
Atomic and Molecular Quantum Theory Course Number: C561

J Theory of Operators: II

1. Representing operators

(a) Earlier in the class we spoke about how we could “represent” vectors. That is any

vector can be represented as a linear combination of a complete set of vectors. (If this

statement is not clear, please revise Section D and also look through the Pauli Spin

matrix homework and handout where we learnt how to represent the spin operators

using the kets |SG+
z 〉 and |SG−

z 〉.)

(b) Operators can be represented in a similar for. In fact if you have a complete set of

vectors {|i〉}, we can write an operator as a matrix. What we mean by this is we could

represent an operator using a collection of matrix elements that have the following

form:

Aj,l ≡
〈

j
∣

∣

∣Â
∣

∣

∣ l
〉

(J.1)

Aj,l is the (j, l)-th element of the matrix that is used to represent the operator Â. (Make

sure to compare this with the Pauli spin matrix homework so you understand whats

going on clearly.)

(c) Does this definition make sense? Â |l〉 is another vector. You could call it |m〉 if you

like. In that case the right hand side of Eq. (J.1) is the “dot” product of two vectors:

〈j| and |m〉. The “dot” product of two vectors is a number. Hence the definition in Eq.

(J.1) makes sense. (If these arguments are not a 100% clear to you, you need to go back

and revise Section D and the related appendix. )

(d) For Eq. (J.1) to be useful we should know what Â does to |l〉 when it acts on it.

2. Lets now consider the individual parts of the Hamiltonian as seen in the description of the

time-dependent and time-independent Schrödinger Equation. Here we will discuss represen-

tations for the Hamiltonian.

(a) The kinetic energy operator for the Hamiltonian is the second derivative operator. What

we really did before we obtained the differential equation for the time-independent

Schrödinger Equation for the particle in a box case is the following:

H |ψ〉 = E |ψ〉 (J.2)

(b) We wrote this equation in the coordinate representation:

H

∫

dx |x〉 〈x |ψ〉 = E |ψ〉

〈x′|K + V

∫

dx |x〉 〈x| |ψ〉 = E 〈x′ |ψ〉 (J.3)

∫

dx 〈x′|K |x〉 〈x| |ψ〉 +
∫

dx 〈x′|V |x〉 〈x| |ψ〉

= Eψ(x′) (J.4)
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Note we have used the definition: ψ(x′) ≡ 〈x′ |ψ〉 in the last equation above.

(c) Here we did something but never spoke about it. We implicitly made the assumption

that

〈x′|V |x〉 = V (x)δx,x′. (J.5)

That is the potential energy does not depend on two points in space but only depends

on one point.

(d) Does this make sense? The classical definition of the potential energy is the energy due

to the position of an object and hence it should depend only on one index x which is

the position of the object. Such potential energies are called local potential energies.

There exists a family of potential energies where we cannot make this simplification,

that is we have to leave V as a function of two points as in the equation above and these

are call non-local potentials. We will not see any non-local potentials in this course.

(e) This assumption of local potentials reduced our equation to:

∫

dx 〈x′|K |x〉 〈x| |ψ〉+ V (x)ψ(x) = Eψ(x′) (J.6)

The first on the left hand side is another way to write the second derivative operator

and this is how we got our differential equation that we solved for the particle in a box

and other one-dimensional problems.

(f) The reason we are going through this digression is to realize that the matrix element of

the operator we defined in Eq. (I.12) is something we implicitly used in writing down

the differential equation. The differential equation had the corresponding form only

because we chose to write the equation in the coordinate representation!! (We could

have chosen any other complete set to write the Schrödinger Equation in and in such a

case we would have needed the matrix elements in that basis set.)
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3. Hermitian Operators

(a) Do eigenvalues have to be real? No. a in Eq. (I.11) could be complex. But if a is a

measurable quantity it would have to be real. Right?

(b) What are the requirements that a has to be real?

(c) It turns out a is real for a very special kind of operator. It is called the Hermitian

operator. Before we introduce a Hermitian operator it is required that we introduce the

following concept: the dual space analogue of an operator.

(d) The the dual space analogue of an operator Â is represented by the operator Â†. (Note

this is the same notation we used for vectors.) This matrix is defined in the following

fashion:
〈

j
∣

∣

∣Â†
∣

∣

∣ l
〉

=
〈

l
∣

∣

∣Â
∣

∣

∣ j
〉∗

(J.7)

Does this definition make sense?

