
Atomic and Molecular Quantum Theory Course Number: C561

14 Theory of Angular Momentum

1. Why do we want to study angular momentum?

2. We need to study the properties of chemical systems, how is angular momentum relevant?

3. Lets consider the Hamiltonian for any molecule. How does it look?

(a) It includes a term thats called the nuclear kinetic energy: sum of kinetic energy of all

nuclei. (Operator)

(b) It includes the electronic kinetic energy: sum of kinetic energy of all electrons. (Oper-

ator)

(c) Electron-nuclear electrostatic attraction. (Positive and negative charges attract each

other.)

(d) Electron-electron electrostatic repulsion.

(e) Nuclear-nuclear repulsion.

4. So it is complicated and the full Hamiltonian has many terms. And the problem of time-

independent quantum chemistry is to solve for the eigenstates of this Hamiltonian, since

these eigenstates determine properties of molecular systems. So we have a problem.

5. What if we consider the simplest molecular system: the hydrogen atom. Well, it has no

electron-electron repulsion which turns out to be a big advantage. And it does not contain

nuclear-nuclear repulsion either.

6. But even the hydrogen atom turns out to be complicated.

7. So we need a general paradigm to solve these problems.

8. What if we say: We will look for a set of operators that commute with the full Hamiltonian.

9. How does this help us? We learnt earlier that if two operators commute, they have simulta-

neous eigenstates.

10. Hence if we look for operators that commute with the Hamiltonian, and are simpler than

the Hamiltonian, we may solve for eigenstates of these simpler operators first. This way

we could partition one big problem (solving for the eigenstates of the full Hamiltonian) into

many small problems.

11. This is the approach we will use. OK. So what kind of “simpler” operators do we have in

mind that may commute with the Hamiltonian. Well if we were to think classically, we might

say
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(a) the momentum of a system is conserved in classical mechanics. So does the momentum

operator commute with the Hamiltonian? Well, it turns out that this is not the case

for molecular systems since the kinetic energy operator is basically the square of the

momentum and it does not commute with the potential due to the uncertainty principle.

(For crystals and other items of interest in the solid and condensed phase it is, however,

possible to use the momentum operator to simplify the problem.)

(b) the angular momentum is conserved in classical mechanics and it turns out that this is

important. We will see later that the total angular momentum of a molecular system

does commute with the Hamiltonian.

(c) but are there other operators that may commute with the Hamiltonian? Consider a sim-

ple water molecule. If I were to rotate the molecule about its dipole axis by 180 degrees,

the so-called C2 axis, the molecule remains invariant. So, there are these “symmetry

operations” that also commute with the Hamiltonian. Some of you might have come

across “group theory”, which is the theory that deals with finding the symmetry opera-

tions that leave a system invariant. The reason one learns group theory is because these

symmetry operations commute with the Hamiltonian and help simplify the problem

further.

A particle moving with a momentum p and at a distance r from some point in space has an

angular momentum of L = r× p. Angular momentum is a vector with components:

Lz = xpy − ypx

Lx = ypz − zpy

Ly = zpx − xpz (14.36)

Now, we know that

[x̂, p̂x] =

[

x̂,−ıh̄
∂

∂x

]

= ıh̄ (14.37)

which means that the momentum along the x direction does not commute with x. But the momen-

tum along the y or z direction do commute with x since

[x, p̂y] f(x, y) =

[

x̂,−ıh̄
∂

∂y

]

f(x, y)

= −ıh̄

[

x
∂f(x, y)

∂y
−

∂ {xf(x, y)}

∂y

]

= −ıh̄f(x, y)
∂x

∂y
= 0 (14.38)

Hence the following commutator relations hold for angular momentum:

[Lx,Ly] = [ypz − zpy , zpx − xpz]

= ypzzpx − zpxypz − ypzxpz + xpzypz −
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zpyzpx + zpxzpy + zpyxpz − xpzzpy

= −ıh̄ypx + xpyıh̄

= ıh̄Lz (14.39)

In a similar fashion:

[Ly,Lz] = ıh̄Lx

[Lz,Lx] = ıh̄Ly (14.40)

Homework: Prove the last two equations.

The total angular momentum is:

L = Lxî+ Ly ĵ + Lz k̂ (14.41)

and hence

L2 = L · L = Lx
2 + Ly

2 + Lz
2 (14.42)

and it is in fact L2, that commutes with the full Hamiltonian as we will see later.

Homework: Using the commutator relations for angular momenta show that [L2,Lx] =
[L2,Ly] = [L2,Lz] = 0. That is the total angular momentum commutes with each of their

components but the components don’t commute with each other. (Remember here the issue

of simultaneous eigenstates.

