
Atomic and Molecular Quantum Theory Course Number: C561

21 Group Theory Basics

1. Reference: “Group Theory and Quantum Mechanics” by Michael Tinkham.

2. We said earlier that we will go looking for the set of operators that commute with the molecu-

lar Hamiltonian. We had earlier encountered the angular momentum operators that commute

with the full Hamiltonian. We will encounter a new family of operators: molecular symmetry

operators that also commute with the Hamiltonian.

3. Why is that so? Because if you exchange any two atoms that are identical the molecule

does not change. The probability has to be unchanged with respect to such exchanges or

symmetry operators as they are called and all observables should be the same with respect to

interchange of atoms. Hence the Hamiltonian has to be invariant with respect to such oper-

ations. But the wavefunction may not be invariant, since only observables are required

to be invariant under the action of symmetry operations and in fact the wavefunction

is not an observable!!

4. We say in such a case that the Hamiltonian commutes with the operations that leave the

molecule invariant.

5. Kinds of symmetry operations that we look for in a molecule are

(a) n-fold rotation axis.

(b) mirror planes or reflection planes.

(c) inversion center.

(d) rotation-reflection axis.

(e) identity (means do nothing).

6. Consider for example the case of ammonia.

7. It has the following symmetry operations that leave the molecule invariant: E, C3, C2
3 σv, σ′

v,

σ′′

v
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8. Like all the other operators that commute with the Hamiltonian, the symmetry operators also

make things easier by providing additional information on the nature of the eigenfunctions.

This is similar to the additional information we had due to commuting operators like the

angular momentum operators (where we had quantum numbers). The symmetry operators

that commute with the Hamiltonian also provide addition quantum numbers but these are

now called by a different name; irreducible representations as they are called have this

additional information. We will see more on this.

9. But before we get that far some examples where symmetry can make our life easier without

doing any work:

(a) Consider a molecule that has an inversion center. Clearly, the probability density of the

electrons has to be symmetric about this inversion center. The nuclei also have to be

symmetrically arranged about this point and hence charge has to be symmetric about

this point. Hence a molecule that has an inversion center cannot have a dipole moment.

Considered staggered ethane as an example.

(b) Optical activity: Any molecule that has an inversion center, or a reflection plane or a

rotation-reflection axis cannot be optically active, or in other words cannot be chiral.

10. So we can obtain such powerful information without doing any work.
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11. So how do we characterize the symmetry operations for a given molecule? Here we define

what are known as point groups. The complete collection of operations that leave a molecule

invariant form what is known as a point group. (More on this later but for now let us see how

we can find out what the point group of a given molecule is).

Figure 19: The Point Group table

Chemistry, Indiana University 123 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

12. So why are these called point groups? because we are essentially permuting fixed points in

space.

13. So how is all this useful to us? Let OR be a symmetry operation that commutes with the

Hamiltonian (that is leaves the molecule invariant). Let {si} be the eigenvalues of OR and let

its corresponding eigenvectors be {ψi}. In that case the matrix elements of the Hamiltonian

with respect to {ψi} are

〈ψi |H|ψj〉 =
1

sj
〈ψi |Hsj|ψj〉

=
1

sj
〈ψi |HOR|ψj〉

=
1

sj
〈ψi |ORH|ψj〉

=
1

sj
〈ψi |siH|ψj〉

=
si

sj
〈ψi |H|ψj〉 (21.1)

which basically says:

(sj − si)Hi,j = 0 (21.2)

If ψj and ψi do not have the same eigenvalue with respect to OR, then Hi,j = 0.
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14. This is a very powerful relation. Which basically says that the eigenvectors of the sym-

metry operators OR block-diagonalize the Hamiltonian matrix.