(e) A Hermitian operator is define as an operator that satisfies:

Â† = Â. (J.8)

That is:
〈

j
∣

∣

∣Â
∣

∣

∣ l
〉

=
〈

l
∣

∣

∣Â
∣

∣

∣ j
〉∗

(J.9)

Note the left hand is A(j,l) and the right hand side is A†
(j,l), hence when we say that the

two operators are equal we require that every element of the corresponding matrices

are equal.

(f) Examples of Hermitian operators. The potential energy operator and the momentum

operator are examples of Hermitian operators. For the potential energy operator:

〈j |V | l〉 = 〈j|
∫

dx |x〉 〈x| V
∫

dx′ |x′〉 〈x′| |l〉

=
∫

dx

∫

dx′ 〈j| |x〉 〈x| V |x′〉 〈x′| |l〉

=
∫

dx

∫

dx′j(x)∗V (x)δx,x′l(x′) (J.10)

The requirement of local potential makes x and x′ the same and we get:

〈j |V | l〉 =
∫

dx j(x)∗V (x)l(x) (J.11)

We can similarly write the right hand side of Eq. (J.9) as

[〈l |V | j〉]∗ =
[
∫

dx l(x)∗V (x)j(x)
]∗

=
∫

dx l(x)V (x)∗j(x)∗

=
∫

dx l(x)V (x)j(x)∗

= 〈j |V | l〉 (J.12)
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Hence, if the potential energy is real over all space (which it is in many physical prob-

lems), the potential energy operator is Hermitian

For the momentum operator:

〈j |p̂| l〉 = 〈j|
∫

dx |x〉 〈x| p̂
∫

dx′ |x′〉 〈x′| |l〉

=
∫

dx

∫

dx′ 〈j| |x〉 〈x| p̂ |x′〉 〈x′| |l〉

=
∫

dx

∫

dx′j(x)∗
[

−ıh̄
∂

∂x

]

δx,x′l(x′) (J.13)

This gives

〈

j

∣

∣

∣

∣

∣

[

−ıh̄
∂

∂x

]∣

∣

∣

∣

∣

l

〉

= −ıh̄
∫

dxj(x)∗
∂

∂x
l(x)

= −ıh̄ j(x)∗l(x)|
x→+∞

x→−∞

+ ıh̄

∫

dx
∂j(x)∗

∂x
l(x) (J.14)

Now we require that the functions j(x) and l(x) be normalizable. For this to be true

j(x) and l(x) must go to zero at ±∞. (Note that this argument is different from the ar-

gument you saw in the extra-credit homework last week on the finite Fourier transform

of the time-dependent SE.) 3

〈

j

∣

∣

∣

∣

∣

[

−ıh̄
∂

∂x

]∣

∣

∣

∣

∣

l

〉

=
∫

dx

[

−ıh̄
∂j(x)

∂x

]∗

l(x)

=

{

∫

dx

[

−ıh̄
∂j(x)

∂x

]

l(x)∗
}∗

=

〈

l

∣

∣

∣

∣

∣

[

−ıh̄
∂

∂x

]
∣

∣

∣

∣

∣

j

〉∗

(J.15)

Hence the momentum operator is Hermitian.

Homework: Using the same approach as above, show that the kinetic energy operator

is Hermitian.

Hence the Hamiltonian operator is a Hermitian operator.

(g) A Hermitian operator always has real eigenvalues Consider the eigenvalue problem

for the Hermitian operator Â:

Â |η〉 = a |η〉 (J.16)

Left-multiplying both sides by 〈η| and noting that 〈η| η〉 = 1:

〈η| Â |η〉 = a (J.17)

3Functions that are normalizable are called quadratically integrable functions.
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Now consider the complex conjugate of the above equation:

{

〈η| Â |η〉
}∗

= a∗ (J.18)

Since Â is a Hermitian operator, the left side of Eq. (J.17) and Eq. (J.18) are equal:

〈η| Â |η〉 =
{

〈η| Â |η〉
}∗

(J.19)

Note that this is a special case of Eq. (J.9). Hence the side of Eq. (J.17) and Eq. (J.18)

should also be equal. That is,

a∗ = a (J.20)

But this can only be true of a is real.