1. Eigenstates of the angular momentum operators. On account of the commutation relations

that we have seen for the angular momentum operators, L2 should share simultaneous eigen-

states (and is hence simultaneously measurable) with each of Lx, Ly and Lz. But these in-

dividual components do not share simultaneous eigenstates with each other. In fact it turns

out as we will see later that

L2 |l, m〉 = h̄2l(l + 1) |l, m〉 l = 0, 1, 2, 3, · · · (14.43)

and

Lz |l, m〉 = h̄m |l, m〉 m = ±l,±(l − 1),±(l − 2), · · · , 0 (14.44)

There is degeneracy in the eigenstates of L2 and this degeneracy is induced by the existence

of operators Lx, Ly and Lz.

2. The kets |l, m〉 are not eigenstates of Lx and Ly. Why?

3. So in labeling the eigenstates with the l and m “quantum numbers” we have picked the L2

and Lz operators. This is just a convention and we could have equally well picked L2 and

Lx.

4. Angular momentum can be of various kinds. For example, when the electrons occupy an

orbital there is an orbital angular momentum. Here the electrons are moving in an “orbital”

about a central point (the nucleus) that is fixed relative to the electronic motion. Hence there

is an angular momentum associated to the presence of an electron in a given orbital. Note:

different orbitals may have different orbital momenta since they may be at different distances

from the nucleus and the electrons may have different kinetic energies in different orbitals.
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5. In a similar fashion there is an angular momentum associated with the spin of an electron.

6. Hence we can come up with four different useful operators: L2, Lz, S2, Sz, the last two are

for the total spin angular momentum and the z-component of the spin angular momentum.

We want to use L to represent the orbital angular momentum from now on.

7. Note that in our previous considerations (last couple of pages) we have talked about commu-

tation relations for angular momenta without bias. Hence these commutation relations can

hold for both the spin and orbital angular momentum.

8. The commutation relations are particularly interesting. They state that the total angular

momentum and the z-component can be specified (or measured) simultaneously with the

total angular momentum. But if we do so, we cannot know what the x- and the y- components

with certainty. There exists an uncertainty relation for every pair of operators that do not

commute, as we saw when we derived the uncertainty relations.

9. Here, of course, it is important to state that there is nothing sacrosanct about the z-component

and in fact we could have chosen the x-component. We have chosen the z-component to re-

main consistent with conventions. But the important point is once we chose the z-component

we cannot measure the x- and y- components with infinite certainty.

10. Now the Stern Gerlach experiments make complete sense. Once we measure the x-component

of the spin angular momentum using the second magnetic field across the x-direction, the

z-component was uncertain. What is meant by this uncertainty? When we released silver

atoms with only the S+
x component (which is an eigenstate of the Sx angular momentum

operator, but not an eigenstate of the Sz angular momentum operator since they do not com-

mute), the expectation value of the Sz operator included both eigenstates of the Sz operator.

Hence a third magnetic field along the z-direction produced both states.

11. This issue of simultaneous observation of x-, y- and z- components not being possible is

purely quantum mechanical. The reason for this is the non-commuting nature of the associ-

ated operators. In classical mechanics all three components would be measurable simulta-

neously. Hence something like a Stern-Gerlach experimental shock could never happen for

a classical particle. And again, all this happens only due to the linear vector space nature of

the quantum mechanical states. This is of course non-existent in classical mechanics.

12. Now lets go back to our set of operators L2, Lz, S2, Sz all of which commute with each other

(note that the L and S operators commute with each other since they act on different vari-

ables!!). We will see in the next few lectures that the full Hamiltonian operator for a molecu-

lar system H also commutes with this set operators. Hence the set {H,L2,Lz,S
2,Sz} form

a commuting set of operators and hence have simultaneous eigenstates.

13. In fact we use this commuting set to simplify our approach to quantum mechanics. We obtain

eigenstates of each of these operators separately and all of these must be eigenstates of the

Hamiltonian and hence are what we call “orbitals”.
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14. But when we use each of these family of operators, as we will see later, we get additional

information: the eigenstates of the L2 operator give us orbitals with specific orbital angular

momentum quantum number. (The eigenvalue in Eq. (14.43) indicates a quantum number

of the eigenstate that tells us about the total orbital angular momentum. For example an

s-orbital would have l = 0. A p-orbital would have l = 1 and so on.) The eigenstates of the

Lz operator in Eq. (14.44) give us the quantum number corresponding to the projection of

the orbital angular momentum along the z-axis.

15. In a similar fashion the spin quantum numbers are also determined from the eigenstates of

the spin angular momentum operators.

16. All these quantum numbers together are used to describe the states of the molecular systems,

as we know them today.

17. Hence the family of commuting operators are very useful in getting additional information

about the system.

