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E The Position and the momentum representation and the Wave-

function

1. We shall also note here that the set {|n〉} represented in Eq. (D.3) is a discrete set. How

do we know this is discrete, the summation in Eq. (D.3) has a countable number of terms.

In three-dimensional the summation in Eq. (D.3) has three terms; in four-dimensions it has

four terms and in n-dimensions the summation in Eq. (D.3) has n terms. In the next section

we will discuss a continuous representation which is basically obtained by converting the

summation in Eq. (D.3) into an integral:

∑

→
∫

(E.5)

At this point it will be useful to review some of your calculus. In particular we would like to

remember that the integration is “the limit of a sum”. Hence the integration is very similar

to a sum, but only has infinitely many terms in it. Hence the correspondence in Eq. (E.5)

makes sense.

2. The eigenstates of momentum for a continuous representation which we discussed earlier

(Eq. (E.5).
∫

dk |k〉 〈k| = 1 (E.6)

Why continuous? The k in Eq. (H.9) can take on any real value and exp {ıkx} would still

remain an eigenstate of the momentum operator.

3. Eigenstates of many different kinds of “special” operators in quantum mechanics always

form a complete set. We will prove this general statement in detail later in this class.

4. Like the momentum operator, there is another kind of operator in quantum mechanics called

the position operator.

x̂ |x〉 = x |x〉 (E.7)

The eigenstates of the position operator form another important complete set of ket vectors

that form a continuous representation.

∫

dx |x〉 〈x| = 1 (E.8)

5. As the name suggests, the variable “x” above is the position (in 3-dimensions or in n-

dimensions, but it is easier to picture this in 3D). What this means all point in a 3-dimensional

space (for example) form a complete set of ket vectors. (This point is extremely subtle.)

6. The Wavefunction: In the Stern-Gerlach experiments we represented the states using the

ket |SG
x
〉. More generally, the state of any system can be represented by a ket, say |ψ〉.

Consider the inner product of the bra state 〈x| with a ket vector |ψ〉, i.e. 〈x |ψ〉 ≡ ψ(x).
This quantity is called the wavefunction. Hence the wavefunction is the inner product of
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the abstract ket vector that represents the state of the system (for example the state of the

Stern-Gerlach experiment) with the position representation. We will discuss a lot more in

the next few lectures regarding this “wavefunction”.

7. In fact the story of quantum mechanics, as we are going to learn it, is the story of how to find

the wavefunction of the system. Why is this important?

(a) We noted that the wavefunction is obtained by the inner product of the abstract ket vec-

tor that represents the state of the system with the position representation. (This process

of performing this inner product is also called a projection. Hence, the wavefunction is

the projection of the abstract ket vector |ψ〉 on to the position representation.)

(b) Since |ψ〉 represents the state of the system, (as the states in the Stern-Gerlach ex-

periment fully represent the state of the system, in a similar fashion |ψ〉 contains all

information about the system). we would like to know everything there is to know

about |ψ〉.

(c) What is the equation that gives us |ψ〉 ? It is called the Schrödinger Equation, which

we will see soon.

(d) Properties of the Wavefunction: We will simply state the required properties here.

Later when we solve our first quantum mechanical problem (the particle in a box) we

will see how these properties become necessary.

• The Wavefunction must be continuous.

• The wavefunction must have finite values in all space.

• The wavefunction must be normalized. That is the integral of the square of the

wavefunction over all space must be 1:

〈ψ |ψ〉 = 〈ψ|
{
∫

dx |x 〉〈x|
}

|ψ〉 =
∫

dxψ∗(x)ψ(x) = 1 (E.9)

This condition is extremely important, mathematically. It allows only a certain

kind of function to be a wavefunction: ones that are square integrable. It also

implies that the length of the ket |ψ〉 is always 1.

• And finally the quantity dxψ∗(x)ψ(x) ≡ dx|ψ(x)|2 is interpreted as the proba-

bility density of the system. That is the probability of finding the system in a

infinitesimal area of size dx around the point x.
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