15. This is a very powerful property because the computation time for diagonalization of a matrix

(which is what is required to obtain its eigenvalues and eigenvectors) scales as N3 with the

size of the matrix N . (What is meant by the statement is that the if you double the size of

a matrix from an N × N to a 2N × 2N matrix, then what happens to the computation time

required for diagonalizing the new matrix is, it changes from C × N3 for the old matrix

to C × (2N)3 ≡ [8× (C ×N3)]. That is diagonalizing the new matrix is 8 times more

expensive than diagonalizing the old one, even though the new one is only twice as large as

the old matrix.
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16. OK. So how does it help us if we have a block-diagonal matrix. We can diagonalize each

block separately. So consider a 10×10 matrix. The computation time required to diagonalize

this would beC×103. Say we block diagonalize this to a 5×5, a 3×3 and 2×2. Then the time

required to diagonalize the new matrix is [C × 53 + C × 33 + C × 23 = C × 160 << C × 103].
So already in this small case we have a big difference in computation time. Normal calcu-

lations are much more expensive than the example we considered so the savings would be

enormous.

17. Remember we said earlier that we look for a commuting set of operators to simplify the

problem? Here is one more case where that is true.

18. That and we have a new quantum number based on si the eigenvalue of the symmetry

operator OR to label our eigenstates. (Note in spherical harmonics we had l, etc to label

our eigenstates which were themselves related to eigenvalues of the angular momentum

operator that commuted with the Hamiltonian.)
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19. Having now seen one more reason why we should learn group theory (that is it makes com-

putation easier), lets now look at another reason why group theory is important to learn.

20. We have stated earlier that if a molecule obeys a certain symmetry then it means that the

Hamiltonian corresponding to that molecule commutes with the relevant symmetry opera-

tion. We used this in Eq. (21.1) where we assumed that ORH = HOR.

21. In that case let us assume that the function |φn〉 is an eigenstate of the Hamiltonian H with

eigenvalue En and let us assume that this eigenvalue has many degenerate states, say ln is

the degeneracy. In that case:

ORH |φn〉 = OREn |φn〉

H [OR |φn〉] = En [OR |φn〉] (21.3)

Therefore [OR |φn〉] is also an eigenstate of H with eigenvalue En. In fact, this way we

can get all the degenerate eigenstates of H with eigenvalue En. (This last statement is

not entirely true. If you can get all the degenerate eigenstates of H in this fashion, then the

degeneracy is called a normal degeneracy. If not it is called an accidental degeneracy. For

example the 2s, 2p degeneracy in hydrogen atom is an accidental degeneracy. In the case

of accidental degeneracy it generally implies some underlying deeper symmetry that hasn’t

been accounted for or the symmetry is not an exact one. For the 2s, 2p case it was shown by

Fock in 1935, that there exists a deeper symmetry that makes these degenerate.)
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22. A few important remarks:

• We did notice for the case of {L2, Lz, Lx, Ly} that although L2 commutes indepen-

dently with each of Lx, Ly, Lz, independently, the fact that each of Lx, Ly, Lz do not

commute with each other has an important bearing on the eigenstate structure of L2 (→
degeneracy).

• Similarly here if there exists a family of symmetry operators {Oi
R} that do not commute

with each other but commute with H , the Hamiltonian, we will have degeneracy for

the same reasons that we found for the case of angular momentum!!

– In this case we can pick one of the operations inside a manifold of non-commuting

operators as special (like we picked Lz as special as opposed to picking Lx or

Ly) and the other operators in that manifold can be used to switch between the

degenerate eigenstates.

– Note: This is exactly what happened for angular momentum. We picked the Lz

operators as special and the Lx and Ly help convert between the eigenstates of Lz.

(See the exam problem on spin.)

– This point leads to an important concept in group theory (2- and 3-dimensional

irreducible representations) as we will see later.

• This brings in two important family of groups:

– Abelian Groups: Where all molecular symmetry operations commute with each

other.

– Non-abelian Groups: Where all molecular symmetry operations do not commute

with each other.

Chemistry, Indiana University 128 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

23. To proceed further and to learn how to use group theory we will need to learn a few concepts.

24. The first concept is what is a group? A group has the following properties:

(a) A group is closed. Which means that the product of any two elements in the group also

belongs to the group. For example consider the C3v group that ammonia belongs to

with group elements E, C3, C2
3 σv, σ′

v , σ′′

v . The product of any two elements belongs to

group. We will see more on this later.

(b) The group has an identity which does nothing. E is used to represent the identity.