18. The family of commuting operators also simplifies our solution to the Schrödinger Equa-

tion. As it turns out it is a lot easier to solve for eigenstates of these five separate operators,

instead of the full Hamiltonian operator without information on commuting operators. (Solv-

ing 5 smaller problems is a lot easier than solving one huge problem and this is what this

commuting set does for us.)

19. In more complicated problems there would be need to “search” for additional operators to

obtain more information and to simplify the solution to the Schrödinger Equation. These

operators are generally based on molecular symmetry.

20. We will talk about this when we get to “point groups”. As it turns out the point group

symmetry of a molecule provides another set of commuting operators that simplifies our

problem of solving the Schrödinger Equation even further. (And these simplifications have

a way of providing us with more information. :-). Additional quantum numbers. In the case

of point groups and symmetry also this is true.)

21. There is a maximum eigenvalue for the operators Lz and Sz. Here we have used the J to

represent both spin and orbital angular momentum. So all the relations we will derive in this

section are valid for all kinds of angular momenta. Consider:

〈l, m|
(

Jx
2 + Jy

2
)

|l, m〉 = 〈l, m| Jx
2 |l, m〉 + 〈l, m| Jy

2 |l, m〉

= 〈l, m| JxJx |l, m〉+ 〈l, m|JyJy |l, m〉

≥ 0 (14.45)

Where we obtain the last inequality by realizing that each term is the magnitude of a vector.

For example 〈l, m| JxJx |l, m〉 is magnitude of the vector Jx |l, m〉. And the magnitude of

any vector has to be greater than zero.

Chemistry, Indiana University 75 c©2003, Srinivasan S. Iyengar (instructor)



Atomic and Molecular Quantum Theory Course Number: C561

Now,
(

Jx
2 + Jy

2
)

= J2 − Jz
2. Hence, using Eqs. (14.43) and (14.44)

〈l, m|
(

Jx
2 + Jy

2
)

|l, m〉 = 〈l, m|
(

J2 − Jz
2
)

|l, m〉

=
[

h̄2l(l + 1)− h̄2m2
]

〈l, m| l, m〉

= h̄2l(l + 1)− h̄2m2

≥ 0 (14.46)

Therefore,

m2 ≤ l(l + 1) (14.47)

22. In fact we find that −l ≤ m ≤ l.

23. Now you see why the magnetic quantum number is always bounded by the values for the

azimuthal quantum number !!

This means, a p-orbital that has l = 1, can only have m values of +1, 0 and -1.

24. But can we convert one particular eigenstate of the Jz operator into another eigenstate of the

Jz operator. That is how can we |l, m〉 → |l, m′〉.

25. To achieve this in a general manner we will first need to introduce two special operators.

14.1 Ladder Operators or Raising and Lowering operators

26. So how do solve for the eigenstates of the angular momentum operators. It is useful to

introduce two new operators here that we will represent as

J± = Jx ± ıJy (14.48)

27. What are the properties of these operators:
[

J±,J
2
]

= 0 (14.49)

since both Jx and Jy commute with J2 for both the spin and orbital angular momentum.

Furthermore,

[Jz,J±] = [Jz, (Jx ± ıJy)]

= [Jz,Jx]± ı [Jz,Jy]

= ıh̄Jy ± ı (−ıh̄Jx)

= ±h̄J± (14.50)

And this is no surprise since Jx and Jy do not commute with Jz. Note further that J+
† = J−.

That is these operators are not Hermitian.

Homework: Derive expressions for J+J−, J−J+ and the commutator [J+,J−].
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28. The ladder operators change the eigenvalue of Jz, but not J2. Lets consider the ket

vectors [J± |l, m〉]. Are these related to eigen-kets of Jz? And if so what is the corresponding

eigenvalue?

From Eq. (14.50) we know that [Jz,J±] = ±h̄J±. Hence

JzJ± |l, m〉 − J±Jz |l, m〉 = ±h̄J± |l, m〉 (14.51)

Or,

JzJ± |l, m〉 = J±Jz |l, m〉 ± h̄J± |l, m〉

= h̄mJ± |l, m〉 ± h̄J± |l, m〉

= h̄ (m± 1) [J± |l, m〉] (14.52)

Hence the ket vectors [J± |l, m〉] are eigenstates of Jz with eigenvalue h̄ (m± 1). Hence, we

may write:

J± |l, m〉 ∝ |l, m± 1〉 (14.53)

This is the reason why the operators are called “raising” or “lowering” operators. They raise

or lower the magnetic quantum number by 1.

Homework: Using Eq. (14.49), evaluate J2J± |l, m〉 in a similar fashion as what we

have done above for Jz. Comment on your result with regards to the eigenvalue of the

J2 operator in Eq. (14.43).

