
Atomic and Molecular Quantum Theory Course Number: C561

11 One-dimensional Step Function

1. Consider a step potential:

V (x) = 0 x < 0

V (x) = V0 x ≥ 0 (11.37)

So this is an unbound system.

2. The time-independent Schrödinger Equation in the two regions:

− h̄2
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∂x2
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ψ(x) = Eψ(x), x ≥ 0 (11.38)

or
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x ≥ 0 (11.39)

3. Recognize that these equations look very similar to the PIB case and hence ψ(x) = exp{sx}
leads to

s2 + k0
2 = 0, k0 =

√
2mE

h̄
x < 0

s2 + k2 = 0, k =

√

2m (E − V0)

h̄
x ≥ 0 (11.40)

and

s = ±ık0 x < 0 (11.41)

s = ±ık x ≥ 0 (11.42)

and the solutions in the two regions are:

ψI(x) = A exp{ık0x}+B exp{−ık0x} (11.43)

ψII(x) = C exp{ıkx} +D exp{−ıkx} (11.44)

Chemistry, Indiana University 50 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

4. Now the boundary conditions.

(a) Continuity of the wavefunction at x=0:

A+B = C +D (11.45)

(b) We require that the derivative of the wavefunction be continuous at x=0. Note: We

never used this in the particle-in-a-box. Does it make sense to use this? The kinetic

energy operator is the second derivative operator, i.e. it is the first devotion of ∂ψ

∂x
.

Hence if ∂ψ

∂x
is not continuous, it cannot be differentiated and hence the ∂2ψ

∂x2
will not be

defined. Invoking this we have:

k0 (A−B) = k (C −D) (11.46)

(c) Equations (11.45) and (11.46) can be used to eliminate B:

C =
2k0
k0 + k

A− k0 − k

k0 + k
D (11.47)

which is obtained by multiplying Eq. (11.45) by k0 and adding with Eq. (11.46). We

can also use Equations (11.45) and (11.46) to eliminate C:

B =
k0 − k

k0 + k
A+

2k

k0 + k
D (11.48)

which is obtained by multiplying Eq. (11.45) by k and subtracting from Eq. (11.46).
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(d) Substituting B and C into Eqs. (11.43) and (11.44), we can write:

ψI(x) = ψII(x) = Aψ1(x) +Dψ2(x) (11.49)

where

ψ1(x) = exp{ık0x}+
k0 − k

k0 + k
exp{−ık0x}, x < 0 (11.50)

ψ1(x) =
2k0
k0 + k

exp{ıkx}, x ≥ 0 (11.51)

and

ψ2(x) =
2k

k0 + k
exp{−ık0x}, x < 0 (11.52)

ψ2(x) = exp{−ıkx} − k0 − k

k0 + k
exp{ıkx}, x ≥ 0 (11.53)

Homework: Prove these equations.

(e) Note: ψ1 and ψ2 are themselves solutions to the Schrödinger Equation. Furthermore,

they are continuous at x = 0 and they have the same derivatives at x = 0. (Homework:

Show this.) Hence these are acceptable solutions for us. !!!

5. Lets now analyze these equations:

(a) exp{ıkx} is a plane wave.

(b) What is k? You may recall from the homework assignment in Eq. (H.9) that the

plane wave is an eigenstate of the momentum operator and h̄k is the corresponding

eigenvalue. Since h̄ is a constant this implies that k is proportional to the value of the

momentum.

(c) Hence, we may say exp{ıkx} is a plane wave with positive momentum and exp{−ıkx}
is a plane wave with negative momentum. (Remember: k is the wave vector.)

(d) In that case we can analyze Eqs. (11.50), (11.51), (11.52) and (11.53) in the following

fashion.

(e) Lets take Eq. (11.50). A wave with momentum k0 (represented by the first term in

Eq. (11.50)) moves towards the step-function potential. The wave gets scattered off the

potential and a portion of it gets reflected back. The wave reflected back is represented

in the second term in Eq. (11.50).

(f) Note that this second term has a negative value for the wave-vector, as should be the

case since this wave is moving backwards, that is away from the step function potential.