(c) Every element of the group has an inverse and the inverse element is also a part of the

group.

(d) The group operations are associative. (AB)C = A (BC).
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25. To illustrate this definition we introduce the group multiplication table. For example for the

C3v group that ammonia belongs to with group elements E, C3, C2
3 σv, σ′

v, σ′′

v , the group

multiplication table looks as follows:

26. Homework: For water, write down its point group using the Point Group table provided in

Fig. (11). Write down all the symmetry elements of water and also write down the group

multiplication table.
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27. The operations that we have included in the symmetry group are basically rotation, reflection,

inversion center, rotation-reflection and identity operations. These are operations that act on

some point in three dimensional space and move it to another point in three dimensional

space. Hence we should be able to write down matrix representations for these operations.

(A matrix acting on a vector, which represents the position of a point in space, gives a vector

which is the position of the new point.)

28. To obtain such matrix representations it is useful to keep the following definition for a rota-

tion matrix that rotates something by an angle θ in the x-y plane.

[

cos θ sin θ
− sin θ cos θ

]

(21.4)

and a reflection about a plane that is at an angle θ from the horizontal is given by

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

(21.5)

29. Using these we can write down representations for the C3v group as:
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30. Homework: Confirm that the representations in the previous page conform to the group

multiplication table of C3v.

31. Homework: Write down similar representation for the C2v group. You would need to know

what the operations are in the C2v group. Confirm that these are consistent with the group

multiplication table.

32. So we have seen one way of representing these symmetry operations. And that is using

matrices. But are there other ways? How about the determinant of a matrix. Below we

see that event the determinant can be used as a representation. Can we use the number 1 to

represent everything. Yes. It would be consistent with the multiplication table in a trivial

sense.

33. We can come up with other representations of the following kind.
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34. So its clear that there are many ways of representing these symmetry operations. Some are

more complex than others. But clearly the three-dimensional representations we had in the

previous page are reducible to the 1 and 2 dimensional representations.

35. So there are some representations that are reducible and some that are irreducible. It is

the irreducible representations that we need. These are the ones that bear serious value to

quantum chemistry.

36. Example of irreducible representations and the character table:

37. A few examples we can see now, but we will see the reasons why these are useful in a

more rigorous fashion. Perhaps the single most important usage of these character tables

and irreducible representations is in creating what are known as “symmetry adapted linear

combinations” of orbitals, thats is energy levels that obey a certain symmetry. This makes

our life easier and it gives us greater insight into the physics of our problem. This we will

see in greater detail next time.
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38. We saw what a group is. We also saw what a group representation is. A representation is

a collection of objects (in our case rotation, reflection, matrices or simply determinants of

these) that mimic the characteristics (think group multiplication table) of a group.

39. We saw what a homomorphic representation is. For example the determinant of the matrices

we derived for the operations in C3v are a homomorphic representation. Since these “num-

bers” do not include all the details of the group, only some. For example the one-dimensional

representation in the previous page does not differentiate between the mirror planes, but it

does give the same group multiplication table.

40. The two-dimensional representation we saw earlier is “isomorphic” since it does differentiate

between all the elements and still has the same group multiplication table.

41. We then saw we could combine such representations to get higher dimensional represen-

tations. And those would still have the characteristics of the group (in that these higher

dimensional representations would still obey the group multiplication table). If we construct

a 3-dimensional representation from the one and two-dimensional reps, as we did in the pre-

vious page, the three-dimensional representations also obey the group multiplication table.

42. So where do we stop. How many representations can we have.
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43. There is a theorem that says we stop when the sum of the square of the dimensionality of

each representation should add up to the total number of elements in the group.

44. The irreducible representations (irreps) in the C3v case are then either 1 or two dimensional.

We saw two dimensional matrices last time that can be used to represent the operations

of the C3v group. We also saw that determinants can be used to do the same (although

homomorphically!). There is one more element that can be used to represent the operations

in C3v and that is the number 1. If we were to use the number 1 to represent all the objects

of the group, the group multiplication table would be satisfied in a trivial (homomorphic)

manner.

