N
(1.6.8)

and the Hamiltonian for the Hydrogen atom becomes:

H = − h̄2

2Mtot

∇2
RCM

− h̄2

2µ
∇2

re−N
− Ze2

|re−N |
(1.6.9)

11. Now, the time-independent Schödinger Equation that will be obtained from using this Hamil-

tonian will be a second order differential equation. Why? Because this Hamiltonian contains

second derivative terms.

12. Now note that this Hamiltonian can be written as the sum of two terms one that only depends

on RCM and the other that only depends on re−N . Such Hamiltonians are called separable

Hamiltonians and in such cases one can always make the approximation that the solution to

the time-independent Schödinger Equation will be of the product form

Ψ(RCM , re−N) = χ(RCM )ψ(re−N) (1.6.10)
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13. As must be clear by the repeated use of this idea of separation, “separation of variables” is a

powerful approach to solve many kinds of differential equations. We will use it here to solve

the Hydrogen atom problem.

14. The time-independent Schödinger Equation for the hydrogen atom is:

[

− h̄2

2Mtot

∇2
RCM

− h̄2

2µ
∇2

re−N
− Ze2

|re−N |

]

Ψ(RCM , re−N) = EΨ(RCM , re−N)

(1.6.11)

[

− h̄2

2Mtot
∇2

RCM
− h̄2

2µ
∇2

re−N
− Ze2

|re−N |

]

χ(RCM)ψ(re−N)

= Eχ(RCM)ψ(re−N) (1.6.12)

− h̄2

2Mtot
ψ(re−N)∇2

RCM
χ(RCM) − h̄2

2µ
χ(RCM)∇2

re−N
ψ(re−N)

− χ(RCM )
Ze2

|re−N |
ψ(re−N)

= Eχ(RCM )ψ(re−N) (1.6.13)

Dividing both sides by χ(RCM )ψ(re−N) we obtain:

− h̄2

2Mtot

1

χ(RCM)
∇2

RCM
χ(RCM ) +

1

ψ(re−N)

[

− h̄2

2µ
∇2

re−N
ψ(re−N)

− Ze2

|re−N |
ψ(re−N)

]

= E (1.6.14)

And again we will use the same trick that we used in simplifying the time-dependent Schödinger

Equation in Section. ??. We note that the first term on the left depends only on RCM . The

second term on the left depends only on re−N . But they add up to a constant E. The only

way that can hold true is if both of these two terms are independently equal to a constant.

(Sound familiar?)

15. Now if we were to say that E = Eµ + ERCM
such that:

− h̄2

2Mtot

1

χ(RCM )
∇2

RCM
χ(RCM) = ERCM

(1.6.15)

and
1

ψ(re−N)

[

− h̄2

2µ
∇2

re−N
ψ(re−N)−

Ze2

|re−N |
ψ(re−N)

]

= Eµ (1.6.16)
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then Eq. (1.6.15) above is simply:

− h̄2

2Mtot

∇2
RCM

χ(RCM ) = ERCM
χ(RCM) (1.6.17)

which has a form identical to the particle in a box time-independent Schrödinger Equation,

but notice that we will have no boundary conditions for this particular case of RCM . (That is

the center of mass of the hydrogen atom is not confined to remain inside in any space as the

particle-in-a-box was, that is the hydrogen atom as unconfined translational motion.) And

recall that it was the boundary conditions of confinement that enforced discrete states (or

quantization of energy levels) for the particle-in-a-box case. And since there is no confine-

ment of center-of-mass here we may expect the eigenstates in Eq. (1.6.17) to be continuous,

that is defined for all energies. The general solution to Eq. (1.6.17) is:

χ(RCM) = A exp [ıkRCM ] +B exp [−ıkRCM ] (1.6.18)

here k =

√
2MtotERCM

h̄
as in the particle in a box case. Another important condition that

arises from here is that

ERCM
=

h̄2k2

2Mtot

> 0 (1.6.19)

16. Now lets consider Eq. (1.6.16) which represents the “internal structure” of the hydrogen

atom.
[

− h̄2

2µ
∇2

re−N
ψ(re−N)−

Ze2

|re−N |
ψ(re−N)

]

= Eµψ(re−N) (1.6.20)

Notice that this equation depends on the relative displacement of the electron with respect

to the hydrogen nucleus. Hence we have achieved a separation of variables as stated earlier.