Hence the eigenvalues of a Hermitian operator are always real.

Since we associate operators with observable quantities, and since quantities we ob-

serve must be real, this property is extremely powerful. It means that most operators

that are associated with observable quantities must be Hermitian operators, and hence

have real eigenvalues. Thus the fact that the Hamiltonian is a Hermitian operator

comes as no surprise since the energy is a real observable quantity!! Such is also the

case for the momentum operator.

(h) The eigenvectors of a Hermitian operator are orthogonal Let |j〉 and |l〉 above be

two specific eigenvectors of the Hermitian operator Â. Then it must be true that

Â |j〉 = aj |j〉

Â |l〉 = al |l〉 (J.21)

Now consider the property of the Hermitian operator Â:

〈

j
∣

∣

∣Â
∣

∣

∣ l
〉

=
〈

l
∣

∣

∣Â
∣

∣

∣ j
〉∗

(J.22)

Since |j〉 and |l〉 are eigenvectors of Â

〈j |al| l〉 = 〈l |aj | j〉
∗

(J.23)

That is,

al 〈j || l〉 = aj
∗〈l | j〉∗

= aj〈l | j〉
∗

(J.24)

Where the last statement is true because aj has to be real as seen earlier.

Now since al 6= aj in general, since any two arbitrary eigenvectors of Â don’t in general

have the same eigenvalues, It must be required that

〈l | j〉 = 0 (J.25)
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Hence the non-degenerate eigenvectors of a Hermitian operator are orthogonal.

Degenerate eigenvectors, in general, need not be orthogonal but it is possible to con-

struct orthogonal vectors from any two degenerate eigenvectors.

Homework: We will now prove the last statement

i. Consider two normalized vectors ~a and~b. Let these not be orthogonal. That is,

~a ·~b = N 6= 0. (J.26)

WhereN is a number that is non-zero. Does this equation make sense? Remember,

we learned earlier that two vectors are orthogonal if their “dot” product is zero.

Please revise Section D, A and B. Here the vectors ~a and~b are not orthogonal.

ii. Consider the vector:

~c = ~a−N~b (J.27)

Show that the vector ~c is orthogonal to the vector~b.

iii. Interpret Eq. (J.27) in a physical fashion. (Note: To do this you will need to remind

your self what a “dot” product really means.)

iv. The Eq. (J.27) shows that we can construct a vector from ~a that is orthogonal to~b.

v. Eq. (J.27) is called the Gram Schmidt orthogonalization scheme and is very com-

monly used in quantum chemistry.

vi. This procedure can be generalized to more that two degenerate set of vectors.

4. To summarize: Hermitian operators have the following two very important properties:

(a) Hence the eigenvalues of a Hermitian operator are always real. This allows us to write

all observables in terms of operators that are Hermitian. This is true for the energy

(Hamiltonian), the momentum, spin, and many other operators that we will come across

(b) The eigenvectors of a Hermitian operator are orthogonal. This is also a powerful state-

ment. In fact the eigenstates of a Hermitian operator are orthogonal and complete. This

means that any ket-vector can be written as a linear combination of a set of eigenvec-

tors of a Hermitian operators. What does this mean? Say you have an oxygen atom and

a hydrogen atom. And say you have solved the Schrödinger Equation for both these

atoms. This means you know the eigenvectors of oxygen and the eigenvectors of hy-

drogen. (The eigenvectors are what we chemists call orbitals!!) Since the Hamiltonian

for the oxygen atom and the Hamiltonian for the hydrogen atom are Hermitian opera-

tors, it must be true that these set of eigenvectors form a complete set!! So now lets say

we want to solve for the eigenvectors of a water molecule (that is two hydrogens and

one oxygen!!) We can use the eigenvectors of the single hydrogen and oxygen atoms

as basis-vectors to solve the problem for water!!! This would be convenient, because

we have already solved part of the problem. In fact such, approaches are used every

day in quantum chemistry to simplify problems.

To further understand this discussion, please remind yourself that we solved the parti-

cle in a box problem and other one-dimensional problems earlier using the coordinate
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representation. (Do we remember what the coordinate representation is? Revise Sec-

tion E and other related sections.) Here we are proposing an approach where we can

use a different representation, a representation that comprises eigenstates of problems

we solved earlier (the H and O atoms) to solve a more complicated problem H2O.
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