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20 The Variational Principle

1. We have so far dealt with particle in a box, hydrogen atom and harmonic oscillator. These

were problems that can be solved analytically. However, all other chemical problems (with

more than one electron) are problems that cannot be solved exactly and approximate methods

are necessary to treat such problems. For the rest of the course we will deal with some basic

ideas that are required to understand these approximate methods. The first such idea is the

variational principle which we will study here.

2. We want to solve the time-independent Schrödinger Equation

H |ψn〉 = En |ψn〉 (20.1)

for some given Hamiltonian operator. If we left multiply both sides by 〈ψn|:

〈ψn|H |ψn〉 = 〈ψn|En |ψn〉

〈ψn|H |ψn〉

〈ψn| ψn〉
= En (20.2)

3. The purpose of the time-independent Schrödinger Equation is to find the |ψn〉. If we know

this we know the energy. In many cases we may find an approximation to |ψn〉. Say, |φ〉 is

an approximation to |ψn〉. Therefore associated with this approximation is an approximate

energy given by:

E ′ [φ] =
〈φ|H |φ〉

〈φ| φ〉
(20.3)

what are the properties of such an approximate energy?

4. Let us say we can write |φ〉 = |ψn〉+ α |χ〉. Using this:

(H − En) |ψn〉 = 0

(H −En) [|φ〉 − α |χ〉] = 0

(H −En) |φ〉 = α (H −En) |χ〉 (20.4)

Now what is E ′ [φ]− En?

E ′ [φ]− En =
〈φ| (H − En) |φ〉

〈φ| φ〉
=

〈φ| (H − En) |αχ〉

〈φ| φ〉

=
〈αχ| (H − En) |αχ〉

〈φ| φ〉

= |α|2
〈χ| (H − En) |χ〉

〈φ| φ〉
(20.5)

where we have used {(H −En) |φ〉}
† = 〈φ| (H − En) since (H − En) is Hermitian.
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5. The last expression in Eq. (20.5) tells us that E ′ [φ] differs from En by an amount that is

second order in in the variation in α |χ〉. If α is small, φ is close to ψ and E ′ [φ] will be

closer to En.

6. And once φ is close to ψ, the energy is stationary with respect to small variations in φ. For

small α, |α|2 is smaller. Thus the energy is second order in variations in φ.

7. Let {ψi} be the set of (unknown) eigenfunctions of H with eigenvalues {Ei}. Since H is a

Hermitian operator, these eigenfunctions form a complete set and hence we expand φ using

this complete set:

φ =
∑

i

ciψi (20.6)

where cj = 〈ψj |φ〉, since {ψi} are complete and orthonormal. (To check this left multiply

the above equation by 〈ψj | to see what you get.) Then the energy associated with φ is (we

use Eq. (20.3)):

E ′ [φ] =
〈φ|H |φ〉

〈φ| φ〉
=

〈φ|H
∑

i ci |ψi〉

〈φ| φ〉

=
〈φ|

∑

i ciEi |ψi〉

〈φ| φ〉
=

∑

i ciEi 〈φ |ψi〉

〈φ| φ〉

=

∑

i |ci|
2
Ei

〈φ| φ〉
(20.7)

Now, the denominator:

〈φ| φ〉 =
∑

j

cj
∗ 〈ψj |

∑

i

ci |ψi〉 =
∑

i

∑

j

cj
∗ci 〈ψj |ψi〉

=
∑

i

∑

j

cj
∗ciδi,j =

∑

i

|ci|
2

(20.8)

Therefore,

E ′ [φ] =

∑

i |ci|
2
Ei

∑

i |ci|
2

(20.9)

Now the energies are ordered such that E1 ≤ E2 ≤ E3 ≤ · · · ≤ En ≤ · · ·. The Eq. (20.9)

is a weighted average of these energies. Hence, the lowest value that E ′ [φ] can have is

when c1 = 1 and all other ci = 0, that is when φ is the ground state ψ1. For all other φ,

E ′ [φ] > E1, hence

E ′ [φ] ≥ E1 (20.10)

and its minimum value is when φ ≡ ψ1. This is the variational principle.

