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7 The time-dependent Schrödinger Equation

ıh̄
∂

∂t
ψ(x, t) = Hψ(x, t) (7.1)

where, H is called the Hamiltonian operator. It is the operator in quantum mechanics that corre-

sponds to the energy of the system.

In quantum mechanics, every measurable quantity, has a corresponding operator. As we studied

in the Stern-Gerlach experiments (and from the subsequent treatment of kets and operators), a

measurement “projects” a system onto the eigenstates of the operator.

H can be written as a sum of the kinetic and potential energy:

H = K + V =
p2

2m
+ V (7.2)

Now if we substitute the momentum operator in Eq. (H.7) (see the Operators handout, i.e. p̂ =
−ıh̄ ∂

∂x
, we can write down the Hamiltonian operator as

H =
p2

2m
+ V =

1

2m

[

−ıh̄
∂

∂x

]

2

+ V = −
h̄2

2m

∂2

∂x2
+ V (7.3)

where − h̄2

2m
∂2

∂x2 = 1

2m

[

−ıh̄ ∂
∂x

]

2

is the kinetic energy operator.

In addition, note that we have used ψ(x, t) in Eq. (7.1) instead of an abstract ket. So we have

already chosen a representation, the position (or coordinate) representation.

A general comment: in the coordinate representation, the Schrödinger Equation is a differential

equation. (In other representations, it may actually a matrix equation. This is similar to how we

noted in the previous class that an operator goes a matrix, while a ket goes to a vector!)
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The time-dependent Schrödinger Equation (7.1) can be rationalized from the wave-particle

duality. We will proceed to show this below.

1. We have seen earlier in the Stern Gerlach experiments that there is this great analogy between

wave-like behavior and particle-like behavior. We noted that the behavior of spin states in

the presence of a magnetic field can be exactly reproduced by considering the behavior of

plane-polarized light.

2. Hence, can we write 〈x |ψ〉 ≡ ψ(x) as a collection of waves? Consider the following:

h(x) =
∫

dkf(k) exp {ıkx} =
∫

dpf(p) exp
{

ı
p

h̄
x
}

(7.4)

How does one obtain this expression?

3. Note that in Eq. (7.4), h(x) is a linear combination of waves such as those in the Change of

basis section.

4. Note further that waves exp {ıkx} are eigenstates of the momentum operator. (Why is

exp {ıkx} considered to be a wave? Because, exp {ıkx} = cos {kx} + ı sin {kx}.)

5. Note also that Eq. (7.4) is obtained from resolution of identity in terms of the momentum

Eiqenstates. In addition, those of you who have seen Fourier transforms before will note that

the function h(x) is now a Fourier transform of the function f(k).

6. Wavepackets: Why in Eq. (7.4) do we say that h(x) is a linear combination of waves when

we write it as an integral? Because:

(a) exp {ıkx} forms a continuous representation as noted earlier in Eq. (E.6) (where we

have represented the eigenstates of momentum as |k〉, that is using the abstract ket

vector).

(b) As noted in Eq. (E.5) for continuous representations the sum is changed to integral.

(c) Hence Eq. (7.4) is the continuous multi-dimensional analogue of Eq. (A.1) in the

vector algebra review.

(d) Hence we can say that in Eq. (7.4), we have written h(x) as a continuous linear combi-

nation of waves. So could we call it a ”packet” of waves then? Indeed!!! In fact, ψ(x)
as written on the right hand side of Eq. (7.4) is called a wavepacket (as in ”packet-of-

waves”).

7. h(x) in Eq. (7.4) does not have a time-dependence. So, lets go ahead and multiply Eq. (7.4)

by the quantity exp {−ıωt} = exp
{

−ıE
h̄
t
}

so as to maintain the same wave-form as in Eq.

(2.6),

ψ(x, t) =
∫ ∫

dpdEf(p)g(E) exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

(7.5)
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8. Note now the similarities between the integrand in Eq. (7.5) and the plane polarized light

seen earlier. How does one rationalize Eq. (7.5)?

9. Let us go ahead substitute the right hand side of Eq. (7.5) into Eq. (7.1) to see what happens.

(Lets forget about V for now.)