The intensity of the reflected wave is given by the pre-factor k0−k
k0+k

. (Shall we call this

is a reflection coefficient. We most certainly can. )

Chemistry, Indiana University 52 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

(g) In a similar fashion the term in Eq. (11.51) represents what happens on the other side

of the step-function potential. That is a portion of the incident wave actually makes it

through the potential (gets transmitted through) and continues to go along the positive

direction. So the pre-factor in front of this term should be the transmission coefficient.

(h) OK. So the function ψ1(x) represents a scattering process. The scattering of a wave

that is coming in from the left hand side with momentum k0, gets scattered off the step-

function potential, part of the wave gets reflected from the potential and the other part

gets transmitted through.

(i) OK. So what does ψ2(x) represents. Turns out we can follow the exact same logic as

we did for ψ1(x), while we analyze ψ2(x).

(j) Consider Eq. (11.53). A wave is coming from the right(!!) with a momentum k.

Goes towards the potential. The potential this wave sees is exactly the opposite as

the incoming wave in ψ1(x) felt. (Remember the incoming wave in ψ1(x) felt a step

function which was an increase in the potential energy as it approached x = 0. The

incoming wave in ψ2(x) feels now the opposite potential, i.e., a step potential that goes

down a step.)

(k) The incoming wave from the right gets scattered off this potential and gets reflected off

this potential (the second term in Eq. (11.53). And then some get transmitted through

the potential (the term in Eq. (11.52).

(l) Both ψ1(x) and ψ2(x) represent functions corresponding to scattering processes. One

from the right and the other from the left. Both allow for waves to get reflected and

scattered through the potential that they see!!

(m) Any general solution (such as ψI(x) and ψII(x)) is a linear combination of these two

scattering states as seen in Eq. (11.49).

6. But we have now found a rather “different” way of solving such problems. We can use the

scattering phenomenon to solve these problems.
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7. Consider the reflection coefficient for the wave ψ1(x). Lets call this R1. The probability of

reflection is then defined as the square of this function:

|R1|2 =
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(11.54)

where
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√

1− V0
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=

k

k0
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√
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(11.55)

and the transmission coefficient T1:
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(11.56)

8. There are two possibilities for the energy E < V0, E > V0.

9. Lets first consider E > V0. Below, |R1|2 and |T1|2 are shown as a function of µ. Here µ = 0
when E = V0, that is the top of the barrier and µ = 1 when E → ∞, that is infinitely higher

than the barrier.
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10. This plot shows that for finite values of E > V0 the wave can still get reflected (since |R1|2
is non-zero and becomes zero only as E → ∞ ). This is really weird and completely non-

classical. Over-barrier reflection!!

11. Furthermore, the transmission is never equal to 1 unless the energy E is infinitely large

(which is consistent with the previous result for R1).

12. For E > V0 |R1|2 + |T1|2 = 1.
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13. Let us now consider E < V0. µ is pure imaginary. Note from Eq. (11.55) that µ is real for

E > V0. But for E < V0, µ is purely imaginary, because k is purely imaginary (Why?)!

14. But |R1|2 = 1. Homework: Prove this for E < V0.

15. But: the wavefunction on the right side is not zero.

ψ1(x) =
2k0
k0 + k

exp{ıkx}, x ≥ 0 (11.57)

and note that k is imaginary. Hence this function goes down exponentially as we move

further to the right from the step.

16. But the particle can tunnel through into the classically forbidden region.

17. We have now treated the simplest collision problem that we can think of. This problem

will also introduce the concept of flux conservation in quantum mechanics which replaces

momentum conservation. We will see this when flux is introduced.

18. We have treated the collision of a particle off a barrier, and we find that the particle can

transmit through the barrier, irrespective of whether its energy is lower or higher than the

barrier height.

19. In many ways this is the simplest chemically reactive system that we can think of. (We will

see more about this in the next subsection.)

20. If we consider the states to the left as the reactants and the states to the right as the products

we may consider this process starting from the reactants and producing the products (for ψ1)

or vice versa (for ψ2).

21. The transition probabilities (from reactants to products or vice versa) at any given energy are

given by the respective reflection and transmission coefficients.

22. Quantum reaction dynamics (or quantum scattering theory as it is more appropriately called)

is essentially a generalization of the procedure we just saw, for arbitrary potentials. (Arbi-

trary potentials as in two general reactants may exert a potential on each other that is different

from the step function that we have seen here. We have approximated this to be the case here

so as to illustrate the concepts.)