8. Notice that we had chosen our “basis” functions as the eigenstates of the Hamiltonian. If we

had not done that we would have found that the lowest energy that we can get for E ′, given

a finite basis set, is always greater than or equal to the ground state energy. To put it in a
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different way, the lowest value of energy E ′ obtained from any finite basis forms an upper

bound to the ground state energy. That is the ground state is either below or equal to the

lowest value of E ′.

9. In reality we do not know the set {ψi}. Our φ in the previous discussion is meant to be a

approximation to one of these eigenstates. Now we shall see how we can use the variational

principle. The important point that the variational principle conveys to us is that the ground

state energy is the minimum value of all possible energies that any vector can have. We

will see how this works below. Let us expand a “trial” function φ using some complete set

of basis vectors |fi〉, that is |φ〉 = ai |fi〉. But let us now assume that |fi〉 do not form an

orthonormal set. That is 〈fi |fj〉 6= δi,j .

[So {|fi〉} are our coodinate system, and we are trying to find |φ〉 = ai |fi〉, represented in

that coordinate system. And in our case the coordinate system is not necessarily an orthog-

onal coordinate systems. So, what space are we in again?]

Then

E ′ [φ] =
〈φ|H |φ〉

〈φ| φ〉

=

∑

j aj
∗ 〈fj |H

∑

i ai |fi〉
∑

j aj
∗ 〈fj|

∑

i ai |fi〉

=

∑

i

∑

j aiaj
∗ 〈fj |H |fi〉

∑

i

∑

j aiaj
∗ 〈fj| fi〉

=

∑

i

∑

j aiaj
∗Hi,j

∑

i

∑

j aiaj
∗Si,j

(20.11)

where we have defined: Hi,j = 〈fj|H |fi〉 and Si,j = 〈fj| fi〉. These are called “matrix

elements”. Why? Consider Hi,j = 〈fj |H |fi〉, for each i and j we have one number. If there

are N basis functions fi, then we have an N ×N matrix. Similarly for Si,j = 〈fj | fi〉. Using

these definitions we can rewrite the above equation as:

∑

i

∑

j

aiaj
∗ [Hi,j − E ′Si,j] = 0 (20.12)

10. OK. So far we have just rewritten the expression for E ′ [φ]. Now we want to ask what does

the variational principle really mean? We said the minimum value of energy that we can get

from any function φ is when it is equal to the ground eigenstate. This is the minimum value

of energy. Hence, from calculus ∂E′

∂ak
= 0. Using this in Eq. (20.12):

∂

∂ak

∑

i

∑

j

aiaj
∗ [Hi,j − E ′Si,j] =

∑

i

∑

j

δi,kaj
∗ [Hi,j − E ′Si,j] +

∑

i

∑

j

aiδj,k [Hi,j −E ′Si,j] +

∑

i

∑

j

aiaj
∗

[

−
∂E ′

∂ak
Si,j

]
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=
∑

j

aj
∗ [Hk,j − E ′Sk,j] +

∑

i

ai [Hi,k − E ′Si,k]

= 0 (20.13)

which is true for every k. We are free to change the i → j in the second term of the last

equation. Then we note that since H is Hermitian, Hi,k
∗ = Hk,i.

11. If we restrict ourselves to real functions and real values of ai then Eq. (20.13) reduces to:

∂

∂ak

∑

i

∑

j

aiaj
∗ [Hi,j −E ′Si,j] = 2

∑

i

ai [Hi,k − E ′Si,k] = 0 (20.14)

Equation (20.14) is a system of equations. There is one equation for each k. And each

equation is a linear equation in the set of unknowns {ai}. Certainly one solution to this

system of equations is a1 = a2 = a3 = · · · = 0. This called the trivial solution and in this

case is completely meaningless since they φ would be zero. For such a set of equations to

have a “meaningful” solution, it is required that the determinant:

|H − E ′S| = 0 (20.15)

Solving this determinant gives us E ′ which can be used to determine the eigenstates of the

Hamiltonian. This equation is called the secular equation. Let us do a couple of examples.

(I will do this on the board.)

Can we now see what we really did in

http://www.indiana.edu/%7Essiweb/C561/PDFfiles/Diag-handout.pdf? [If you recall, this

was a handout given to you during the first mid-term exam to help you diagonalize a matrix.]
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