Thus the total energy of hydrogen atom is E = Eµ + ERCM
, where ERCM

is non-negative

as shown earlier and corresponds to the translational motion of the center-of-mass, and Eµ

is the internal energy due to the relative motion of the electrons and nucleus which is what

we are about to discuss now.

17. As noted in the angular momentum case it is always convenient to choose a coordinate

system that represents the symmetry of the problem. In this case, again, there is an inherent

spherical symmetry that is enforced by the potential. What is meant by this statement is that

as the electron moves on the surface of a sphere of any radius, with the nucleus at the center of

the sphere, it feels the same potential all through since the potential energy is only a function

of |re−N |. This is called spherical symmetry!! In general, we should note that the symmetry

of the problem is that enforced by the potential energy function and the subject of group

theory is based on exploiting such symmetries to simplify problems of quantum mechanics

and in many cases obtain accurate qualitative results without doing much of algebra! 1

1In fact group theory is useful to simplify the solution of any partial differential equation, and the Schrödinger

Equation is one such equation.
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18. Back to Eq. (1.6.20) we need to write ∇2
re−N

in spherical coordinates.

19. We could go through the same algebra that we did earlier (during the angular momentum

study) and we would get the correct form of the Laplacian ∇2
re−N

. Alternately, we could

introduce a more general approach here that will tell us how to derive the Laplacian in any

arbitrary coordinate system which could be useful for us to avoid tedious algebra in the

future. We will choose the second approach.

20. We will first introduce a concept called the metric tensor. The metric tensor is derived from

the Jacobian. These two words essentially mean “length element”. And the length element

has to be different in different coordinate systems. While in the Cartesian coordinate system

the length elements would be along the x, y and z directions, in a spherical coordinate system

the length elements would be along the r, θ and φ directions, which are obviously different.

The metric tensor is a matrix that basically tells us how these length elements relate to each

other.

21. The metric tensor is defined in the following fashion for a coordinate system: {u1, u2, u3}:

gi,j =
∂x

∂ui

∂x

∂uj
+
∂y

∂ui

∂y

∂uj
+
∂z

∂ui

∂z

∂uj
= JTJ (1.6.21)

where i, j can be 1, 2, 3, for the coordinate system transformation that we are interested in

and J is the Jacobian matrix. Given the transformation from {x, y, z} → {u1, u2, u3} we can

work out gi,j . Note that for the Cartesian coordinate system, the metric tensor is the identity

matrix. (Can you show this?) Similar for an orthogonal coordinate system the metrix tensor

is diagonal. Why? Can you provide a physical explantion?

22. Note that for a spherical coordinate system {u1, u2, u3} ≡ {r, θ, φ}.

23. For illustration we can write down the metric tensor for the {x, y, z} → {r, θ, φ} transfor-

mation as

g1,1 =
∂x

∂r

∂x

∂r
+
∂y

∂r

∂y

∂r
+
∂z

∂r

∂z

∂r
= 1

g2,2 =
∂x

∂θ

∂x

∂θ
+
∂y

∂θ

∂y

∂θ
+
∂z

∂θ

∂z

∂θ
= r2

g3,3 =
∂x

∂φ

∂x

∂φ
+
∂y

∂φ

∂y

∂φ
+
∂z

∂φ

∂z

∂φ
= r2 sin2 θ

(1.6.22)

And we also find that g1,2 = g2,1 = g1,3 = g3,1 = g2,3 = g3,2 = 0.

24. So how does the metric tensor help us? It turns out that the Laplacian for such orthogonal

coordinate systems (where gi,j = 0 for i 6= j) can be written as:

∇2 =
∑

i

1

g1/2
∂

∂ui

[

g1/2

gi,i

]

∂

∂ui
(1.6.23)
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where g is the determinant of the metric tensor. Hence in our case g = g1,1×g2,2×g3,3 since

the off-diagonal elements are zero. The gradient operator is given by:

∇ =
∑

i

~ui√
gi,i

∂

∂ui
(1.6.24)

Hence the Laplacian for {x, y, z} → {r, θ, φ} is:

∇2 =
1

r2 sin θ

{

∂

∂r

[

r2 sin θ
∂

∂r

]

+
∂

∂θ

[

sin θ
∂

∂θ

]

+
∂

∂φ

[

1

sin θ

∂

∂φ

]}

(1.6.25)

25. Recognize that the θ and φ dependent operators lead to a term that is identical to the L
2

operator derived in the spherical harmonics section, that is in Eq. (V.0.34).