29. Equation (14.53) is to be rationalized with Eq. (14.47). Since according to Eq. (14.47), m

has a maximum and minimum value that depends on l, the J+ operator cannot keep “raising”

m as allowed by Eq. (14.53). In a similar fashion J− cannot be allowed to keep “lowering”

m as allowed by Eq. (14.53). It turns out that this is not an issue and is completely taken

care of by the proportionality constant in Eq. (14.53), which is what we will discuss next.

Lets say:

J± |l, m〉 = C
l,m
± |l, m± 1〉 (14.54)

We would like to know what C
l,m
± is. Using the identity:

J−J+ = J2 − Jz
2 − h̄Jz (14.55)

(Note: by now you must have proved this as homework for the problem following Eq.

(14.50).) We can then write:

〈l, m| J−J+ |l, m〉 = 〈l, m|J2 − Jz
2 − h̄Jz |l, m〉

=
[

h̄2l(l + 1)− h̄2m2 − h̄2m
]

〈l, m| l, m〉

=
[

h̄2l(l + 1)− h̄2m (m+ 1)
]

=
[

C
l,m
+

]2

(14.56)
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(Note: 〈l, m|J−J+ |l, m〉 = 〈l, m| J+
†J+ |l, m〉 =

[

C
l,m
+

]2

since |l, m〉 are assumed to be

normalized.

Note, from Eq. (14.56) that when m = l, C
l,m
+ = 0 Therefore,

J+ |l, m = l〉 = 0 (14.57)

That is the operator J+ is a raising operator, but does not raise the value of m any further

than its maximum value l.

Similarly,

J+J− = J2 − Jz
2 + h̄Jz (14.58)

(which again follows as part of your homework assignment for the problem following Eq.

(14.50)) and hence

〈l, m|J+J− |l, m〉 = 〈l, m| J2 − Jz
2 + h̄Jz |l, m〉

=
[

h̄2l(l + 1)− h̄2m (m− 1)
]

〈l, m| l, m〉

=
[

C
l,m
−

]2

(14.59)

where again 〈l, m| J+J− |l, m〉 = 〈l, m|J−†J− |l, m〉 =
[

C
l,m
−

]2

. Hence

C
l,m
− =

√

h̄2l(l + 1)− h̄2m (m− 1) (14.60)

and when m = −l, C
l,m
− = 0. And as from the operator J+, the lowering operator J− does

not lower the value of m below its minimum value of m = −l.

We summarize by stating

C
l,m
± =

√

h̄2l(l + 1)− h̄2m (m± 1) (14.61)

30. So we have learned the following about angular momentum:

(a) Angular momentum is a vector that has three components.

(b) But all of these components cannot be measured simultaneously. The corresponding

operators do not commute (See Eqs. (14.39) and (14.40).)

(c) But all three components commute with the total angular momentum squared (J2).

(d) Hence we choose two operators {J2,Jz} to form a commuting set of operators.

(e) A similar set of commuting operators exists for both orbital angular momentum and

spin angular momentum.

(f) We noted (but did not prove) that the family of four {L2,Lz,S
2,Sz} commute with the

total Hamiltonian H.
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(g) We rationalized the Stern-Gerlach experiments using our commutation relations be-

tween the angular momentum operators. We noted based on our treatment of un-

certainty that there must be a similar uncertainty relation that holds for the angular

momentum operators since they do not commute. This uncertainty allowed us to un-

derstand the Stern-Gerlach experiments better.

(h) This uncertainty and the commutation relations are entirely due to the “linear vector

space” nature of a state vector (or ket vector in quantum mechanics). Non-existent

concept in classical mechanics.

(i) We also noted that like the angular momentum operators {L2,Lz,S
2,Sz} that commute

with the total Hamiltonian, in more serious problems, we could “search” for other

operators that also commute with the total Hamiltonian. These “other” operators are

generally given to us by molecular symmetry.

(j) The angular momentum operators provide us with additional quantum numbers to

quantify the system. In particular we talked about the azimuthal quantum number and

the magnetic quantum number. But due to the similarity of the L and S operators we

can see that there are similar spin-angular momentum quantum numbers s and ms.

(k) We introduced two new operators: the raising and lowering operators.

(l) The raising operator |l, m〉 → |l, m+ 1〉, while the lowering operator |l, m〉 → |l, m− 1〉.

(m) Using the form of the raising and lowering operators we obtained that the magnetic

quantum numbers are bounded by the azimuthal quantum numbers −l ≤ m ≤ l. This

relation also holds for s and ms.

(n) Hence the quantum number l and s can either be integer or half integer. Only integers

and half-integers will allow −l ≤ m ≤ m and for the spin quantum number −s ≤
ms ≤ s. The spin half particles are called fermions and the particles with integral spin

are called bosons.
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