10. Differentiating Eq. (7.5) twice with respect to x we obtain:

−
h̄2

2m

∂2

∂x2
ψ(x, t) = −

h̄2

2m

∂2

∂x2

∫

dpdEf(p)g(E) exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

= −
h̄2

2m

∫ ∫

dpdEf(p)g(E)
[

ı
p

h̄

]

2

exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

=
1

2m

∫ ∫

dpdEf(p)g(E)p2 exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

(7.6)

11. Note further from Eq. (7.2) that in the absence of V , E = p2

2m
. Hence, Eq. (7.6) can be

re-written as:

−
h̄2

2m

∂2

∂x2
ψ(x, t) =

∫ ∫

dpdEf(p)g(E)E exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

(7.7)

12. Differentiating Eq. (7.5) with respect to twe obtain (for the right side of Eq. (7.1) we obtain:

ıh̄
∂

∂t
ψ(x, t) = ıh̄

∂

∂t

∫ ∫

dpdEf(p)g(E) exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

= ıh̄
∫ ∫

dpdEf(p)g(E)
[

−ı
E

h̄

]

exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

=
∫ ∫

dpdEf(p)g(E)E exp
{

ı
[

p

h̄
x−

E

h̄
t
]}

(7.8)

13. Note that the right hand side of Eqs. (7.8) and Eq. (7.7) are identical. Hence the left hand

sides of Eqs. (7.8) and (7.7) must be equal to each other which leads to the time-dependent

Schrödinger equation.

This provides a good rationalization for the time-dependent Schrödinger Equation (TDSE) in

Eq. (7.1) using the wave-particle duality and the analogy to plane-polarized light.

That is, the TDSE holds for all functions that can be written as linear combination of waves.
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8 The time-independent Schrödinger Equation

1. Let us now restrict ourselves to a certain kind of solution to the TDSE, Eq. (7.1).

ψ(x, t) = φ(x)f(t) (8.1)

Eq. (8.1) assumes that space (x) and time (t) dependence of the wavefunction ψ(x, t) can be

separated. This is not always the case as we will see later in a homework problem.

2. Substituting Eq. (8.1) into the time-dependent Schrödinger Equation (TDSE), we obtain:

ıh̄
∂

∂t
ψ(x, t) = Hψ(x, t)

ıh̄φ(x)
∂

∂t
f(t) = −

h̄2

2m
f(t)

∂2φ(x)

∂x2
+ V φ(x)f(t) (8.2)

3. Dividing both sides from the left (why is this distinction in directionality left/right important?

Homework) by [φ(x)f(t)] yields:

ıh̄
φ(x)

φ(x)f(t)

∂

∂t
f(t) = −

h̄2

2m

f(t)

φ(x)f(t)

∂2φ(x)

∂x2
+
V φ(x)f(t)

φ(x)f(t)

ıh̄
1

f(t)

∂

∂t
f(t) = −

h̄2

2m

1

φ(x)

∂2φ(x)

∂x2
+

1

φ(x)
V φ(x)

ıh̄
1

f(t)

∂

∂t
f(t) =

1

φ(x)
Hφ(x) (8.3)

4. Note in Eq. (8.3) that the left hand side only depends on time (t) while the right hand side

only depends of space (x). The only way they can each be equal to the other is if they are

both equal to some constant (say, E: we dont know what that constant is yet though):

ıh̄
1

f(t)

∂

∂t
f(t) = E =

1

φ(x)
Hφ(x) (8.4)

which gives two equations:

ıh̄
1

f(t)

∂

∂t
f(t) = E (8.5)

and
1

φ(x)
Hφ(x) = E (8.6)

Or we could rewrite these two equations as:

ıh̄
∂

∂t
f(t) = Ef(t) (8.7)

and

Hφ(x) = Eφ(x) (8.8)
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5. Eq. (8.8) is called the time-independent Schrödinger Equation.

6. Eq. (8.7) is a first order differential equation in time that we can solve as follows.

(a) First multiply both sides by dt,

ıh̄
∂

∂t
f(t) = Ef(t)

ıh̄df(t) = Ef(t)dt (8.9)

(b) Then divide both sides by f(t), and

ıh̄
df(t)

f(t)
= Edt

(c) Note now that we can integrate both sides with respect to time as shown below:

∫

ıh̄
df(t)

f(t)
=

∫

Edt

ıh̄ ln [f(t)] = Et + C (8.10)

where C is a constant of integration. Exponentiating Eq. (8.10) we obtain:

f(t) = exp
[

−
ıEt

h̄

]

exp
[

−
ıC

h̄

]

(8.11)

But exp
[

− ıC
h̄

]

is also a constant, since C is a constant. So we can write this as say A:

f(t) = A exp
[

−
ıEt

h̄

]

(8.12)

which is the solution to Eq. (8.7).