26. So the solutions to the speherical harmonics problem are the same as those for a rigid rotor!!

27. So now lets go ahead and simplify Eq. (1.6.25).

∇2 =
1

r2
∂

∂r

[

r2
∂

∂r

]

+
1

r2
cot θ

∂

∂θ
+

1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂φ2

∇2 =
1

r2
∂

∂r

[

r2
∂

∂r

]

+
1

r2

[

cot θ
∂

∂θ
+

∂2

∂θ2
+

1

sin2 θ

∂2

∂φ2

]

(1.6.26)

Notice the similarity between the square bracketed term and the angular momentum operator

in Eq. (V.0.34). Thus we can rewrite Eq. (1.6.20) as

− h̄2

2µ

{

1

(re−N)
2

∂

∂re−N

[

(re−N)
2 ∂

∂re−N

]}

− h̄2

2µ(re−N)
2

[

cot θ
∂

∂θ
+

∂2

∂θ2
+

1

sin2 θ

∂2

∂φ2

]

ψ(re−N , θ, φ)

− Ze2

re−N
ψ(re−N , θ, φ) = Eµψ(re−N , θ, φ) (1.6.27)

Here we have gone back to using re−N for the radial coordinate which explains why the

equation has become so long. Now using the definition of the L
2 operator,

[

− h̄2

2µ

{

1

re−N
2

∂

∂re−N

[

re−N
2 ∂

∂re−N

]}

+
1

2µre−N
2
L

2

]

ψ(re−N , θ, φ)

− Ze2

re−N
ψ(re−N , θ, φ) = Eµψ(re−N , θ, φ) (1.6.28)

or
{

− h̄2

2µre−N
2

∂

∂re−N

[

re−N
2 ∂

∂re−N

]

− Ze2

re−N

}

ψ(re−N , θ, φ)

+
1

2µ(re−N)
2L

2ψ(re−N , θ, φ) = Eµψ(re−N , θ, φ) (1.6.29)
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28. From the last couple of equations we notice that L2 is the only part of the Hamiltonian

operator that depends on θ and φ. Hence we can see why [H,L2] = 0, and similarly the

commutator of the Hamiltonian with Lz is also zero.

29. We also notice from Eq. (1.6.29) that the Hamiltonian has a separable form that we discussed

earlier. On account of this, we propose the solution to this differential equation to be:

ψ(re−N , θ, φ) = R(re−N )Y(θ, φ) (1.6.30)

where Y(θ, φ) are the spherical harmonics, the solution to the angular momentum part as

discussed earlier.

30. Now using Eq. (1.6.30) in Eq. (1.6.29) and noting that Y(θ, φ) eigenstates of L
2 with

eigenvalues h̄2l(l + 1)

Y(θ, φ)

{

− h̄2

2µre−N
2

∂

∂re−N

[

re−N
2 ∂

∂re−N

]

− Ze2

re−N

}

R(re−N)

+
h̄2l(l + 1)

2µ(re−N)
2R(re−N)Y(θ, φ) = EµR(re−N )Y(θ, φ)

(1.6.31)

Dividing by Y(θ, φ) (we have been doing this dividing stuff for quite sometime now, right?)

{

− h̄2

2µre−N
2

∂

∂re−N

[

re−N
2 ∂

∂re−N

]

− Ze2

re−N

}

R(re−N)

+
h̄2l(l + 1)

2µ(re−N)
2R(re−N) = EµR(re−N ) (1.6.32)

which is a second order differential equation for R(re−N) The solutions to this equation are

related to what are known as the Laguerre polynomials.