23. Note: We have done all this in the time-independent perspective. But one could choose to

treat it in the time-dependent perspective and the math would be different!! (You may get

different solutions depending on whether separation of space and time is valid or not !!)

24. If you wonder what the thermal rate constant is: it is the canonical average (at constant tem-

perature) of the transition probabilities that we just calculated. (We calculated the simplest

form.)
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11.1 Isomerization of ammonia using a square potential barrier in one-

dimension

1. Consider a symmetric double-well potential using straight edges as shown on the board. This

is a simple model for isomerization of ammonia. It could also be considered a simple model

for a homo-nuclear diatomic molecule. For a hetero-nuclear diatomic, one nucleus may be

more electronegative as compared to the other, and hence may be deeper!

2. Homework: Purely based on inspection can you draw typical forms for the wavefunctions,

above, below and exactly on top of the barrier for the ammonia problem? No math.

3. Now the mathematical treatment: We will split the region into 3 portions and we will proceed

as we did in the previous section.

4. As we saw in the last section, we may construct this problem by looking it at it in a “scatter-

ing” sense.

5. We have one wave coming from the left and hits the target.

6. Part of the wave gets reflected off the target and a portion gets transmitted through the first

edge.

7. The wave transmitted through the first edge again gets scattered off the second edge, part of

it getting reflected backwards and a part of it getting transmitted through.

8. Hence we may write the contributions to the wavefunction in the three regions as

ψ1(x) = exp{ık0x}+R exp{−ık0x}, (x < −a) (11.58)

ψ1(x) = A1 exp{ıkx}+B1 exp{−ıkx}, x ∈ [−a,+a] (11.59)

ψ1(x) = T exp{ık0x}, (x > a) (11.60)

(11.61)

where k0
2 = 2mE

h̄2
and k2 = 2m(E−V0)

h̄2
as earlier.

9. A similar set of equations may be obtained when we consider a wave going towards the

target from the right. (Note this would be similar to what we wrote down as ψ2 in the

previous section.)

10. But here we can invoke symmetry. And we can say it does not matter from which side you

hit the target. Since the potential is completely symmetric. (The left and the right side (or

the target) are the same here . :-).)

11. We are lucky symmetry holds here. But in nature, we are generally lucky!! Some kind

of a symmetry or other always holds in chemical problems we study.
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12. So we need to solve for the four constants R, A1, B1 and T . Using continuity of function

and derivative at −a we get

exp{−ık0a} + R exp{ık0a} =

A1 exp{−ıka} +B1 exp{ıka} (11.62)

ık0 [exp{−ık0a} − R exp{ık0a}] =
ık [A1 exp{−ıka} − B1 exp{ıka}] (11.63)

Using continuity of function and derivative at x = +a we get

T exp{ık0a} = A1 exp{ıka}+B1 exp{−ıka} (11.64)

T ık0 exp{ık0a} = ık [A1 exp{ıka} −B1 exp{−ıka}] (11.65)

Four equations in four variables that we can solve this to get R, A1, B1 and T .

13. Homework: Consider the corresponding simplified model for the hetero-nuclear diatomic

(or an endothermic reaction). Can you draw the wavefunctions based on your physical un-

derstanding, for the full range of energies?

(a) Write down the time-independent Schrödinger Equation in all three regions.

(b) Write the general solution in the three regions using the scattering approach we consid-

ered. (Note: This situation is unlike what we studied in class, in that it is not symmetric.

Hence you will need to write down both solutions, i.e. scattering due to waves coming

from the left and those coming from the right.)

(c) Write down the boundary conditions that you will use to solve for the coefficients.

(d) Use these boundary conditions to write the equations that will be used to obtain the

coefficients.

(e) Explain in words how you will solve for R and T .

(f) Extra Credit: Go ahead and solve the equations to get R and T .

The reflection and transmission coefficients are, as you know, related to the transition prob-

abilities in this “chemical reaction” and the chemical reaction rate can be obtained from

these. When a more realistic potential is used, you can get results in very good agreement

with experiment. Hence quantum mechanics is predictive!!
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