(Some of you may be AIs for general chemistry. You may have encountered, or will en-

counter, a similar expression for the first order rate. But note that there is an important

difference here, the complex number ı which is not present for the first order rate equation.)

7. The time-independent Schrödinger Equation is Eq. (8.8):

Hφ(x) = Eφ(x)

−
h̄2

2m

∂2

∂x2
φ(x) + V φ(x) = Eφ(x) (8.13)

is a second order differential equation (and eigenvalue problem!!) that depends on the po-

tential V . We will consider a few cases in this course where the solution to this equation

can be worked out analytically. However, for the majority of cases, the time-independent

Schrödinger Equation can only be solved through approximations. This is the case for all

chemical systems with more than a few atoms. We will spend a little bit of time later in this

course outlining some of the methods involved in solving Eq. (8.13)
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8. However, we can now write our restricted (why restricted? Homework) solution to the

TDSE as:

ψ(x, t) = φ(x)f(t)

= φ(x)
{

A exp
[

−
ıEt

h̄

]}

(8.14)

9. Equation (8.14) is called the ”stationary-state-solution” to the time-dependent Schrödinger

Equation and the functions φ(x) are called the stationary state.

10. Why is this called the stationary state? It is certainly not ”stationary” since it depends on

time. But. the probability density |ψ(x, t)|2 = ψ(x, t)∗ψ(x, t) is time-independent since

|ψ(x, t)|2 = ψ(x, t)∗ψ(x, t)

= |φ(x)|2A∗A exp
[

−
ıEt

h̄

]

exp
[

ıEt

h̄

]

= A∗A |φ(x)|2 (8.15)

Note that the right side does not depend on time. This is the reason why Eq. (8.14) is called

a stationary-state-solution to the time-dependent Schrödinger Equation.

Homework: Let ψ1 be a solution to the time-dependent Schrödinger Equation in Eq. (7.1)

of the form ψ1(x, t) = φ1(x)f1(t). Similarly consider a second solution to the time-dependent

Schrödinger Equation in Eq. (7.1) of the form ψ2(x, t) = φ2(x)f2(t).

1. Prove that ψ3(x, t) = c1ψ1(x, t)+c2ψ2(x, t) (where c1 and c2 are constants) is also a solution

to the time-dependent Schrödinger Equation in Eq. (7.1) (Hint : To solve this problem,

(a) substitute ψ1(x, t) in Eq. (7.1), (b) substitute ψ2(x, t) in Eq. (7.1), (c) multiply the

first equation generated from the equation in (a) above by c1, multiply the second equation

generated from the equation in (b) above by c2, add these to new equations and show that this

becomes the time-dependent Schrödinger Equation for ψ3(x, t) = c1ψ1(x, t) + c2ψ2(x, t).)

2. Is ψ3(x, t) of the form in Eq. (8.1)? What are your conclusions?
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Extra Credit Homework:

1. On the basis of the above homework you see that the form of ψ(x, t) is very restricted and

more general solutions are possible to the time-dependent Schrödinger Equation that do not

conform to this simple form. In this homework I hope to show you how more general forms

of this solution can be derived.

(a) Take Eq. (7.1) and multiply both sides by exp {ıEt/h̄}.

(b) Integrate with respect to t between the limits −∞ to +∞.

(c) Show that the result is identical to Eq. (8.8).

(d) This presents an alternate approach to derive the time-independent Schrödinger Equa-

tion

2. Now something more general:

(a) Take Eq. (7.1) and multiply both sides by exp {ıEt/h̄}.

(b) Integrate with respect to t between the limits 0 to +∞.

(c) When you simplify this you don’t get Eq. (8.8), do you?

(d) How do you argue this result?

(e) If you had integrated from t1 to t2 instead of 0 to +∞ above, what would you have

obtained? Do you see how both the time-independent Schrödinger Equation and the

equation obtained above by integrating from 0 to +∞ are special cases of this equation?

(f) The equations you have derived here are called the “time-independent wavepacket

Schrödinger Equation (TIWSE)” and are a more general form that the TISE. What

do you think they are useful for?
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