31. How do we solve Eq. (1.6.32).

32. Lets first analyze the equation. The term involving the derivatives can be interpreted as

a second derivative operator and hence a radial kinetic energy (notice the angular kinetic

energy was discussed above) of re−N . The two other terms are like an effective potential:
h̄2l(l+1)

2µ(re−N )2
− Ze2

re−N
. This is an effective potential since it involves the true potential:

[

− Ze2

re−N

]

,

plus an additional potential that includes the influence of the angular dependence. Hence

this is a “spherically averaged” potential. Hence the net effective potential has the following

functional form:
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33. We would now like to go to reduced units, to make our differential equation simpler looking.

We may first rewrite Eq. (1.6.32) by multiplying throughout by −2µ
h̄2 and collecting terms on

one side to obtain
{

1

re−N
2

∂

∂re−N

[

re−N
2 ∂

∂re−N

]

− l(l + 1)

(re−N)
2 +

2µ

h̄2

(

Eµ +
Ze2

re−N

)}

R(re−N) = 0

(1.6.33)

34. Then to make the equation look simpler we make the following substitutions:

α2 = −2µEµ

h̄2

λ =
µZe2

h̄2α
ρ = 2αre−N (1.6.34)

to obtain
{

1

ρ2
∂

∂ρ

[

ρ2
∂

∂ρ

]

− l(l + 1)

(ρ)2
− 1

4
+
λ

ρ

}

R(ρ) = 0 (1.6.35)

35. To solve this we will use a power series approach. But before we do this, we analytically

solve Eq. (1.6.35) in some limiting values of ρ (for example we will first solve this equation

for the case of large and small ρ). This is done to simplify our problem. Then we take these

solutions for the limiting cases and multiply it with a power series with unknown coefficients.

You will see what I mean in a little while.

36. First lets see if we can solve Eq. (1.6.35) for the case of large ρ. But before we proceed,

realize that:
1

ρ2
∂

∂ρ

[

ρ2
∂

∂ρ

]

≡ ∂2

∂ρ2
+

2

ρ

∂

∂ρ
. (1.6.36)

Using this in Eq. (1.6.35), for ρ→ ∞ we obtain:

∂2

∂ρ2
R(ρ)− 1

4
R(ρ) = 0 (1.6.37)

This equation looks familiar!! (similar to PIB, do you see?). The solution is:

R(ρ) = A exp [−ρ/2] +B exp [ρ/2] (1.6.38)

If α were imaginary, the states are unbound!! R(ρ) is totally delocalized and there

is always a probability of finding the electron infinitely far from the nucleus. This

corresponds to an ionized state of the hydrogen atom (free electron) !! The energy is

positive. But if α is real, Eµ is negative and the wavefunction must be finite for all ρ (which

is proportional to re−N ). Hence B = 0 in this case. (Because exp [ρ/2] would blow up for

large ρ.)
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37. For the case of small ρ: Before we proceed further we simplify Eq. (1.6.35). Why? We

need a simpler equation to solve under the condition of small ρ. After-all, we are obtaining

these solutions to large and small ρ to help us in solving Eq. (1.6.35) completely. Hold-on,

and you will see what I mean.

Now note that
1

ρ2
∂

∂ρ

[

ρ2
∂

∂ρ

]

≡ 1

ρ

∂2

∂ρ2
ρ (1.6.39)

and since there is a 1/ρ dependence in all terms of Eq. (1.6.35) (except the 1/4 term), lets

substitute R = U/ρ and use Eq. (1.6.39) to further simplify Eq. (1.6.35):

{

∂2

∂ρ2
− l(l + 1)

(ρ)2
− 1

4
+
λ

ρ

}

U(ρ) = 0 (1.6.40)

Now as ρ→ 0 the second term dominates and is much larger than the third and fourth terms,

and the equation becomes:

∂2

∂ρ2
U(ρ)− l(l + 1)

(ρ)2
U(ρ) = 0 (1.6.41)

which has the solution

U(ρ) = A′
1

ρl
+B′ρl+1 (1.6.42)

And again the requirement of finiteness of R (note: R = U/ρ) sends A′ to zero. (Note:

R ≡ U/ρ has to finite as ρ→ 0 sends A′ to zero.)