45. And 12 + 12 + 22 = 6, the number of elements in the group.
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46. So how do we in general derive the irreps? We will only discuss this in detail if we have

the time. But basically, it is not difficult for a general case. We first write down a “regular

representation”. Each irrep occurs in the regular representation a number of times that is

equal to the dimensionality of the representation. This way we have the irreps.

47. We use the irreps to write the character table.

48. In the character table you see rows labeling the representations and under each column the

various representations for an operation are written down. For example look at the C3v

character table and you will find the one and two dimensional representations that we had

earlier.

49. Now, in the character table, we might find either the full two dimensional representation that

we had earlier or just trace of the relevant matrix. The trace is called the character. (Less

information that the two-dimensional representation, but easier to handle.)

50. For example, the irreps in C3v are labeled A1 (one-dimensional and from just putting 1 for

all operations), A2 (one-dimensional and using the determinants from previous) and E (the

two-dimensional irreps).
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51. Important property of the character table:

(a) The sum of the squares across the rows is equal to the dimensionality of the group.

(Remember that there are more elements in the group than the number of columns in

the character table generally. For example in C3v there are two C2 and three mirrors. )

(b) Each row is orthogonal to the others.

(c) These two are together called the great orthogonality theorem.

52. Hence the irreps form an orthogonal vector space. And it is a projection onto the irrep

vector spaces that block diagonalizes the Hamiltonian.

Chemistry, Indiana University 137 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

53. So we introduce projection operators and transfer operators that will and transfer functions

onto the “subspace” or direction of the irrep. Lets start with the projection operators since

these are easier to see.

P
(i)
λλ =

li

h

∑

R

Γ(i)(R)∗λλPR (21.6)

where P
(i)
λλ is the projection operator that projects a function onto the λ-th column of the

(i)-th irrep. (If you think characters then λ is always 1.) h is the total number of elements

in the group (that is 6 for C3v). li is the dimensionality of the irrep. We are summing over

all the elements of the group and PR is the corresponding operation that acts on a function

(while R acts on a point in space, PR acts on a function).

54. The transfer operator is a generalization of the projection operator and one you obtained the

λ-th column of the (i)-th irrep, you can get the κ-th column of the (i)-th irrep by applying

the transfer operator on the λ-th column of the (i)-th irrep:

P
(i)
λκ =

li

h

∑

R

Γ(i)(R)∗λκPR (21.7)

Chemistry, Indiana University 138 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

55. All this is a little abstract. We will do an example to see how all this is used. That example

will teach us how to use the character table. Three important usages of the character table:

(a) We can write down projection operators from above, and using the character table.

These projection operators when applied to some initial function, will provide us with

“Symmetry Adapted linear combinations” (SALC). These SALCs can be used to block-

diagonalize the Hamiltonian. In addition if our guess functions are atomic orbitals (that

is orbitals on atoms), we obtain “Symmetry Adapted linear combination of atomic

orbitals” (SALC-AO). These SALC-AOs are actually pretty decent qualitative guesses

for the molecular orbitals that one would get after solving the Schrödinger Equation.

Note: The SALC-AOs will not contain all the information you need from solving the

Schrödinger Equation. Only some information, based entirely on symmetry and in

many cases these can give good qualitative ideas. For example the Woodward-Hoffman

rules are derived from here. We will take a example later and show how the SALC-AOs

are derived.

(b) The character tables also tell us what kind of linear, quadratic and cubic (in some

versions of character tables) functions transform according to which irrep.

(c) Based on these character tables can be used to predict spectra, which you will learn

next semester in Parmenter’s course.

56. So lets now embark into a couple examples to see how these uses of the character table come

about. All this will be done on the board: I will do on the board first an illustration of how a

projection operator can be used, then the SALC for water. (So you should write these down.

:-))

Chemistry, Indiana University 139 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

57. Lets return to water and consider all possible atomic orbitals on the oxygen. Consider now

the eigenvalue problem:

Rψ = γψ (21.8)

where R is a symmetry operation from the point group of water.

Figure 20: How the AOs transform according the symmetry operations
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Figure 21: SALC-AO for H2O from the 2s and 2py orbitals on the hydrogens
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