38. So we have two asymptotic solutions that we can use. We want the wavefunction to approach

these asymptotic values, but for intermediate values of ρwhat is the value of R(ρ)? To obtain

this we make the substitution:

R(ρ) = exp [−ρ/2] ρlF (ρ) (1.6.43)

and let

F (ρ) =
∞
∑

i=0

ciρ
i (1.6.44)

Substitute this in Eq. (1.6.40) and we need to solve for the coefficients ci. Multiply both

sides by exp [−ρ/2] and then one equate equal powers of ρ to obtain

ci+1 =
(i+ l + 1)− λ

(i+ 1)(i+ 2l + 2)
ci = ciΓi,l (1.6.45)

This is called a recursion relation. The polynomialF (ρ) are called the Laguerre polynomials.

Now, as i → ∞, Ci+1 ≈ ci/i. For large i, F (ρ) diverges. (Note: for large ρ Ci+1 ≈ ci/i
which yields F (ρ) ∝ ∑

i(1/i!)ρ
i ≈ exp ρ which diverges for large values of ρ. This is
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clearly non-physical since the wavefunction should be finite. Hence, we need to somehow

truncate the series for some finite imax so as to control F (ρ) from blowing up. How do we

do that? We could do that by requiring that the numerator of Eq. (1.6.45) go to zero for

i = imax. Then

imax + l + 1 = λ ≡ n (1.6.46)

and then ci = 0 for all i ≥ imax. Hence the series truncates and the wavefunction remains

finite.

39. In addition, imax is non-negative, since it is the maximum value that i can have, hence n ≥
(l+1). This is obviously an important result that we have all seen before. (For n = 3 (where

n is the principal quantum number), l (the azimuthal quantum number can only have values

l = 0, 1, 2, that 3s, 3p and 3d orbitals. This result directly appears from the above series

truncation, which in turn is a result of the boundary conditions.

40. But now λ depends upon E the energy as given in the first two of Eq. (1.6.34). Using Eqs.

(1.6.34)

n2 = λ2 =
µ2Z2e4

h̄4α2
= −µZ

2e4

2h̄2Eµ

(1.6.47)

and hence

Eµ = −µZ
2e4

2h̄2n2
(1.6.48)

And now this energy is negative!! (Recall the earlier center of mass energy levels were all

greater than zero and formed a continuous spectrum.) Furthermore, n is an integer and hence

the energy in Eq. (1.6.48) is quantized. Again we got quantization by enforcing the boundary

conditions. Here we used the fact that the wavefunction has to be finite and that gave us a

maximum imax which lead to a discrete set of states.

41. We will go ahead and note here that what we have derived is true for a one-electron one

nucleus system. Hence not only is the energy in Eq. (1.6.48) a valid expression for the

hydrogen atom, but it is also from for He+, Li2+ and so on.

42. Hence the energy levels look as follows:

43. From Eq. (1.6.46) we also see that the minimum value of n is 1. (That is n cannot be

zero.) Hence the minimum energy for the hydrogen atom is En=1
µ = −µZ2e4

2h̄2 . (Note that the

lowest value of the potential is re−N → 0 when the potential energy tends to −∞. Hence

like in the particle in a box case, the lowest energy state does not correspond to the lowest

potential energy value. Zero point energy is how we referred to this phenomenon in the

particle-in-a-box case. But now we see the same thing happens in hydrogen atom as well.)

44. Quantum number of the hydrogen atom: We see that there are three quantum numbers

now, l, m and n. From Eq. (1.6.46) n > l. Since they are both integers 0 < l < (n− 1). We

have already seen the range of values that m can have. But the energy only depends on n.
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45. Eigenstates of the hydrogen atom: We have seen that the wavefunction for the hydrogen

atom has the form:

{A exp [ıkRCM ] +B exp [−ıkRCM ]} exp [−ρ/2] ρlF (ρ)Y(θ, φ) (1.6.49)

Some solutions are illustrated on the next page. We note that in this expression we have

associated Legendre polynomials as well as associated Laguerre polynomials. These are

two special functions that we have seen so far. There are a great number of special functions

and we will also encounter the Hermite polynomials when we study the Harmonic oscillator.

46. Homework: The electron mass is often used in many books instead of the reduced mass

µ. Show that using the mass of an electron instead of µ is a good approximation. (Use

the definition of µ.) What does this physically mean regarding the mass of the nucleus?

47. Using the mass of the electron instead of the reduced mass, one defines the Bohr radius as:

a0 =
h̄2

me2
= 0.52918Å (1.6.50)

where we have used m to represent the mass of the electron as done earlier. This is the

radius of the circle inside which the electron moved in the old Bohr theory!! (Below we will

present some expressions for the lower energy wavefunctions for the hydrogen atom and

then we will be in a position to interpret what fraction of the electron density really stays

inside a0 for the ground state of hydrogen.) The energy expression then becomes:

Eµ = − Z2e2

2a0n2
(1.6.51)

but only if we assume that the electron mass can replace the reduced mass!! You guys will

have the opportunity to work out when this is the case (homework above).

48. In the old Bohr model, the energy is actually given by Eq. (1.6.51). Hence Bohr had it

right for the hydrogen atom. But that approach failed for larger systems and was replaced by

quantum mechanics.

49. Nodes: The radial part of the solution (the part that depends on ρ) can be zero at finite

values of ρ. These are points in space where the electron density is zero. (Remember from

the particle in a box that such points could exist inside the box.) These special points are

called “nodes” of the wavefunction. From the form of the solution can we find out the

nodes of the wavefunction. Or at least can we find out how many nodes each wavefunction

might have? Turns out we can. Note that the wavefunction is a polynomial in ρ. See Eqs.

(1.6.43), (1.6.44), (1.6.45) and (1.6.46). From these equations we know that R(ρ) is a finite

polynomial in ρ. We also know the order of this polynomial by looking at these equations. It

is: n− l−1. Any polynomial of orderN , hasN roots. What does this mean? It means that if

you set a function that is a polynomial of orderN equal to zero, then we can getN solutions.

For example a quadratic equation has 2 solutions, a cubic equation has 3 solutions, a quartic

equation has 4 and so on. So an N-th order polynomial equation should have N solutions.

So the number of nodes in the hydrogen atom solution should be n− l − 1.
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50. Volume Element: We discussed earlier how we can transform a general Laplacian in Carte-

sian coordinates to any other coordinate system (for example the spherical coordinate sys-

tem). In addition to the Laplacian there turns out another quantity that one needs when

transforming coordinate systems. This is known as the volume element. Remember that

when you perform a one-dimensional integration what you do is multiply the integrand with

a quantity, dx. This quantity is dx is a one-dimensional “measure” or length element along

the x direction. Similarly when you perform the three-dimensional integration what we do

is multiply by a three-dimensional volume element, dxdydz. But this is the volume element

in Cartesian coordinates. What does one do if we needed this is spherical coordinates? We

need to transform the volume element to the new coordinate system. Using the definitions

for the spherical coordinates in Eq. (V.0.24) it turns out that the volume element in spherical

coordinates is given as:

r2dr sin θdθdφ (1.6.52)

But is there a way we could do this in a general fashion using the definition of the metric

tensor we introduced earlier? Turns out yes and the general expression is:

dv =
√
gdu1du2du3 (1.6.53)

where g is the determinant of the metric tensor as seen earlier. We recall from Eqs. (1.6.22)

that
√
g = r2 sin θ, which proves Eq. (1.6.52).

51. As a special case of the volume element in Eq. (1.6.52) we write what is a spherical shell

element. This volume element does not depend on θ and φ can be used when the integrand

does not have angular dependence. This is for example the case if one were to find the

expectation value of position with respect to the 1s orbital:

〈ψ1s |r|ψ1s〉 =
∫

r2dr sin θdθdφ

[

1

π

(

Z

a0

)3

exp [−2r/a0] r

]

=
1

π

(

Z

a0

)3 [∫ ∞

0
r3 exp [−2r/a0] dr

] [
∫ π

0
sinθdθ

] [
∫ 2π

0
dφ
]

=
1

π

(

Z

a0

)3 [∫ ∞

0
r3 exp [−2r/a0] dr

]

4π (1.6.54)

This is how you integrate to obtain an expectation value. In general, of course, The integrand

may depend on θ and φ. But if not the problem can be Simplified as shown above.
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